Finite Automata

Alphabets and Languages

 $\sum_{i=1}^{n} = \{E\}$ contains only the

empty word

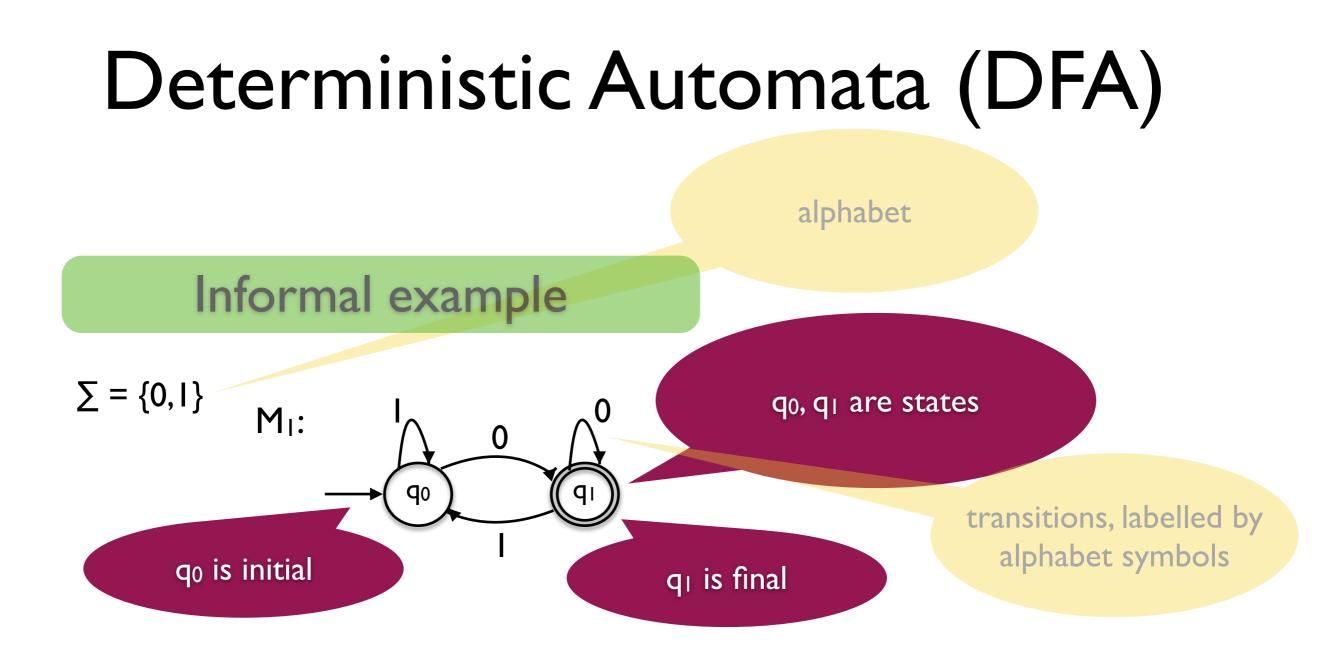
Def

 Σ - alphabet (finite set)

 \sum^n = {a_1a_2..a_n \mid a_i \in \Sigma} $% \left\{ a_1 = a_1 + a_2 + a_1 + a_2 + a_1 + a_2 + a_1 + a_2 + a_2 + a_1 + a_2 + a_2$

 $\sum^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1a_2..a_n\} \text{ is the set of all words over } \sum$

A language L over Σ is a subset L $\subseteq \Sigma^*$



Accepts the language $L(M_1) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$

3

regular language

regular expression

DFA

A deterministic automaton M is a tuple M = (Q, \sum , δ , q_0 , F) where

Q is a finite set of states \sum is a finite alphabet $\delta: Q \times \sum \longrightarrow Q$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$

 In the example M1
 $M_1 = (Q, \Sigma, \delta, q_0, F)$ for

 $Q = \{q_0, q_1\}$ $F = \{q_1\}$
 $\Sigma = \{0, 1\}$ $\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$

DFA

The extended transition function

Given M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

 $\delta^*: Q \times \Sigma^* \longrightarrow Q$

inductively, by:

 $\delta^*(q, \epsilon) = q$ and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

Definition

The language recognised / accepted by a deterministic finite automaton M = $(Q, \Sigma, \delta, q_0, F)$ is

 $L(M) = \{ w \in \Sigma^* | \ \delta^*(q_0, w) \in F \}$

In M_I, δ*(q₀,110010) = q₁

 $L(M_{I}) = \{w0|w \in \{0,I\}^{*}\}$

Regular languages and operations

$$\begin{split} L(M_I) &= \{w0|w \in \{0,I\}^*\} \\ & \text{is regular} \end{split}$$

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

Regular operations

Let L, L₁, L₂ be languages over \sum . Then L₁ \cup L₂, L₁ \cdot L₂, and L^{*} are languages, where

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

 $L^* = \{w \mid \exists n \in \mathbb{N}. \exists w_1, w_2, ..., w_n \in L. w = w_1w_2...w_n\}$

 $\mathcal{E} \in L^*$ always

Closure under regular operations

also under intersection

Theorem CI

The class of regular languages is closed under union

We can already prove these!

Theorem C2

The class of regular languages is closed under complement

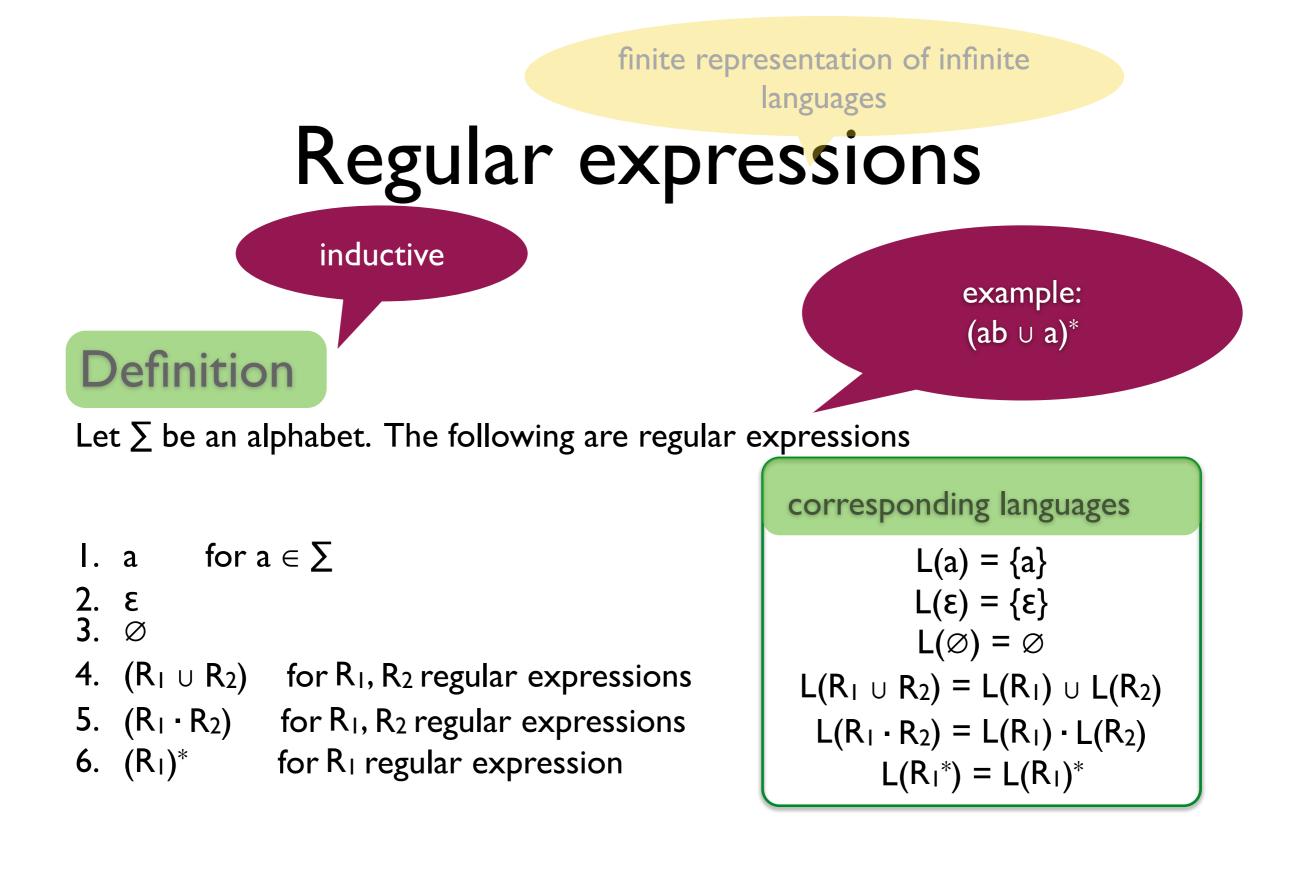
Theorem C3

The class of regular languages is closed under concatenation

But not yet these two...

Theorem C4

The class of regular languages is closed under Kleene star



Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

needs nondeterminism

Proof \leftarrow easy, as the constructions for

the closure properties, \Rightarrow not so easy, we'll skip it for now...



NFA

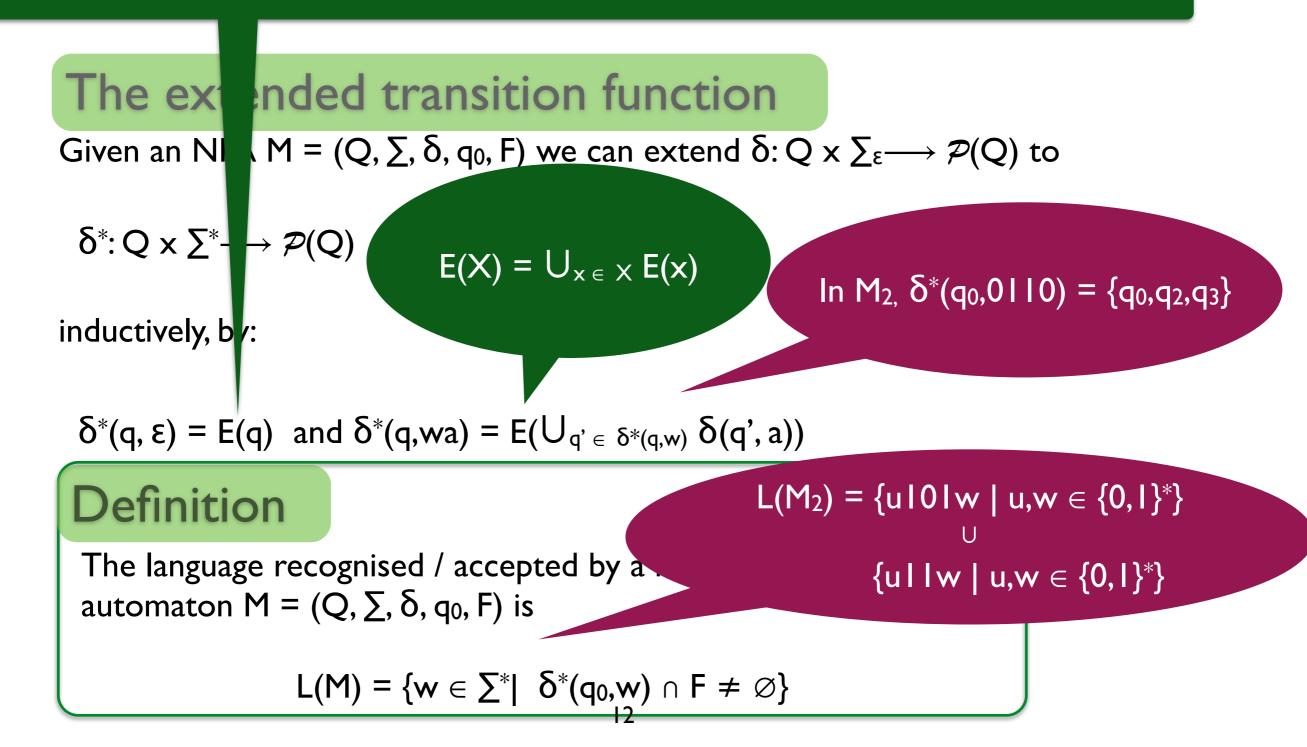
Definition

A nondeterministic automaton M is a tuple M = (Q, \sum , δ , q_0 , F) where

Q is a finite set of states $\sum_{\varepsilon} = \sum \cup \{\varepsilon\}$ \sum is a finite alphabet $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$ In the example M_2 $M_2 = (Q, \Sigma, \delta, q_0, F)$ for $\delta(q_0, 0) = \{q_0\}$ $Q = \{q_0, q_1, q_2, q_3\}$ $\delta(q_0, I) = \{q_0, q_1\}$ $\delta(q_0, \epsilon) = \emptyset$ $\sum = \{0, I\}$ F = $\{q_3\}$

ε-closure of q, all states reachable by ε-transitions from q ΝΓΕΑ

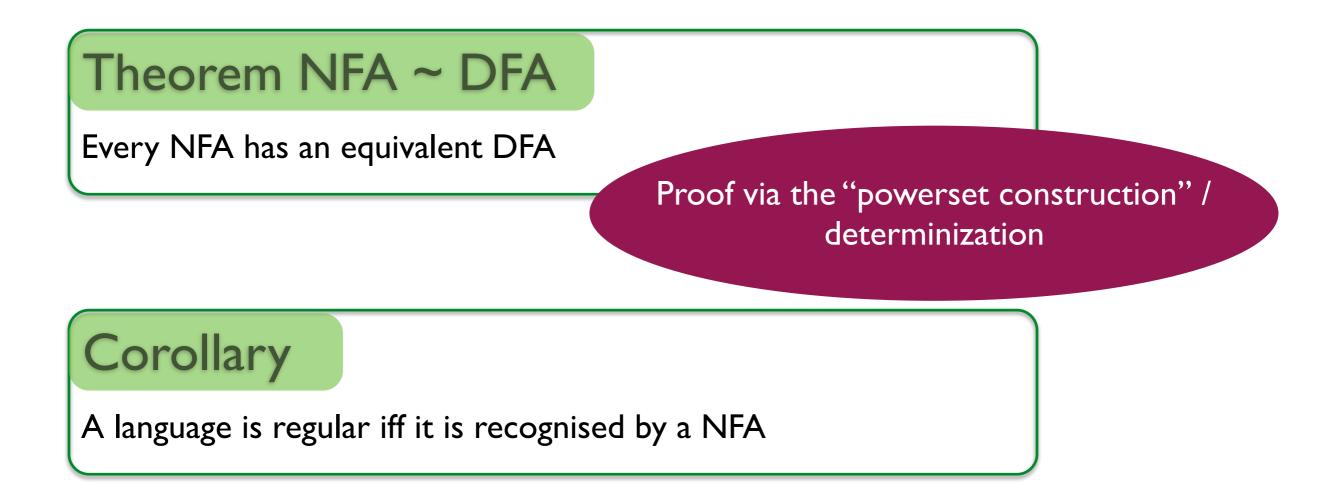
 $E(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$



Equivalence of automata

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$



Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Now we can prove these too

Nonregular languages

15

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist x, y, $z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= { $0^{n}1^{n} \mid n \in \mathbb{N}$ } is nonregular.

Note the logical structure!