
Finite Automata
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Alphabets and Languages

if y is not free in P and Q

∑ - alphabet (finite set)

∑n = {a1a2..an | ai ∈ ∑}  is the set of words of length n 

∑* = {w | ∃n ∈ N. ∃ a1, a2, .. , an ∈ ∑. w = a1a2..an} is the set of all words over ∑

Def
∑0 = {ℇ} contains only the 

empty word

A language L over ∑ is a subset L ⊆ ∑*
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alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

transitions, labelled by 
alphabet symbols

M1:

regular expressionregular language

Accepts the language L(M1) = {w ∈∑* | w ends with a 0} = ∑*0
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M1 = (Q, ∑, δ, q0, F)   for

DFA

if y is not free in P and Q

A deterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where

   Q is a finite set of states
   ∑ is a finite alphabet
   δ: Q x ∑⟶ Q  is the transition function
   q0 is the initial state,  q0 ∈Q
   F is a set of final states, F⊆Q

Definition

In the example M1

Q = {q0, q1}  

∑ = {0, 1}  

F = {q1}  δ(q0, 0) = q1 ,δ(q0, 1) = q0

δ(q1, 0) = q1, δ(q1, 1) = q0
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DFA

if y is not free in P and Q

Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 

  δ*: Q x ∑*⟶ Q  

inductively, by:  

  δ*(q, ε) = q  and δ*(q,wa) = δ(δ*(q,w), a)

The extended transition function

Definition
The language recognised / accepted by a deterministic finite 
automaton M = (Q, ∑, δ, q0, F) is

L(M) = {w ∈ ∑*|  δ*(q0,w) ∈ F}

In M1,  δ*(q0,110010) = q1

L(M1) = {w0|w ∈ {0,1}*}
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Regular languages and 
operations

Let ∑ be an alphabet.  A language L over ∑  (L ⊆ ∑*) is regular iff 
it is recognised by a DFA.

Definition

Regular operations

L(M1) = {w0|w ∈ {0,1}*}
is regular

Let L, L1, L2 be languages over ∑.  Then
L1 ∪ L2, L1·L2, and L* are languages, where

      L1·L2 = {w1·w2 | w1 ∈ L1,w2 ∈ L2}

      L* = {w | ∃n ∈ N. ∃ w1, w2, .. , wn ∈ L. w = w1w2..wn} 

ℇ ∈ L*   always
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Closure under regular 
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

But not yet these two…

also under 
intersection

We can already prove 
these!

Theorem C2

The class of regular languages is closed under complement
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Regular expressions

Let ∑ be an alphabet.  The following are regular expressions

1. a       for a ∈ ∑
2. ε
3. ∅
4. (R1 ∪ R2)    for R1, R2 regular expressions
5. (R1·R2)     for R1, R2 regular expressions
6. (R1)*              for R1 regular expression

Definition

inductive
example:
(ab ∪ a)*

 corresponding languages

L(a) = {a}
L(ε) = {ε}
L(∅) = ∅

L(R1 ∪ R2) = L(R1) ∪ L(R2)
L(R1·R2) = L(R1)·L(R2)

L(R1*) = L(R1)*

finite representation of infinite 
languages
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Equivalence of regular 
expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)
A language is regular (i.e., recognised by a finite automaton) iff
it is the language of a regular expression.

Proof  ⇐ easy, as the constructions for 

the closure properties,
⇒ not so easy, we’ll skip it for now…

needs nondeterminism
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no 1 transition

Nondeterministic Automata 
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of 
nondeterminism

q2 q3

0,1
1

no 0 transition

Accepts a word iff there exists an accepting run
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In the example M2 M2 = (Q, ∑, δ, q0, F)   for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where

   Q is a finite set of states
   ∑ is a finite alphabet
   δ: Q x ∑ε⟶ P(Q)  is the transition function
   q0 is the initial state,  q0 ∈Q
   F is a set of final states, F⊆Q

Definition

Q = {q0, q1, q2, q3}  

∑ = {0, 1}  F = {q3}  

δ(q0, 0) = {q0}
δ(q0, 1) = {q0,q1}
δ(q0, ε) = ∅
…..

∑ε = ∑ ∪ {ε}
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NFA

if y is not free in P and Q

Given an NFA M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑ε⟶ P(Q) to 

  δ*: Q x ∑*⟶ P(Q)  

inductively, by:  

  δ*(q, ε) = E(q)  and δ*(q,wa) = E(∪q’ ∈ δ*(q,w) δ(q’, a))

The extended transition function

Definition
The language recognised / accepted by a nondeterministic finite 
automaton M = (Q, ∑, δ, q0, F) is

L(M) = {w ∈ ∑*|  δ*(q0,w) ∩ F ≠ ∅}

In M2,  δ*(q0,0110) = {q0,q2,q3}

L(M2) = {u101w | u,w ∈ {0,1}*} 
∪

          {u11w | u,w ∈ {0,1}*}

E(X) = ∪x ∈ X E(x)

E(q) = {q’ | q’ = q ∨ ∃n∈N+.∃q0, .., qn ∈Q.q0 = q, qn = q’, qi+1 ∈δ(qi,ε),  for i= 0, .., n-1}

ε-closure of q, all states reachable by 
ε-transitions from q
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Equivalence of automata

if y is not free in P and Q

Two automata M1 and M2 are equivalent if L(M1) = L(M2)

Definition

Theorem NFA ~ DFA
Every NFA has an equivalent DFA

Proof via the “powerset construction” / 
determinization

Corollary
A language is regular iff it is recognised by a NFA
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Closure under regular 
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Now we can prove these 
too

Theorem C2

The class of regular languages is closed under complement
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Nonregular languages

if y is not free in P and Q

Theorem (Pumping Lemma)
If L is a regular language, then there is a number p ∈ N (the 

pumping length) such that for any w ∈ L with |w| ≥ p, there exist
x, y, z ∈ ∑* such that w = xyz and
1. xyiz ∈ L , for all i ∈ N
2. |y| > 0
3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example “corollary”
L= { 0n1n | n ∈ N} is nonregular.

every long enough word of a 
regular language can be pumped

Note the logical structure!
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