The structure of natural numbers

is helpful for proving properties $\forall n[n \in \mathbb{N}: P(n)]$

The structure of natural numbers

On natural numbers we can define a notion of a successor, a mapping

$$s: \mathbb{N} \to \mathbb{N}$$

by
$$s(n) = n+1$$

The successor mapping imposes a structure on the set that enables us to count:

- 1) there is a starting natural number 0
- 2) for every natural number n, there is a next natural number s(n) = n+1.

Important properties

(I) Different natural numbers have different successors:

$$\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$$

Important properties

(I) Different natural numbers have different successors:

$$\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$$

stated positively

Important properties

(I) Different natural numbers have different successors:

$$\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$$

stated positively

s is injective!

Important properties

(I) Different natural numbers have different successors:

$$\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$$

stated positively

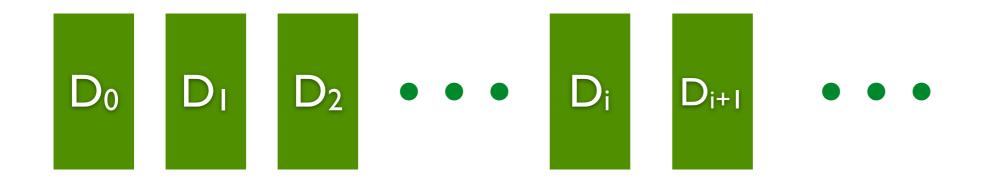
s is injective!

- (2) 0 is not a successor: $\forall n [n \in \mathbb{N} : \neg (s(n) = 0)]$
- (3) All natural numbers except 0 are successors:

$$\forall n[n \in \mathbb{N} \land \neg(n = 0) : \exists m[m \in \mathbb{N} : n = s(m)]$$

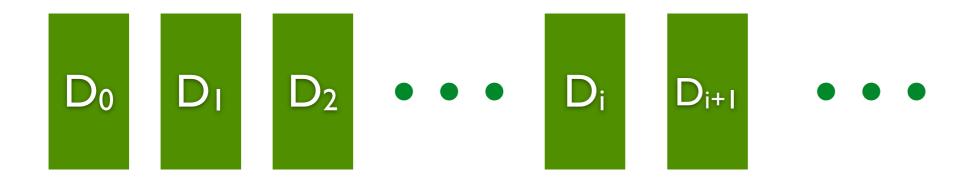
There is more to it - induction

Imagine an infinite sequence of dominos



There is more to it - induction

Imagine an infinite sequence of dominos



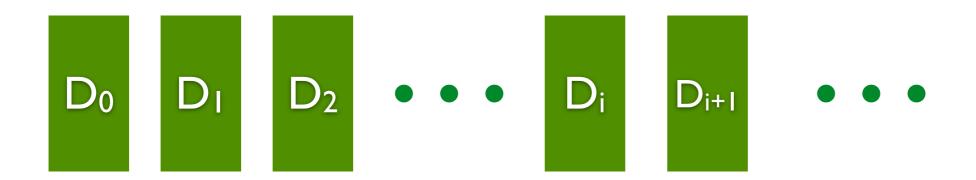
If we know that

- I. D_0 falls
- 2. The dominos are close enough together so that if D_i falls, then D_{i+1} falls (for all $i \in \mathbb{N}$)

Then we can conclude that every domino D_n ($n \in \mathbb{N}$) falls!

There is more to it - induction

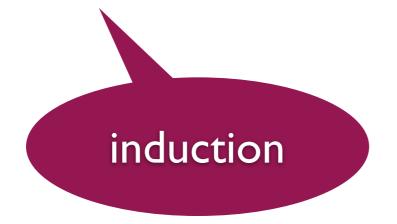
Imagine an infinite sequence of dominos



If we know that

- I. D_0 falls
- 2. The dominos are close enough together so that if D_i falls, then D_{i+1} falls (for all $i \in \mathbb{N}$)

Then we can conclude that every domino D_n ($n \in \mathbb{N}$) falls!



 $P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$

P - unary predicate over N

 $P(0) \land \forall i [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n [n \in \mathbb{N} : P(n)]$

P - unary predicate over N

$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$

$$P(0)$$

$$P(0) \Rightarrow P(1)$$

$$P(1)$$

$$P(1) \Rightarrow P(2)$$

$$P(2)$$

$$P(2) \Rightarrow P(3)$$
...

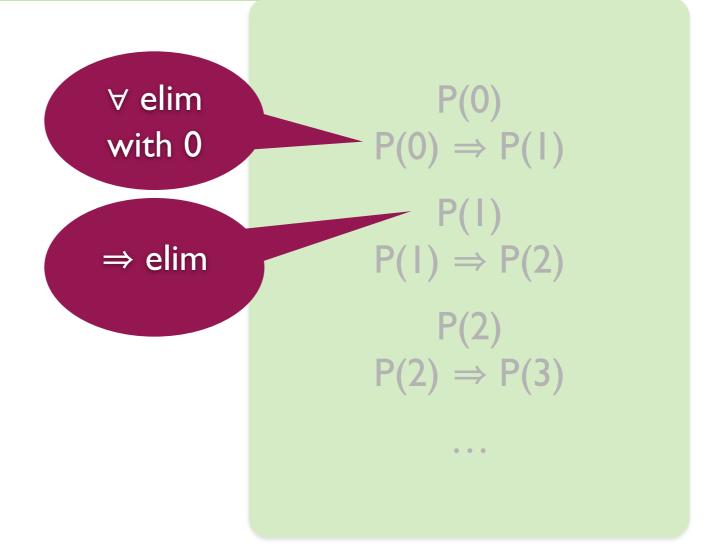
P - unary predicate over N

$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$

P(0)with 0 $P(0) \Rightarrow P(1)$ P(1) $P(1) \Rightarrow P(2)$ P(2) $P(2) \Rightarrow P(3)$...

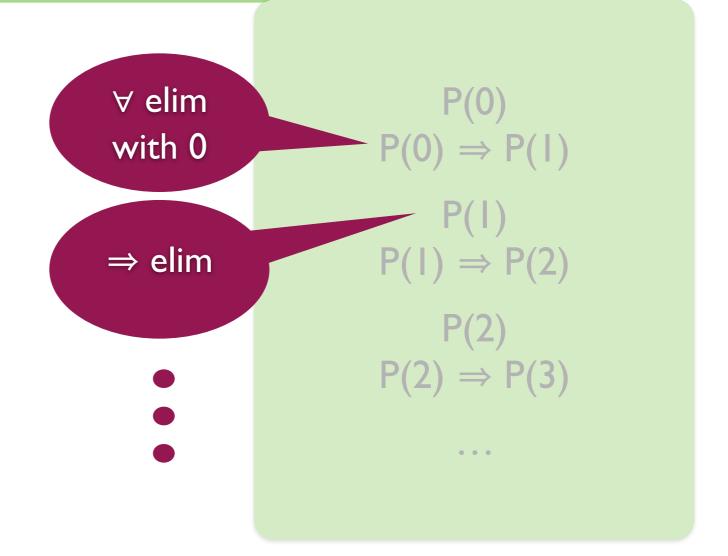
P - unary predicate over N

$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$



P - unary predicate over N

$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$



P - unary predicate over $\mathbb N$

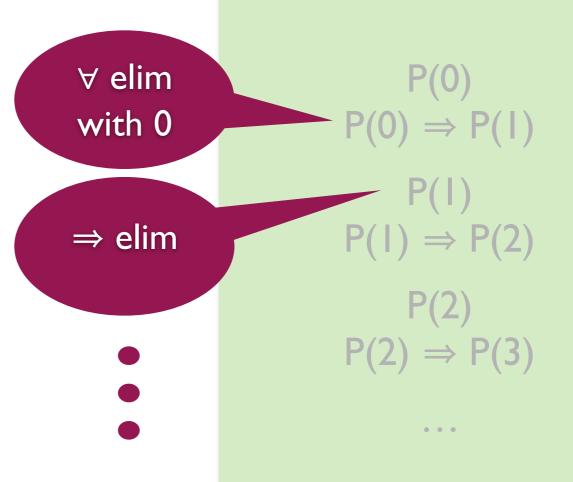
$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$

Variant of the Peano Axiom:

Let $K \subseteq \mathbb{N}$ have the property that

- (a) $0 \in K$ and
- (b) for all $n \in \mathbb{N}$, $n \in K \Rightarrow (n+1) \in K$.

Then $K = \mathbb{N}$.



 $P(0) \wedge \forall i \ [i \in \mathbb{N}: \ P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \ [n \in \mathbb{N}: \ P(n)]$

P - unary predicate over N

```
P(0) \, \wedge \, \forall i \; [i \in \mathbb{N}: \, P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \; [n \in \mathbb{N}: \, P(n)]
```

P - unary predicate over N

```
P(0)
 (m)
        {Assume}
(k)
        var i; i \in \mathbb{N}
(k+1)
         \{\Rightarrow-intro on (k+1) and (I-1)\}
        P(i) \Rightarrow P(i+1)
        \{\forall-intro on (k) and (l)\}
(I+I) \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]
        {induction on (m) and (I+I)}
(I+2) \foralln[n \in N : P(n)]
```

```
P(0) \, \wedge \, \forall i \; [i \in \mathbb{N}: \, P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \; [n \in \mathbb{N}: \, P(n)]
```

P - unary predicate over N

```
(m)
         {Assume}
(k)
         \mathbf{var} \; \mathbf{i}; \mathbf{i} \in \mathbb{N}
(k+1)
           | P(i+1)
          \{\Rightarrow-intro on (k+1) and (I-1)\}
         | P(i) \Rightarrow P(i+1)
         \{\forall-intro on (k) and (l)\}
(I+I) \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]
         {induction on (m) and (I+I)}
(I+2) \foralln[n \in N : P(n)]
```

Basis

```
P(0) \, \wedge \, \forall i \; [i \in \mathbb{N}: \, P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \; [n \in \mathbb{N}: \, P(n)]
```

P - unary predicate over N

```
(m)
         {Assume}
(k)
         \mathbf{var} \; i; i \in \mathbb{N}
(k+1)
          | P(i+1)
         \{\Rightarrow-intro on (k+1) and (I-1)\}
        | P(i) \Rightarrow P(i+1)
         \{\forall-intro on (k) and (l)\}
(I+I) \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]
         {induction on (m) and (I+I)}
(I+2) \foralln[n \in N : P(n)]
```

Basis

Induction step

```
P(0) \, \wedge \, \forall i \; [i \in \mathbb{N}: \, P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \; [n \in \mathbb{N}: \, P(n)]
```

P - unary predicate over N

P(0)(m) {Assume} (k) **var** $i; i \in \mathbb{N}$ (k+1)P(i+1)(I-I) $\{\Rightarrow$ -intro on (k+1) and $(I-1)\}$ **(l)** $| P(i) \Rightarrow P(i+1)$ $\{\forall$ -intro on (k) and (l) $\}$ $(I+I) \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]$ {induction on (m) and (I+I)} (I+2) \forall n[n \in N : P(n)]

Basis

induction hypothesis

Induction step

Inductive proof: truth is passed on

Inductive definition: construction is passed on

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers $(a_i \mid i \in \mathbb{N})$ is defined inductively by

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers $(a_i \mid i \in \mathbb{N})$ is defined inductively by

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

a ₀	aı	a ₂	a ₃	a4	• • •
2	3	5	9	17	

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers $(a_i \mid i \in \mathbb{N})$ is

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

a ₀	aı	a ₂	a ₃	a4	• • •
2	3	5	9	17	

Conjecture

For all $n \in \mathbb{N}$ it holds that

$$a_n = 2^n + 1$$

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers (a_i | $i \in \mathbb{N}$) is

defined inductively by

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

a ₀	aı	a ₂	a ₃	a4	• • •
2	3	5	9	17	

proof by induction

Conjecture

For all $n \in \mathbb{N}$ it holds that

$$a_n = 2^n + 1$$

P - unary predicate over N

 $\forall k \ [k \in \mathbb{N} : \forall j [j \in \mathbb{N} \ \land \ j \le k : P(j)] \Rightarrow P(k)] \ \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$

P - unary predicate over N

 $\forall k \ [k \in \mathbb{N} : \forall j [j \in \mathbb{N} \land j \le k : P(j)] \Rightarrow P(k)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$

$$P(0)$$

$$P(0) \Rightarrow P(1)$$

$$P(0) \land P(1)$$

$$P(0) \land P(1) \Rightarrow P(2)$$

$$P(0) \land P(1) \land P(2)$$

$$P(0) \land P(1) \land P(2) \Rightarrow P(3)$$
...

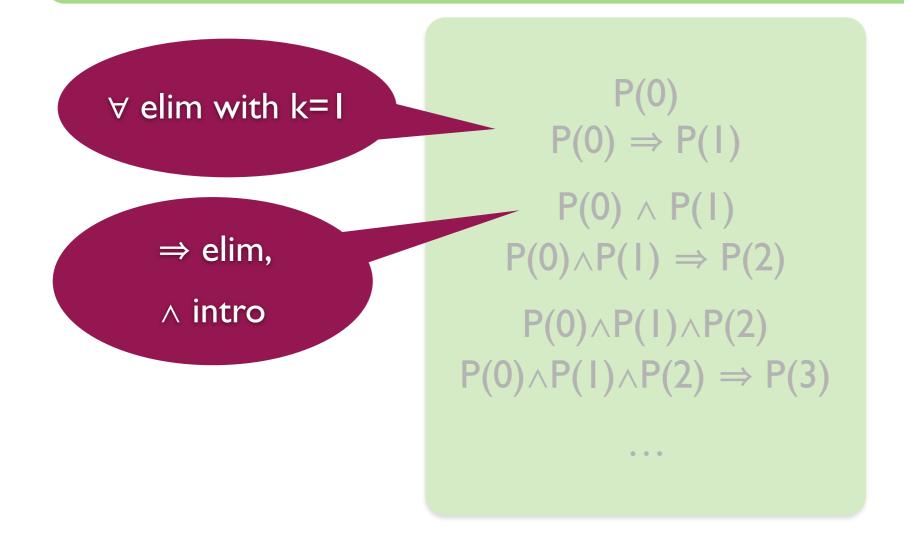
P - unary predicate over N

```
\forall k \; [k \in \mathbb{N}: \; \forall j [j \in \mathbb{N} \; \land \; j \leq k : P(j)] \Rightarrow P(k)] \; \Rightarrow \forall n \; [n \in \mathbb{N}: \; P(n)]
```

 $P(0) \Rightarrow P(1)$ $P(0) \Rightarrow P(1)$ $P(0) \land P(1)$ $P(0) \land P(1) \Rightarrow P(2)$ $P(0) \land P(1) \land P(2)$ $P(0) \land P(1) \land P(2) \Rightarrow P(3)$ \cdots

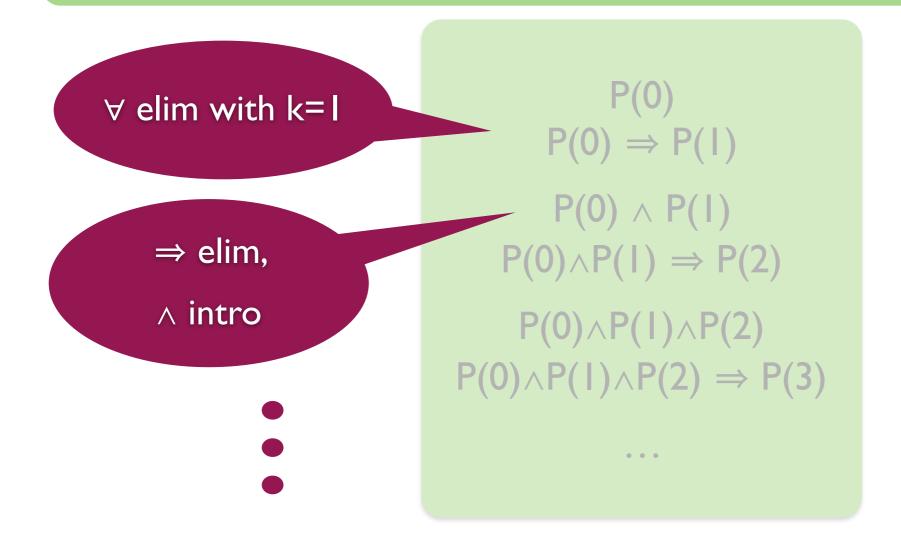
P - unary predicate over N

 $\forall k \ [k \in \mathbb{N} : \forall j [j \in \mathbb{N} \ \land \ j \le k : P(j)] \Rightarrow P(k)] \ \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$



P - unary predicate over N

 $\forall k \ [k \in \mathbb{N} : \forall j [j \in \mathbb{N} \ \land \ j \le k : P(j)] \Rightarrow P(k)] \ \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$



P - unary predicate over N

 $\forall k \; [k \in \mathbb{N}: \; \forall j [j \in \mathbb{N} \; \land \; j \leq k : P(j)] \Rightarrow P(k)] \; \Rightarrow \forall n \; [n \in \mathbb{N}: \; P(n)]$

 $\forall \text{ elim with } k=1$ $P(0) \Rightarrow P(1)$ $P(0) \land P(1)$ $P(0) \land P(1) \Rightarrow P(2)$ $\land \text{ intro}$ $P(0) \land P(1) \land P(2)$ $P(0) \land P(1) \land P(2) \Rightarrow P(3)$ \cdots

Definition of $(a_i \mid i \in \mathbb{N})$ with strong induction

 a_n is defined via $a_0, ..., a_{n-1}$

Cardinality

Cardinals

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A ~ B, or |A| = |B|.

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

|A| = [A]~

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$. $|A| = [A]_{\sim}$

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if B is empty or there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

 $|A| = [A]_{\sim}$

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if B is empty or there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

Def.

A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation |A| < |B|.

 $|A| = [A]_{\sim}$

Def.

Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f:A \rightarrow B$. Notation A \sim B, or |A| = |B|.

Prop.

The relation ~ is an equivalence relation on sets.

Def.

A set A has at most as large cardinality as a set B if there is an injection $f:A \rightarrow B$. Notation $|A| \leq |B|$.

Def.

A set A has at least as large cardinality as a set B if B is empty or there is a surjection $f:A \rightarrow B$. Notation $|A| \ge |B|$.

Def.

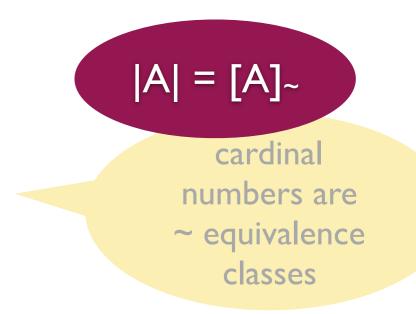
A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation |A| < |B|.

 $|A| = [A]_{\sim}$

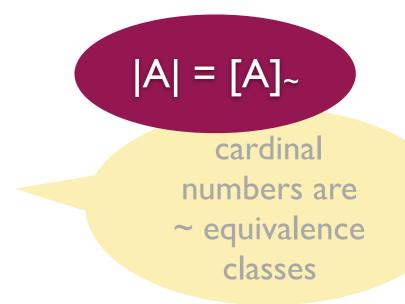
cardinal
numbers are
~ equivalence
classes

Theorem (Cantor)

If $|A| \le |B|$ and $|B| \le |A|$, then |A| = |B|.



Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.



Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

|A| = [A]~

cardinal
numbers are
~ equivalence
classes

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

Prop.

Let A be a set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

Def.

Let A and B be two disjoint sets. Then $|A| + |B| = |A \cup B|$.

Def.

Let A and B be two sets. Then $|A| \cdot |B| = |A \times B|$.

Def.

Let A and B be two sets. Then $|A|^{|B|} = |A^B|$ where A^B is the set of all functions from B to A, i.e. $A^B = \{f \mid f: B \rightarrow A\}$.

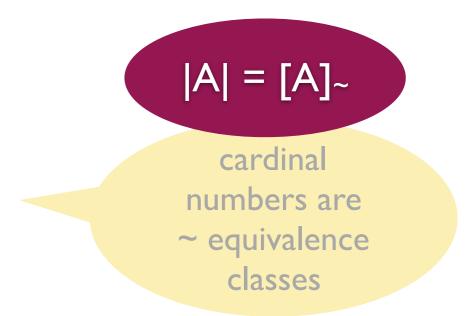
Prop.

Let A be a set. Then $|\mathcal{P}(A)| = 2^{|A|}$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

Note: $2 = |\{0,1\}|$



We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|\mathbb{N}_k|$.

 $|A| = [A]_{\sim}$

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |\mathbb{N}_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

 $|A| = [A]_{\sim}$

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0=\emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |\mathbb{N}_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

 $|A| = [A]_{\sim}$

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |\mathbb{N}_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

if and only if A has k elements, for some $k \in \mathbb{N}$

 $|A| = [A]_{\sim}$

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0=\emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |\mathbb{N}_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

if and only if A has k elements, for some $k \in \mathbb{N}$

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers!

This justifies the notation.

We write \mathbb{N}_k for the set $\{0,1,...,k-1\}$. Then $\mathbb{N}_0=\emptyset$.

We will also write k for $|\mathbb{N}_k|$.

Def.

A set A is finite if and only if $|A| = |\mathbb{N}_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection $f: A \to \mathbb{N}_k$.

 $|A| = [A]_{\sim}$

cardinal
numbers are
~ equivalence
classes

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers!

This justifies the notation.

Time for a video!

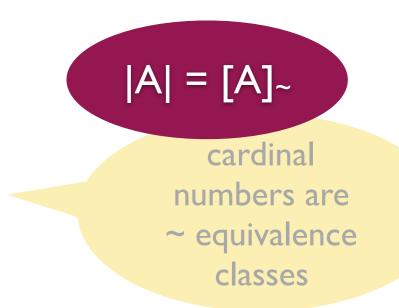
Time for a video!

Hilbert's infinite hotel :-)

Time for a video!

Hilbert's infinite hotel :-)

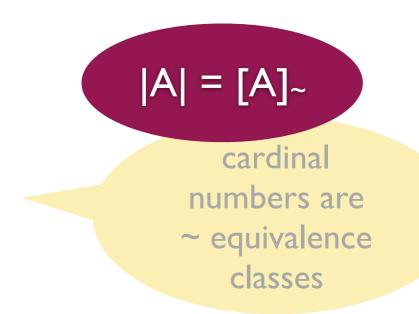
We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.



We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

Def.

A set A is countable iff |A| = 0.



We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

Def.

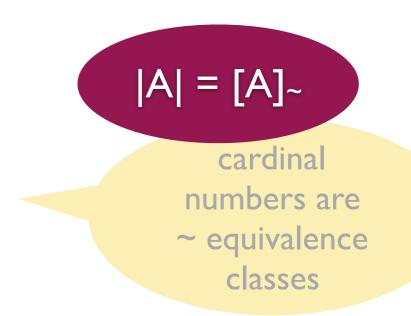
A set A is countable iff |A| = 0.

Prop.

 \mathbb{N} is countable.

 \mathbb{Z} is countable.

Q is countable.



We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

Def.

A set A is countable iff |A| = 0.

Prop.

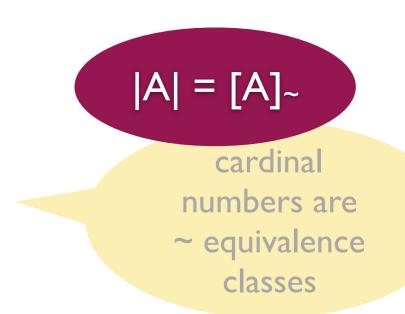
 \mathbb{N} is countable.

 \mathbb{Z} is countable.

Q is countable.

Def.

A set is infinite iff $|A| \ge 0 \aleph$.



We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

Def. A set A is countable iff $|A| = _0 \aleph$.

Prop. N is countable.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Def. A set is infinite iff $|A| \ge 0$.

cardinal
numbers are
requivalence
classes

Hence, every countable set is infinite

We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

A set A is countable iff |A| = 0.

Prop. N is countable.

Def.

Def.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Def. A set is infinite iff $|A| \ge 0$.

A set is uncountable iff |A| > 0N.

cardinal
numbers are
requivalence
classes

Hence, every countable set is infinite

We write ${}_{0}\aleph$ for the cardinality of natural numbers. Hence ${}_{0}\aleph = |\mathbb{N}|$.

 $|A| = [A]_{\sim}$

cardinal numbers are

~ equivalence classes

Def.

A set A is countable iff |A| = 0.

Prop.

 \mathbb{N} is countable.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Def.

A set is infinite iff $|A| \ge 0 \aleph$.

Hence, every countable set is infinite

Def.

A set is uncountable iff $|A| > 0 \lambda$.

Prop.

 \mathbb{R} is uncountable.

We write on the cardinality of natural numbers. Hence $_0 \aleph = |\mathbb{N}|$.

Def. A set A is countable iff |A| = 0.

 \mathbb{N} is countable. Prop.

 \mathbb{Z} is countable.

 \mathbb{Q} is countable.

Def. A set is infinite iff $|A| \ge 0$.

A set is uncountable iff |A| > 0.

 \mathbb{R} is uncountable.

 $|A| = [A]_{\sim}$

cardinal numbers are ~ equivalence classes

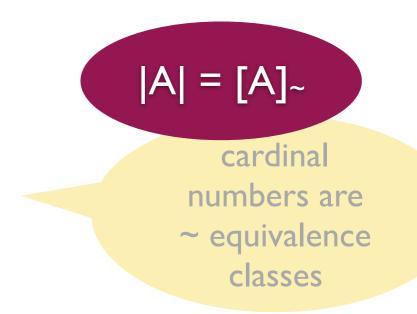
Hence, every countable set is infinite

We write c for $|\mathbb{R}|$

Def.

Prop.

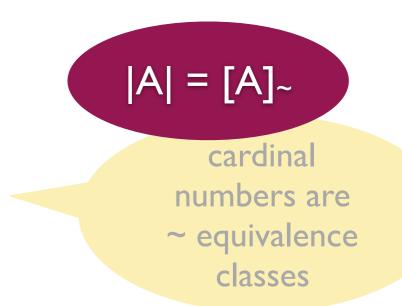
Cardinals are unbounded



Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.



Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

Hence, for every cardinal there is a larger one.

