Derivations / Reasoning

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} (P \vee F) \wedge (P \vee Q)$$

$$\stackrel{\text{val}}{=} P \vee (F \wedge Q)$$

$$\stackrel{\text{val}}{=} P \vee F$$

$$\stackrel{\text{val}}{=} P$$

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$P \wedge (P \vee Q) \stackrel{\vee al}{=} (P \vee F) \wedge (P \vee Q)$$

$$\stackrel{\vee al}{=} P \vee (F \wedge Q)$$

$$\stackrel{\vee al}{=} P \vee F$$

$$\stackrel{\vee al}{=} P$$

Conclusions

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} P \quad P \wedge (P \vee Q) \Leftrightarrow P \stackrel{\text{val}}{=} T$$

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} (P \vee F) \wedge (P \vee Q)$$

$$\stackrel{\text{val}}{=} P \vee (F \wedge Q)$$

$$\stackrel{\text{val}}{=} P \vee F$$

$$\stackrel{\text{val}}{=} P$$

we can prove this more intuitively by reasoning

Conclusions

$$P \wedge (P \vee Q) \stackrel{\text{val}}{=} P \quad P \wedge (P \vee Q) \Leftrightarrow P \stackrel{\text{val}}{=} T$$

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$. Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$.

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

(sub)goal

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$. Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$.

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

(sub)goal

generating hypothesis

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than
$$x = 2y+1$$
 for some $y \in \mathbb{Z}$.
Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$.

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

(sub)goal

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

generating hypothesis

pure hypothesis

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$. Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$.

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$

and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd too, and we have a contradiction.

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Let $x \in \mathbb{Z}$ be such that x^2 is even.

We need to prove that x is even too.

Assume that x is odd, towards a contradiction.

If x is odd than x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$

and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd too, and we have a contradiction.

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Exposing logical structure

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Assume x² is even.

Assume that x is odd.

Then x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$
 and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd

a contradiction.

So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Thanks to Bas Luttik

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \overset{\text{val}}{\vDash} Q$

Q is a correct conclusion from n premises $P_1,..,P_n$ iff $(P_1 \wedge \ P_2 \wedge ... \wedge \ P_n) \overset{\text{val}}{\vDash} Q$

If n=0, then
$$P_1 \wedge P_2 \wedge ... \wedge P_n \stackrel{\text{val}}{=} T$$

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

If n=0, then
$$P_1 \wedge P_2 \wedge ... \wedge P_n \stackrel{\text{val}}{=} T$$

Note that $T \models Q$ means that $Q \stackrel{\text{val}}{=} T$

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land \land P_n) \overset{\text{val}}{\vDash} Q$

If n=0, then
$$P_1 \wedge P_2 \wedge ... \wedge P_n \stackrel{\text{val}}{=} T$$

Note that $T \models Q$ means that $Q \stackrel{\text{val}}{=} T$

Q holds unconditionally

Q is a correct conclusion from n premises $P_1,..,P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \overset{\text{val}}{\vDash} Q$

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \overset{val}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

introduction rules

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

introduction rules

(particularly useful) instances of the single inference rule

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

introduction rules

(particularly useful) instances of the single inference rule

and one new special rule!

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

for drawing conclusions out of premises

introduction rules

(particularly useful) instances of the single inference rule

and one new special rule!

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \overset{\text{val}}{\vDash} Q$

a formal system
based on the single
inference rule
for proofs that closely
follow our
intuitive reasoning

Two types of inference rules:

elimination rules

introduction rules

for drawing conclusions out of premises

for simplifying goals

(particularly useful) instances of the single inference rule

and one new special rule!

How do we use a conjunction in a proof?

How do we use a conjunction in a proof?

 $P \wedge Q \stackrel{\text{val}}{\models} P$

 $P \land Q \stackrel{\text{val}}{\models} Q$

How do we use a conjunction in a proof?

 $P \wedge Q \stackrel{\text{val}}{\models} P$

 $P \land Q \stackrel{\text{val}}{\models} Q$

```
|| ||
```

(k) $P \wedge Q$

 $\parallel \parallel$

 $\{\land$ -elim on $(k)\}$

(m) P

(k < m)

How do we use a conjunction in a proof?

 $P \wedge Q \stackrel{\text{val}}{\models} P$

 $P \land Q \stackrel{\text{val}}{\models} Q$

```
|| ||
```

(k) $P \wedge Q$

 $\{\land$ -elim on $(k)\}$

(m) P

$$\parallel \parallel$$

(k) $P \wedge Q$

 $\parallel \parallel$

 $\{\land$ -elim on $(k)\}$

(m) Q

(k < m) (k < m)

How do we use a conjunction in a proof?

 $P \wedge Q \stackrel{\text{val}}{\models} P$

 $P \land Q \stackrel{\text{val}}{\models} Q$

```
∧-elimination
```

|| ||

(k) $P \wedge Q$

|| ||

 $\{\land$ -elim on $(k)\}$

(m) P

 $\parallel \parallel$

(k) $P \wedge Q$

 $\parallel \parallel \parallel$

 $\{\land$ -elim on $(k)\}$

(m) Q

(k < m) (k < m)

How do we use an implication in a proof?

How do we use an implication in a proof?

$$P \Rightarrow Q \stackrel{\text{val}}{\models} ???$$

$$(P{\Rightarrow}Q) \wedge P \overset{\text{val}}{\vDash} Q$$

How do we use an implication in a proof?

 $P \Rightarrow Q \stackrel{\text{val}}{\models} ???$

$$_{8}$$
 (k < m, l < m)

How do we use an implication in a proof?

 $P \Rightarrow Q \stackrel{\text{val}}{\models} ???$

 $(P \Rightarrow Q) \land P \stackrel{\text{val}}{\vDash} Q$

⇒-elimination

$$_{8}$$
 (k < m, I < m)

How do we prove a conjunction?

How do we prove a conjunction?

 $P \land Q \stackrel{\text{val}}{\models} P \land Q$

```
...
(k) P
...
(l) Q
...
{∧-intro on (k) and (l)}
(m) P∧Q
```

 $_{9}$ (k < m, l < m)

How do we prove a conjunction?

∧-introduction

• • •

(k) P

• • •

(I) **Q**

• • •

 $\{\land$ -intro on (k) and (l) $\}$

(m) $P \wedge Q$

 $_{9}$ (k < m, l < m)

 $P {\wedge} Q \overset{\mathsf{val}}{\vDash} P {\wedge} Q$

Implication introduction

How do we prove an implication?

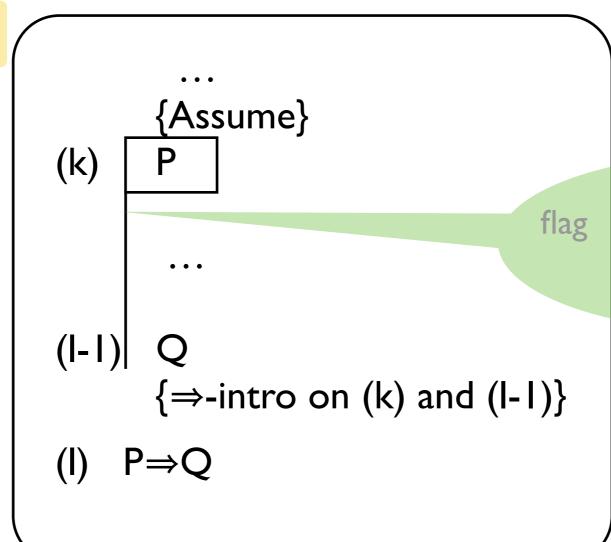
How do we prove an implication?

How do we prove an implication?

⇒-introduction

How do we prove an implication?

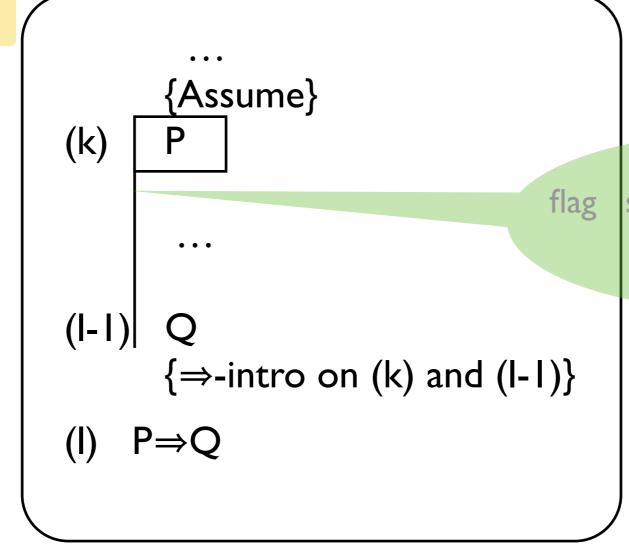
⇒-introduction



shows the validity of a hypothesis

How do we prove an implication?

⇒-introduction

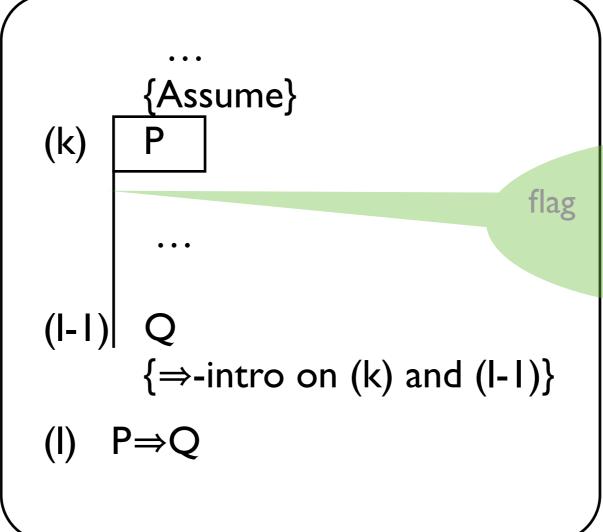


truly new and necessary for reasoning with hypothesis

shows the validity of a hypothesis

How do we prove an implication?

⇒-introduction



truly new and necessary for reasoning with hypothesis

shows the validity of a hypothesis

time for an example!

How do we prove a negation?

How do we prove a negation?

$$\neg P \stackrel{\text{val}}{=} P \Rightarrow F$$

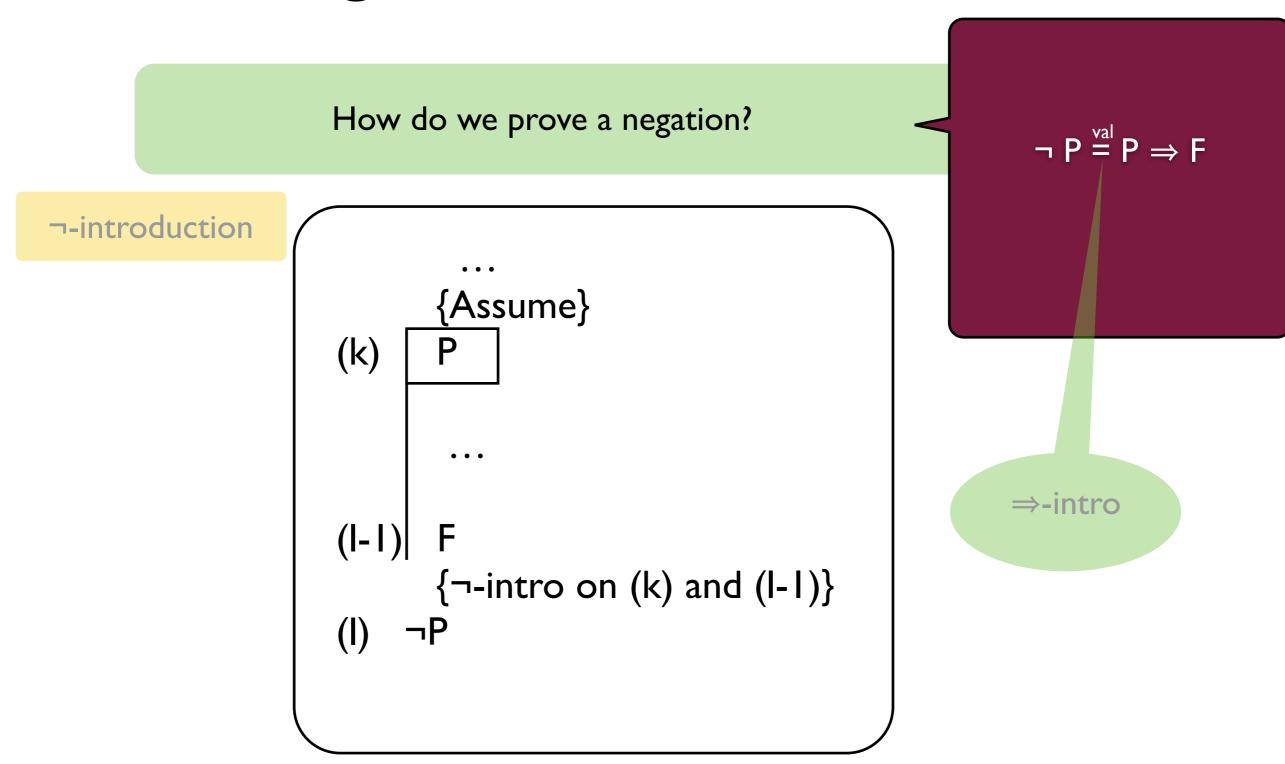
How do we prove a negation?

$$\neg P \stackrel{\text{val}}{=} P \Rightarrow F$$

```
{Assume}
(k)
        \{\neg\text{-intro on (k) and (I-I)}\}\
```

How do we prove a negation? ¬-introduction {Assume} (k) (I-I) $\{\neg\text{-intro on (k) and (I-I)}\}\$

$$\neg P \stackrel{\text{val}}{=} P \Rightarrow F$$



How do we use a negation in a proof?

How do we use a negation in a proof?

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

How do we use a negation in a proof?

```
\{\neg-elim on (k) and (l)\}
```

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

 $_{12}$ (k < m, I < m)

How do we use a negation in a proof?

¬-elimination

```
(k)
(l)
       \{\neg-elim on (k) and (l)\}
(m)
```

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

$$_{12}$$
 (k < m, l < m)

How do we use a negation in a proof?

¬-elimination

$$\parallel \parallel$$

(k) P

(I) ¬P

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

time for an example!

How do we prove F?

(k) {F-intro on (k) and (l)} (m)

How do we prove F?

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

 $_{13}$ (k < m, I < m)

How do we prove F?

F-introduction

• • •

(k) F

. . .

(I) ¬P

• • •

{F-intro on (k) and (l)}

(m) F

 $_{13}$ (k < m, l < m)

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

How do we prove F?

F-introduction

• • •

(k) P

• • •

(I) ¬P

• • •

{F-intro on (k) and (l)}

(m) F

 $P \wedge \neg P \stackrel{\text{val}}{\models} F$

the same as ¬-elim only intended bottom-up

(k < m, l < m)

How do we use F in a proof?

How do we use F in a proof? (k) $\{F-elim on (k)\}$ (m)

it's very useful!

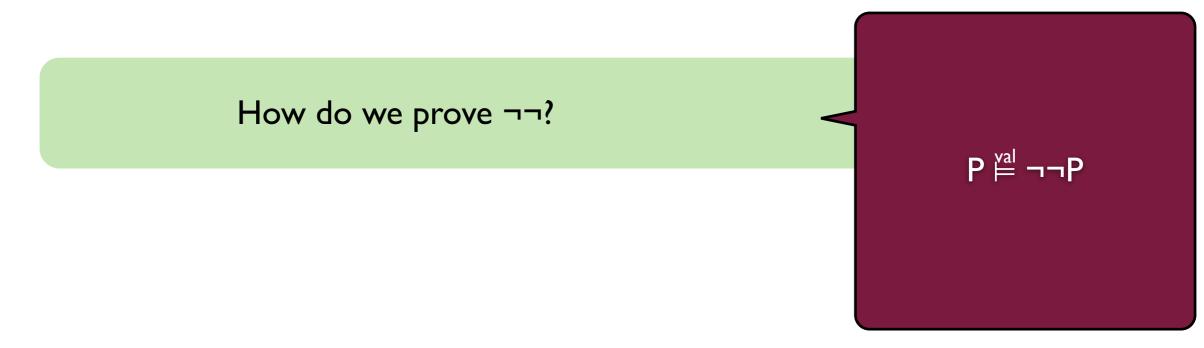
 $F \stackrel{\text{val}}{\models} P$

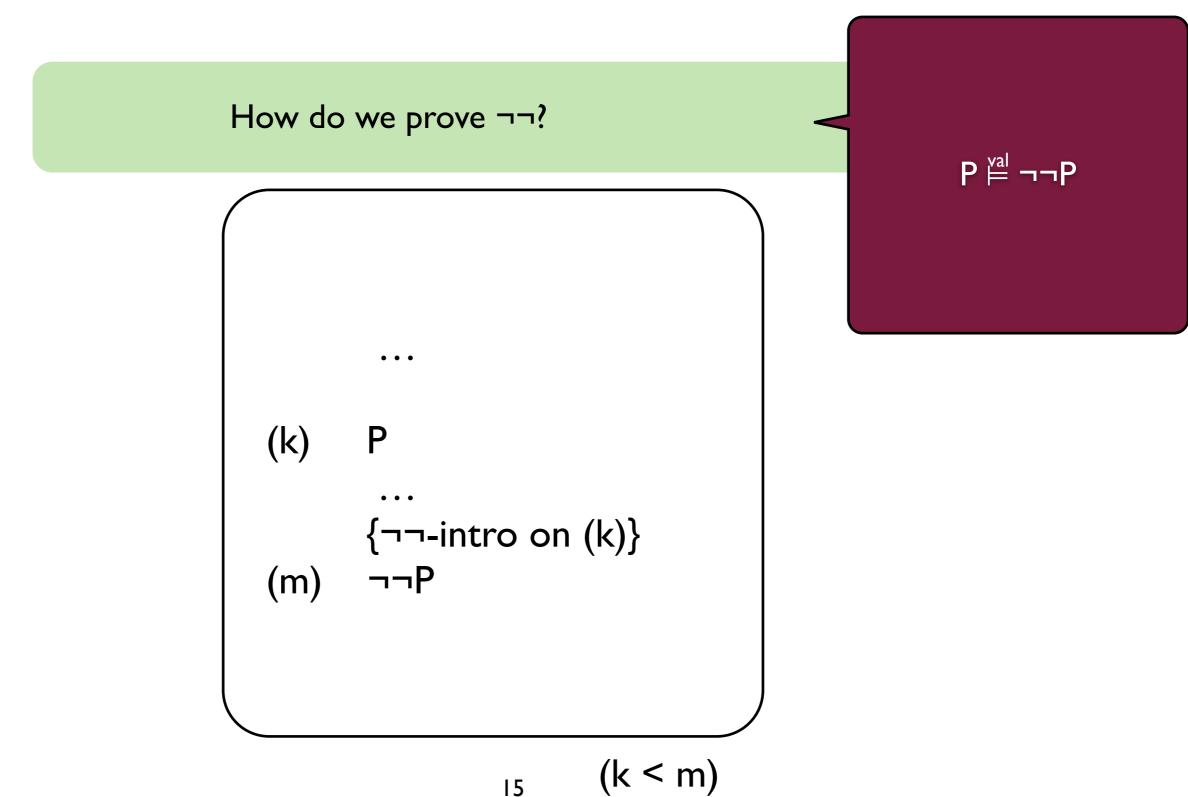
How do we use F in a proof? F-elimination (k) $\{F-elim on (k)\}$ (m) 14

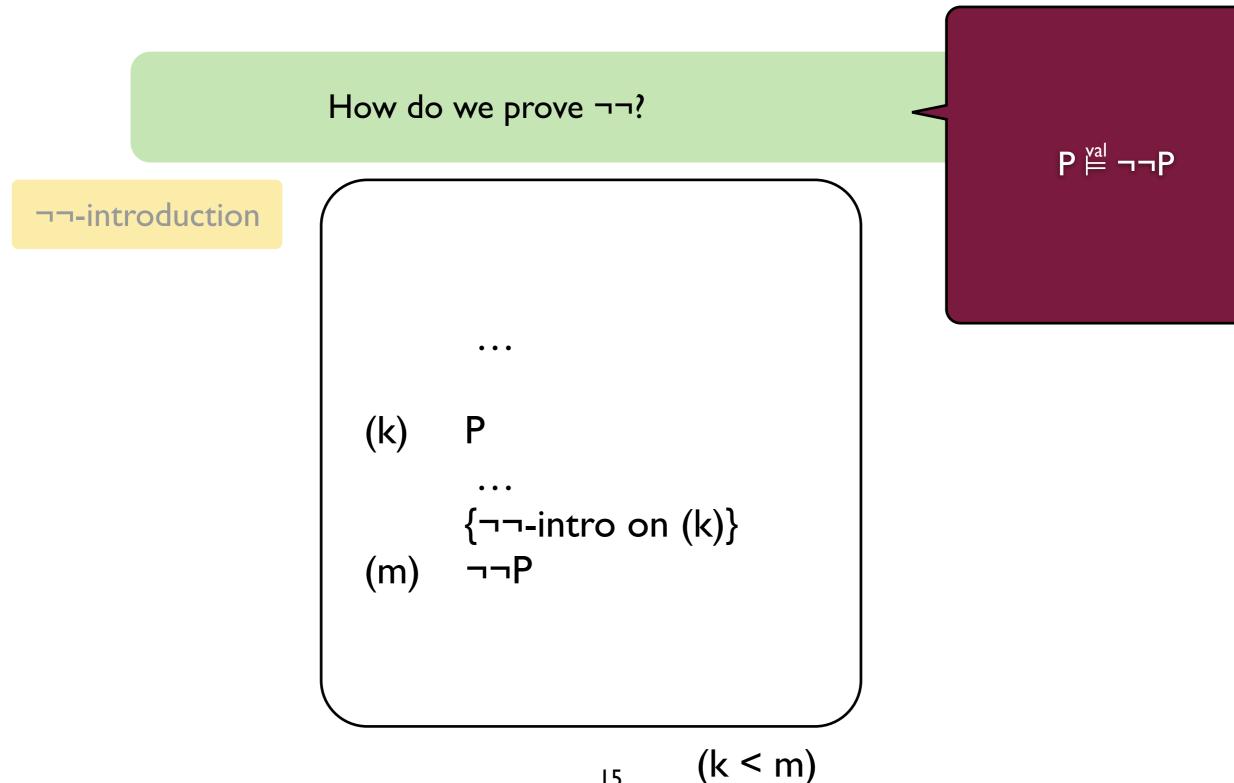
it's very useful!

 $F \stackrel{\text{val}}{\models} P$

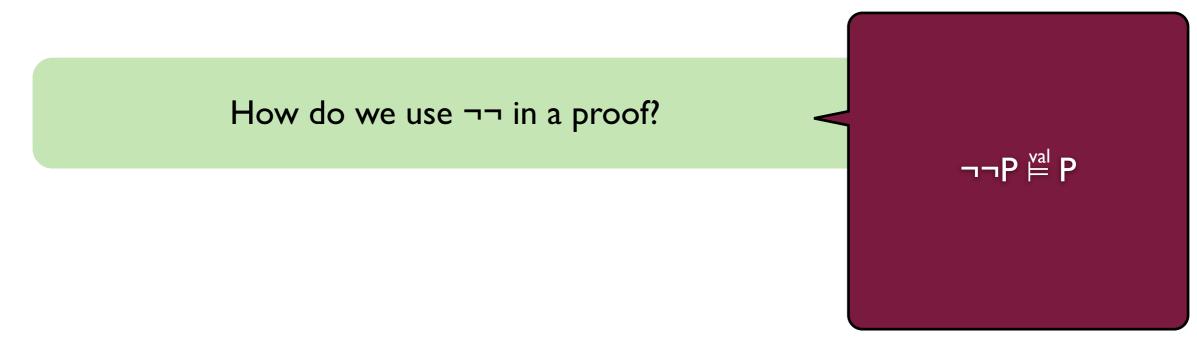
How do we prove ¬¬?





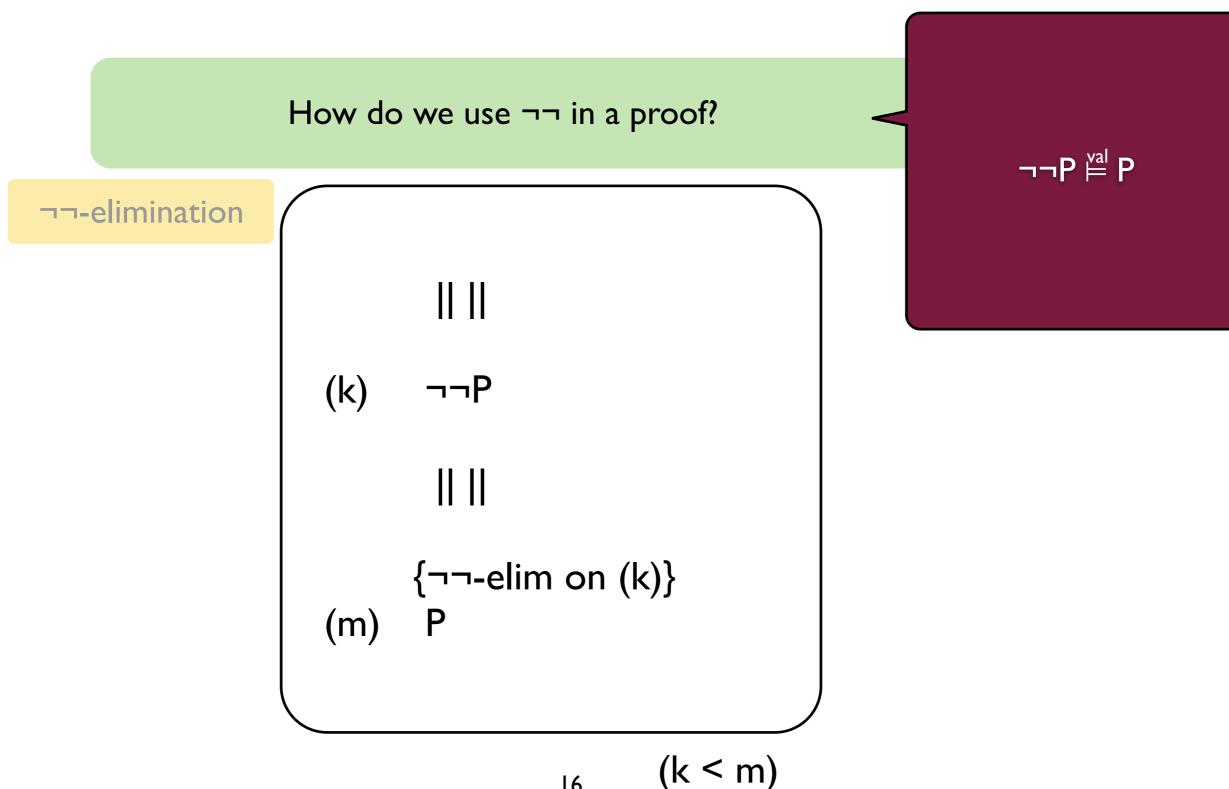


How do we use ¬¬ in a proof?



How do we use ¬¬ in a proof? $\{\neg\neg\text{-elim on }(k)\}$ (m)

 $\neg \neg P \stackrel{\text{val}}{\models} P$



Theorem If x^2 is even, then x is even $(x \in \mathbb{Z})$. Let x∈ Z Proof Assume x² is even. Assume that x is odd. Then x = 2y+1 for some $y \in \mathbb{Z}$. Then $x^2 = (2y+1)^2 = 4y^2 + 4y + 1 =$ $2(2y^2 + 2y) + 1$ and $2y^2 + 2y \in \mathbb{Z}$. So, x^2 is odd a contradiction. So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Theorem

If x^2 is even, then x is even $(x \in \mathbb{Z})$.

Proof

Assume x^2 is even.

Assume that x is odd.

Then x = 2y+1 for some $y \in \mathbb{Z}$.

Then
$$x^2 = (2y+1)^2 = 4y^2 + 4y + 1 = 2(2y^2 + 2y) + 1$$
 and $2y^2 + 2y \in \mathbb{Z}$.

So, x^2 is odd

a contradiction.

So, x is even

(sub)goal

generating hypothesis

pure hypothesis

conclusion

Thanks to Bas Luttik

How do we prove P by a contradiction?

How do we prove P by a contradiction?

```
{Assume}
        \{\neg\text{-intro on (k) and (I-I)}\}\
        \{\neg\neg\text{-elim on (I)}\}
(|+|)
```

How do we prove P by a contradiction?

proof by contradiction

```
{Assume}
(k)
       \{\neg-intro on (k) and (I-I)\}
       \{\neg\neg\text{-elim on (I)}\}\
(|+|)
```

How do we prove P by a contradiction?

proof by contradiction

```
{Assume}
(k)
        \{\neg-intro on (k) and (I-I)\}
        \neg \neg P
        \{\neg\neg\text{-elim on (I)}\}\
(|+|)
```

 $\neg P \Rightarrow F \stackrel{\text{val}}{\models} \neg \neg P \stackrel{\text{val}}{\models} P$

(k < m)

How do we prove P by a contradiction?

proof by contradiction

```
{Assume}
(k)
         ¬P
        \{\neg-intro on (k) and (I-I)\}
(l)
        \neg \neg P
        \{\neg\neg\text{-elim on (I)}\}\
(|+|)
```

 $\neg P \Rightarrow F \stackrel{\text{val}}{\models} \neg \neg P \stackrel{\text{val}}{\models} P$

¬-intro

How do we prove P by a contradiction?

proof by contradiction

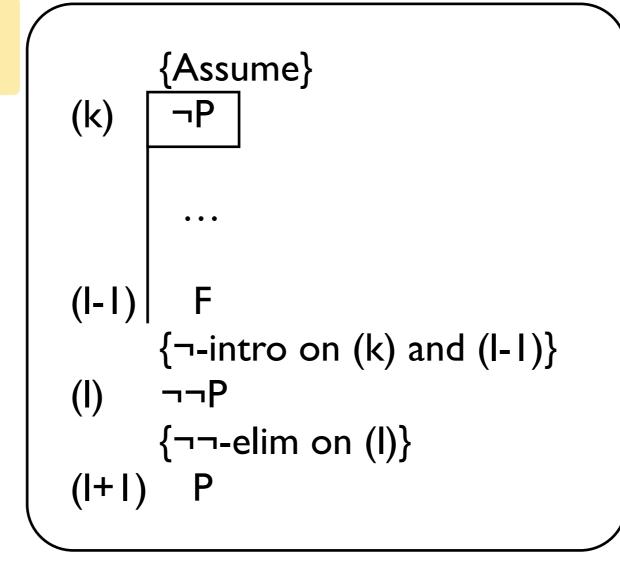
```
{Assume}
(k)
         ¬P
        \{\neg-intro on (k) and (I-I)\}
(l)
        \neg \neg P
       \{\neg\neg\text{-elim on (I)}\}\
(|+|)
```

 $\neg P \Rightarrow F \stackrel{\forall al}{\models} \neg \neg P \stackrel{\forall al}{\models} P$ $\neg \text{-intro}$

¬¬-elim

How do we prove P by a contradiction?

proof by contradiction



 $\neg P \Rightarrow F \stackrel{\text{val}}{\models} \neg \neg P \stackrel{\text{val}}{\models} P$

¬-intro

¬¬-elim

time for an example!

How do we prove a disjunction?

How do we prove a disjunction?

$$\neg P \Rightarrow Q \stackrel{\text{val}}{\models} P \lor Q$$

$$\neg Q {\Rightarrow} P \overset{val}{\vDash} P {\vee} Q$$

How do we prove a disjunction?

{Assume} (k) $\{\lor$ -intro on (k) and (l-1) $\}$

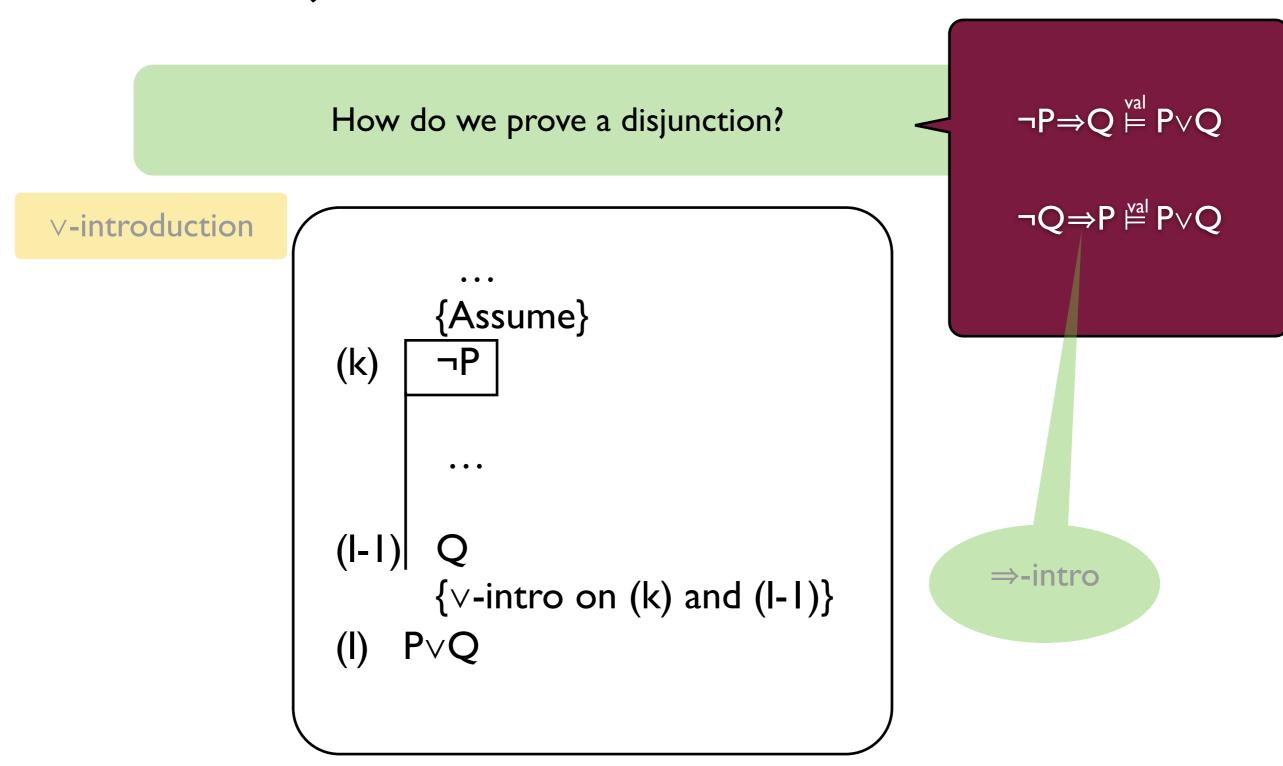
$$\neg P \Rightarrow Q \stackrel{\text{val}}{\vDash} P \lor Q$$

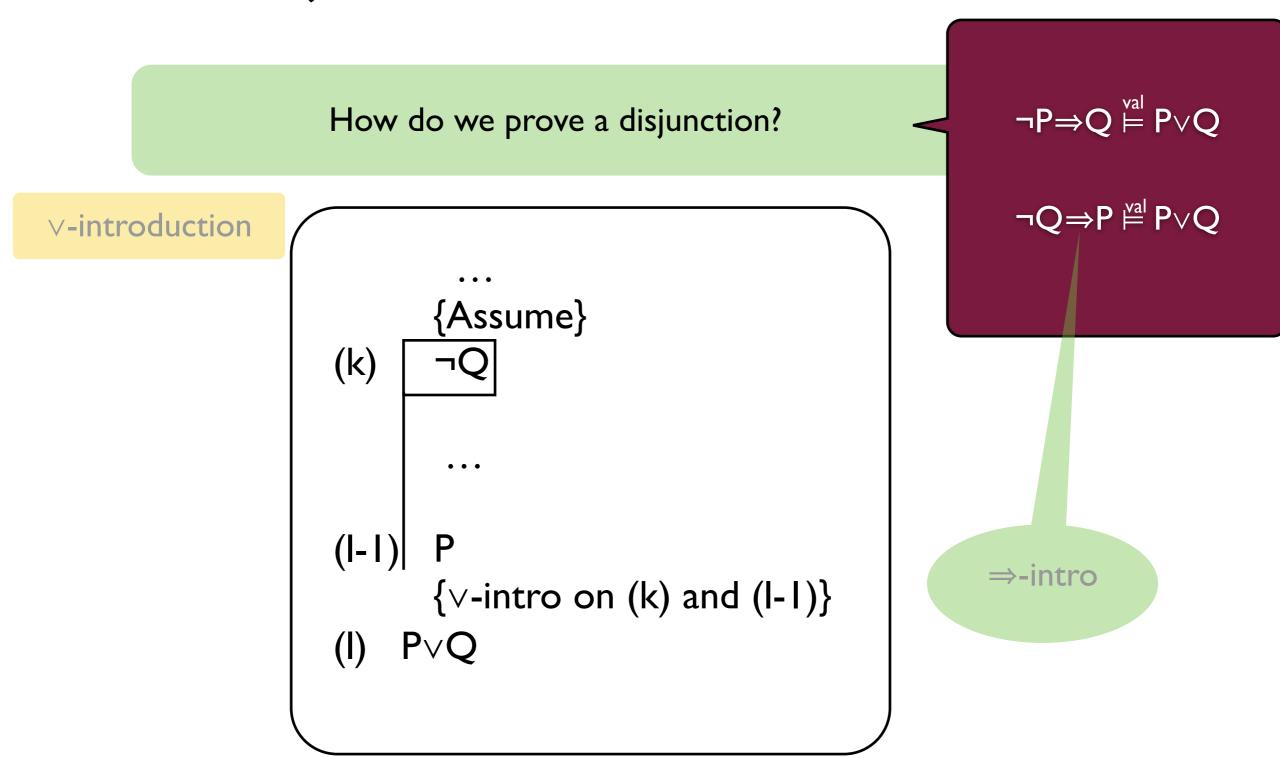
$$\neg Q \Rightarrow P \stackrel{\text{val}}{\models} P \lor Q$$

How do we prove a disjunction? ∨-introduction {Assume} (k) $\{\lor$ -intro on (k) and (l-1) $\}$ $P \lor Q$

 $\neg P {\Rightarrow} Q \overset{\text{val}}{\vDash} P {\vee} Q$

 $\neg Q \Rightarrow P \stackrel{\text{val}}{\models} P \lor Q$





How do we use a disjunction in a proof?

How do we use a disjunction in a proof?

$$P \lor Q \stackrel{\text{val}}{\models} \neg P \Rightarrow Q$$

$$P \lor Q \stackrel{\text{Yal}}{\models} \neg Q \Rightarrow P$$

How do we use a disjunction in a proof? <

$$P \lor Q \stackrel{\text{val}}{\models} \neg P \Rightarrow Q$$

$$P \lor Q \stackrel{\text{Yal}}{\models} \neg Q \Rightarrow P$$

How do we use a disjunction in a proof?

 $P \lor Q \stackrel{\text{val}}{\models} \neg P \Rightarrow Q$

 $P \lor Q \stackrel{\text{Yal}}{=} \neg Q \Rightarrow P$

$$(k)$$
 $P \vee Q$

21

How do we use a disjunction in a proof?

 $P \lor Q \stackrel{\text{val}}{\models} \neg P \Rightarrow Q$

 $P \lor Q \stackrel{\text{Yal}}{=} \neg Q \Rightarrow P$

$$(k)$$
 $P \lor Q$

$$\{ \lor \text{-elim on (k)} \}$$

(m) $\neg Q \Rightarrow P$

$$(k \le m)$$

How do we prove R by a case distinction?

How do we prove R by a case distinction?

```
|| ||
      P⇒R
       \| \|
(m) Q \Rightarrow R
      || ||
      {case-dist on (k), (l), (m)}
(n)
```

How do we prove R by a case distinction?

proof by case distinction

```
\| \|
(k)
       P \lor Q
      || ||
      P⇒R
       \| \|
(m) Q \Rightarrow R
      || ||
      {case-dist on (k), (l), (m)}
(n)
```

How do we prove R by a case distinction?

proof by case distinction

|| ||

(k) $P\lor Q$

l) P⇒R

|| ||

(m) $Q \Rightarrow R$

 $\| \|$

{case-dist on (k), (l), (m)}

(n) R

 $(P \lor Q) \land (P \Rightarrow R) \land (Q \Rightarrow R) \stackrel{\text{val}}{\models} R$

Bi-implication introduction

How do we prove a bi-implication?

 $(P \Rightarrow Q) \land (Q \Rightarrow P) \stackrel{\text{val}}{\models} P \Leftrightarrow Q$

⇔-introduction

Bi-implication introduction

How do we prove a bi-implication?

 $(P \Rightarrow Q) \land (Q \Rightarrow P) \stackrel{\text{val}}{\models} P \Leftrightarrow Q$

⇔-introduction

• • •

(k) P⇒Q

• • •

(I) $Q \Rightarrow P$

• • •

 $\{\Leftrightarrow$ -intro on (k) and (l) $\}$

(m) P⇔Q

Bi-implication introduction

How do we prove a bi-implication?

 $(P \Rightarrow Q) \land (Q \Rightarrow P) \stackrel{\text{val}}{\models} P \Leftrightarrow Q$

⇔-introduction

• • •

(k) P⇒Q

• • •

(I) $Q \Rightarrow P$

• • •

 $\{\Leftrightarrow$ -intro on (k) and (l) $\}$

(m) P⇔Q

∧-intro

(k < m, l < m)

How do we use a bi-implication in a proof?

How do we use a bi-implication in a proof?

$$P \Leftrightarrow Q \stackrel{\text{val}}{\models} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

How do we use a bi-implication in a proof?

$$P \Leftrightarrow Q \stackrel{\text{val}}{\models} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

```
|| ||
(k) P \Leftrightarrow Q
|| ||
\{\Leftrightarrow \text{-elim on } (k)\}
(m) P \Rightarrow Q
(k < m)
```

How do we use a bi-implication in a proof?

 $P \Leftrightarrow Q \stackrel{\text{val}}{\models} (P \Rightarrow Q) \land (Q \Rightarrow P)$

$$\parallel \parallel$$

(k) P⇔Q

 $\parallel \parallel \parallel$

 $\{\Leftrightarrow$ -elim on $(k)\}$

(m) P⇒Q

(k) P⇔Q

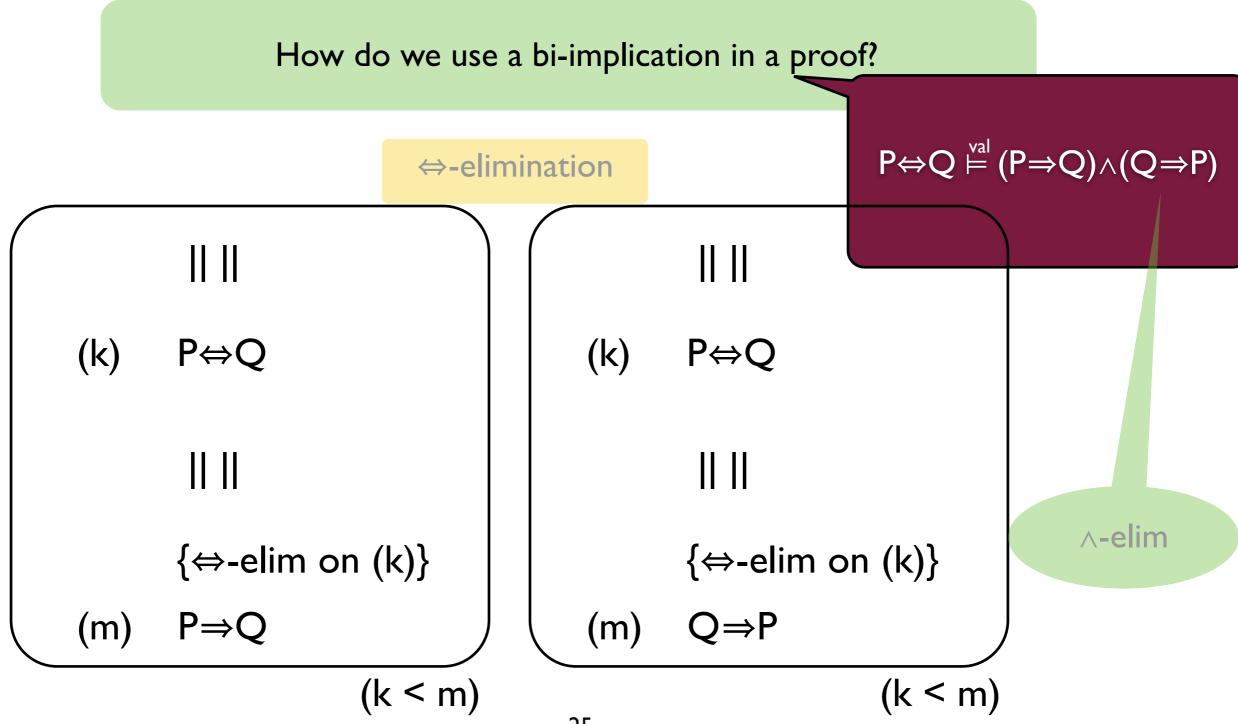
|| ||

 $\{\Leftrightarrow$ -elim on $(k)\}$

(m) $Q \Rightarrow P$

(k < m)

How do we use a bi-implication in a proof? $P\Leftrightarrow Q \stackrel{\text{val}}{\models} (P\Rightarrow Q) \land (Q\Rightarrow P)$ ⇔-elimination $\parallel \parallel \parallel$ (k) (k) P⇔Q P⇔Q || || $\{\Leftrightarrow$ -elim on $(k)\}$ $\{\Leftrightarrow$ -elim on $(k)\}$ (m) P⇒Q (m) $Q \Rightarrow P$ (k < m)(k < m)



Derivations / Reasoning with quantifiers

Proving a universal quantification

To prove

 $\forall x[x \in \mathbb{Z} \land x \ge 2 : x^2 - 2x \ge 0]$

Proving a universal quantification

To prove

$$\forall x[x \in \mathbb{Z} \land x \ge 2 : x^2 - 2x \ge 0]$$

Proof

Let $x \in \mathbb{Z}$ be arbitrary and assume that $x \ge 2$.

Then, for this particular x, it holds that $x^2 - 2x = x(x-2) \ge 0$ (Why?)

Conclusion: $\forall x[x \in \mathbb{Z} \land x \ge 2 : x^2 - 2x \ge 0].$

∀ introduction

How do we prove a universal quantification?

V introduction

How do we prove a universal quantification?

```
{Assume}
      \{\forall-intro on (k) and (I-I)\}
(I) \forall x[P(x):Q(x)]
```

V introduction

How do we prove a universal quantification?

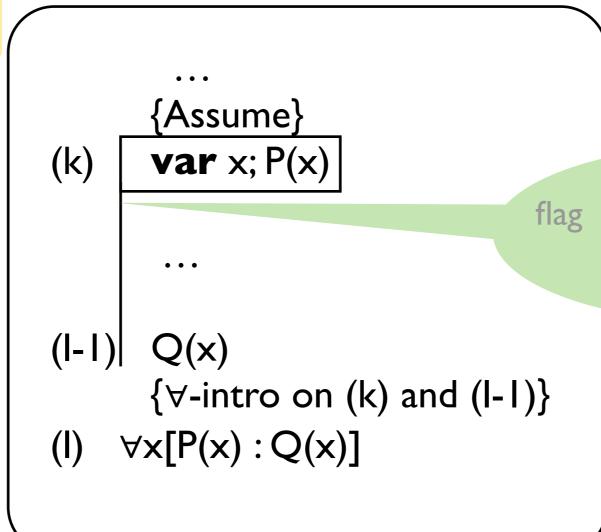
∀-introduction

```
{Assume}
       var x; P(x)
(k)
      \{\forall-intro on (k) and (I-I)\}
(I) \forall x[P(x):Q(x)]
```

∀ introduction

How do we prove a universal quantification?

∀-introduction



shows the validity of a hypothesis

How do we prove a universal quantification?

similar to ⇒-intro with

generating hypothesis

∀-introduction

(k) **Var** x; P(x)

(l-1) Q(x)
{∀-intro on (k) and (l-1)}
(l) ∀x[P(x):Q(x)]

shows the validity of a hypothesis

Using a universal quantification

We know

 $\forall x[x \in \mathbb{Z} \land x \ge 2 : x^2 - 2x \ge 0]$

Using a universal quantification

We know

$$\forall x[x \in \mathbb{Z} \land x \ge 2 : x^2 - 2x \ge 0]$$

Whenever we encounter an $a \in \mathbb{Z}$ such that $a \ge 2$, we can conclude that $a^2 - 2a \ge 0$.

For example, $(52387^2 - 2 \cdot 52387) \ge 0$ since $52387 \in \mathbb{Z}$ and $52387 \ge 2$.

How do we use a universal quantification in a proof?

How do we use a universal quantification in a proof?

similar to implication but we need a witness

How do we use a universal quantification in a proof? -

 similar to implication but we need a witness

 $_{30}$ (k < m, I < m)

How do we use a universal quantification in a proof?

∀-elimination

||

(k) $\forall x[P(x):Q(x)]$

 $\parallel \parallel$

(I) P(a)

|| || {∀-elim on (k) and (l)} O(a)

 $_{30}$ (k < m, l < m)

similar to implication but we need a witness

How do we use a universal quantification in a proof? -

∀-elimination

 Π

(k) $\forall x[P(x):Q(x)]$

(I) P(a)

(m)

|| || {∀-elim on (k) and (l)} O(a)

 $_{30}$ (k < m, l < m)

similar to implication but we need a witness

a is
an object
(variable, number,..)
which is "known" in line
(I)

How do we use a universal quantification in a proof? -

∀-elimination

(k) $\forall x[P(x):Q(x)]$

(I) P(a)

II II {∀-elim on (k) and (l)}

(m) Q(a)

similar to implication but we need a witness

a is
an object
(variable, number,..)
which is "known" in line
(I)

the same "a" from line (I)

$$_{30}$$
 (k < m, l < m)

How do we use a universal quantification in a proof?

∀-elimination

|| ||

(k) $\forall x[P(x):Q(x)]$

(I) P(a)

similar to implication but we need a witness

a is
an object
(variable, number,..)
which is "known" in line
(I)

the same "a" from line (I)

time for an example!

 $_{30}$ (k < m, l < m)

How do we prove an existential quantification?

How do we prove an existential quantification?

 $\neg \ \forall x [P(x): \neg Q(x)] \stackrel{\forall al}{\vDash}$ $\exists x [P(x): Q(x)]$

How do we prove an existential quantification?

```
{Assume}
(k)
        \{\exists-intro on (k) and (I-I)\}
(I) \exists x [P(x) : Q(x)]
```

 $\neg \ \forall x [P(x): \neg Q(x)] \stackrel{\text{val}}{\vDash}$ $\exists x [P(x): Q(x)]$

How do we prove an existential quantification?

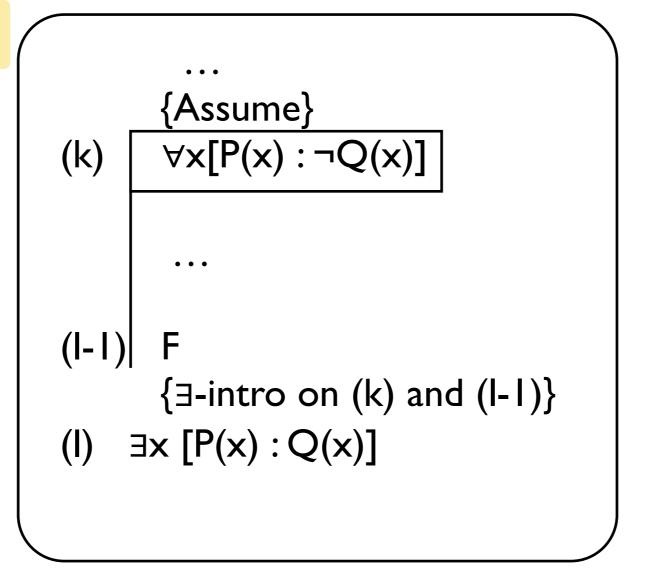
 $\neg \ \forall x [P(x): \neg Q(x)] \stackrel{\text{val}}{\vDash}$ $\exists x [P(x): Q(x)]$

3-introduction

```
{Assume}
(k)
        \forall x[P(x): \neg Q(x)]
(I-I)
        \{\exists-intro on (k) and (I-I)\}
(I) \exists x [P(x) : Q(x)]
```

How do we prove an existential quantification?

3-introduction



 $\neg \ \forall x [P(x): \neg Q(x)] \stackrel{\text{val}}{\vDash}$ $\exists x \ [P(x): Q(x)]$

and ¬-intro

How do we use an existential quantification in a proof?

How do we use an existential quantification in a proof?

$$\exists x [P(x) : Q(x)] \stackrel{\forall al}{\vDash} \\ \neg \ \forall x [P(x) : \neg Q(x)]$$

How do we use an existential quantification in a proof?

 $\exists x [P(x) : Q(x)] \stackrel{\forall al}{\vDash} \\ \neg \ \forall x [P(x) : \neg Q(x)]$

and ¬elimination

How do we use an existential quantification in a proof?

(k) $\exists x [P(x) : Q(x)]$ **(l)** $\forall x[P(x): \neg Q(x)]$ $\{\exists$ -elim on (k) and (l) $\}$ (m)

 $\exists x [P(x) : Q(x)] \stackrel{\forall al}{\vDash} \\ \neg \ \forall x [P(x) : \neg Q(x)]$

and ¬elimination

$$_{32}$$
 (k < m, l < m)

How do we use an existential quantification in a proof?

3-elimination

(k)
$$\exists x [P(x) : Q(x)]$$

(m)

(I)
$$\forall x[P(x): \neg Q(x)]$$

$$_{32}$$
 (k < m, l < m)

 $\exists x [P(x) : Q(x)] \stackrel{\forall al}{\models} \\ \neg \ \forall x [P(x) : \neg Q(x)]$

and ¬- elimination

How do we use an existential quantification in a proof?

3-elimination

(k) $\exists x [P(x) : Q(x)]$

(I) $\forall x[P(x): \neg Q(x)]$

|| || {3-elim on (k) and (l)}

(m) F

 $\exists x [P(x) : Q(x)] \stackrel{\text{val}}{\models} \\ \neg \forall x [P(x) : \neg Q(x)]$

and ¬- elimination

time for an example!

 $_{32}$ (k < m, I < m)

Proofs with 3-introduction and 3-elimination are unnecessarily long and cumbersome...

Proofs with 3-introduction and 3-elimination are unnecessarily long and cumbersome...

There are alternatives!

Proving an existential quantification

To prove

 $\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0]$

Proving an existential quantification

To prove

$$\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0]$$

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying $x^3 - 2x - 8 \ge 0$.

x = 3 is a witness, since $3 \in \mathbb{Z}$ and $3^3 - 2 \cdot 3 - 8 = 13 \ge 0$

Conclusion: $\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0].$

Proving an existential quantification

To prove

$$\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0]$$

Proof

It suffices to find a witness, i.e., an $x \in \mathbb{Z}$ satisfying $x^3 - 2x - 8 \ge 0$.

x = 3 is a witness, since $3 \in \mathbb{Z}$ and $3^3 - 2 \cdot 3 - 8 = 13 \ge 0$

Conclusion: $\exists x[x \in \mathbb{Z} : x^3 - 2x - 8 \ge 0].$

also x = 5 is a witness...

How do we prove an existential quantification?

How do we prove an existential quantification?

by finding a witness

How do we prove an existential quantification?

by finding a witness

```
(k) P(a)
```

(I) Q(a)

35
 (k < m, l < m)

How do we prove an existential quantification?

∃*-introduction

• • •

(k) P(a)

• • •

(I) Q(a)

• • •

 $\{\exists *-intro on (k) and (l)\}$

(m) $\exists x [P(x) : Q(x)]$

by finding a witness

 35 (k < m, l < m)

How do we prove an existential quantification?

∃*-introduction

by finding a witness

(k) P(a)

• • •

(I) Q(a)

• • •

 $\{\exists *-intro on (k) and (l)\}$

(m) $\exists x [P(x) : Q(x)]$

strategy: wait until a witness object appears

35
 (k < m, l < m)

How do we prove an existential quantification?

∃*-introduction

by finding a witness

(k) P(a)

• • •

(I) Q(a)

• • •

 $\{\exists *-intro on (k) and (l)\}$

(m) $\exists x [P(x) : Q(x)]$

strategy: wait until a witness object appears

does not always work

35
 (k < m, l < m)

Using an existential quantification

We know

 $\exists x[x \in \mathbb{R} : a - x < 0 < b - x]$

Using an existential quantification

We know

$$\exists x[x \in \mathbb{R} : a - x < 0 < b - x]$$

We can declare an $x \in \mathbb{Z}$ (a witness) such that

$$a - x < 0 < b - x$$

and use it further in the proof. For example:

From a -
$$x < 0$$
, we get a $< x$.

From b -
$$x > 0$$
, we get $x < b$.

Hence, a < b.

How do we use an existential quantification in a proof?

How do we use an existential quantification in a proof?

we pick a witness

How do we use an existential quantification in a proof?

we pick a witness

```
|| ||
(k) \quad \exists x [P(x) : Q(x)]
|| ||
|| ||
\{\exists *-e \text{lim on } (k)\}
(m) \quad Pick x \text{ with } P(x) \text{ and } Q(x)
```

How do we use an existential quantification in a proof?

∃*-elimination

|| ||

(k) $\exists x [P(x) : Q(x)]$

|| ||

 $\{\exists *-elim \ on \ (k)\}\$ (m) Pick x with P(x) and Q(x) we pick a witness

How do we use an existential quantification in a proof?

3*-elimination

 $\| \|$

(k) $\exists x [P(x) : Q(x)]$

{∃*-elim on (k)}

(m) Pick x with P(x) and Q(x)

37

we pick a witness

x must be new!

How do we use an existential quantification in a proof?

∃*-elimination

 $\| \|$

(k) $\exists x [P(x) : Q(x)]$

{∃∗-elim on (k)}

(m) Pick x with P(x) and Q(x)

we pick a witness

x must be new!

time for an example!