Predicate logic

Limitations of propositional logic

Propositional logic only allows us to reason about completed statements about things, not about the things themselves.

Example

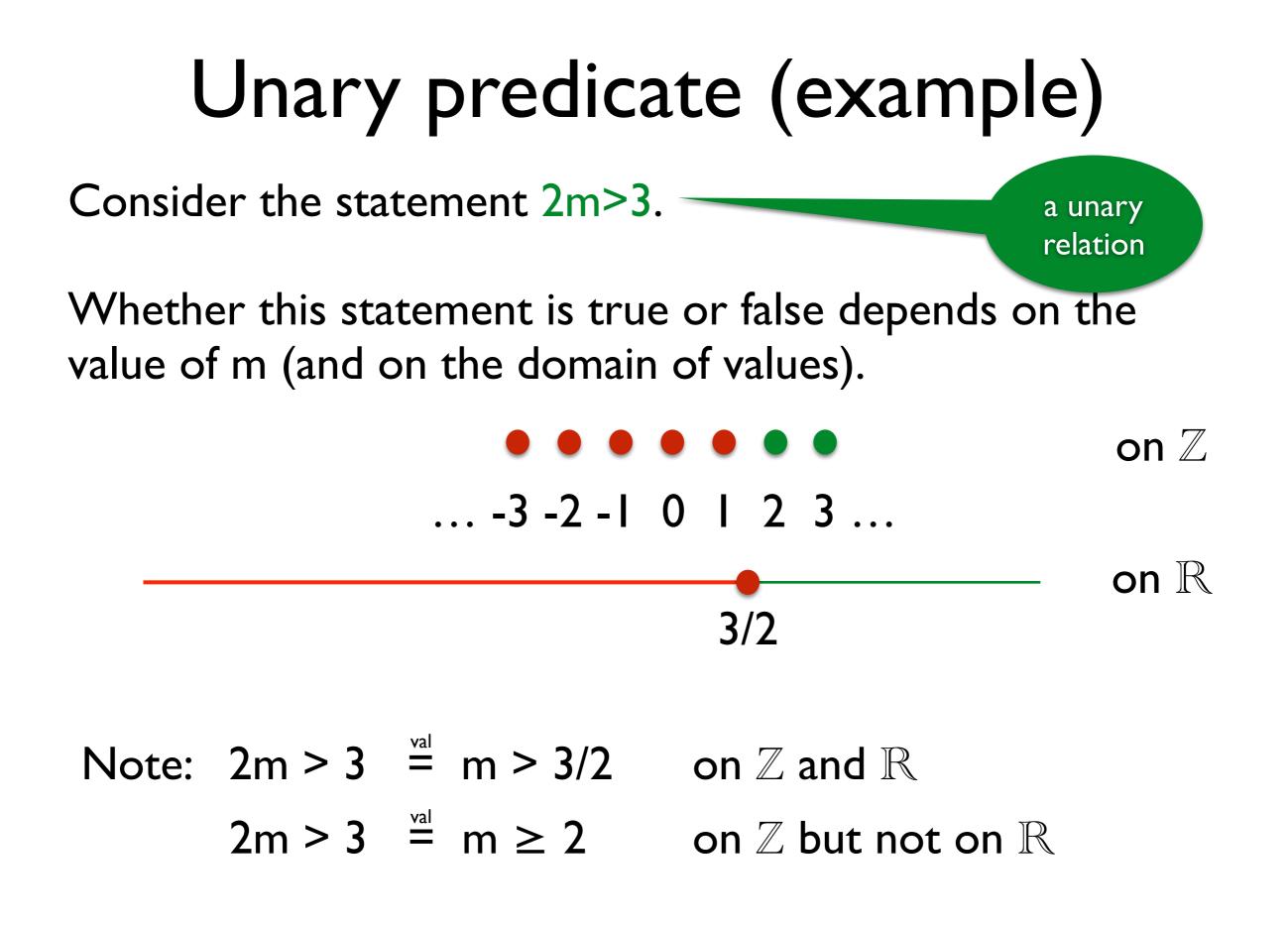
Some chicken cannot fly All chicken are birds

Some birds cannot fly

this reasoning can not be expressed in propositional logic

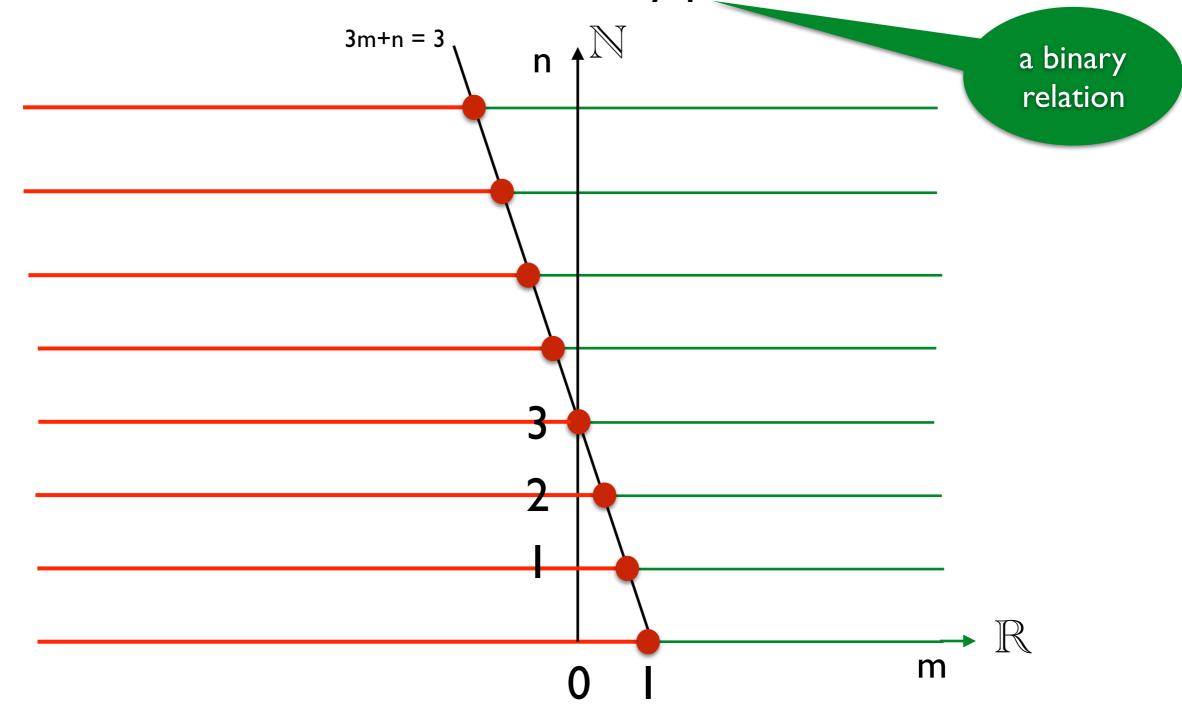
Example

Every player except the winner looses a match



Binary predicate (example)

The statement 3m+n > 3 is a binary predicate on $\mathbb{R} \times \mathbb{N}$.



Predicates

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

true for certain values of the variables

We can turn a predicate, into a proposition in three ways:

I. By assigning values to the variables.

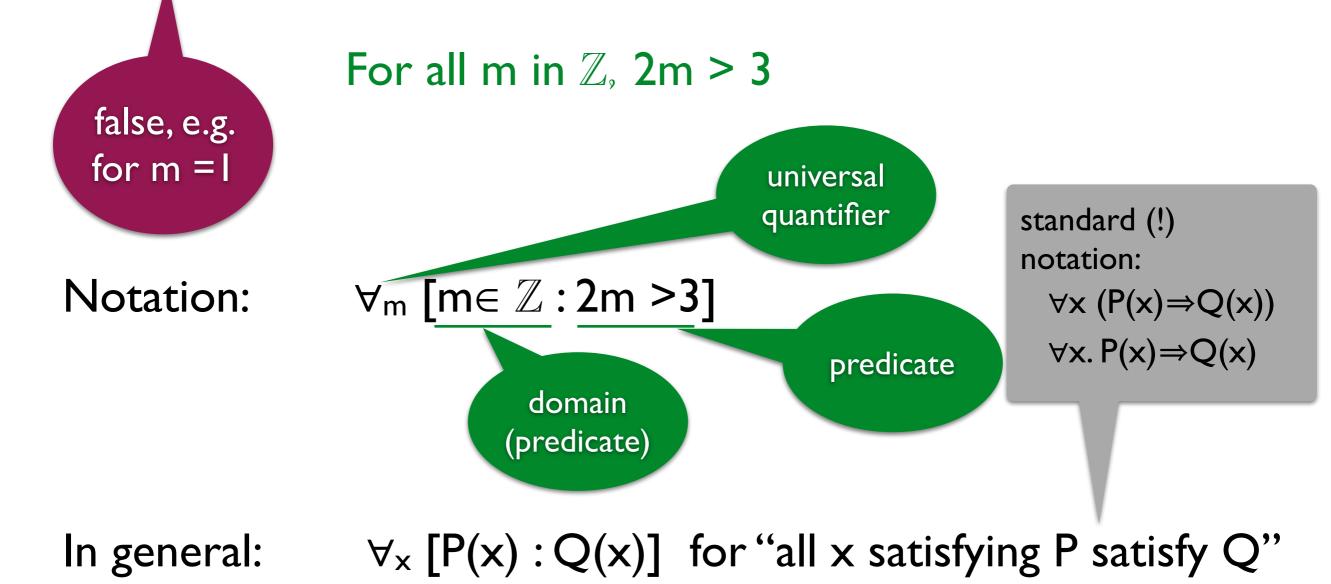
2m>3

- 2. By universal quantification.
- 3. By existential quantification.

for m=2 2·2>3 is a true proposition

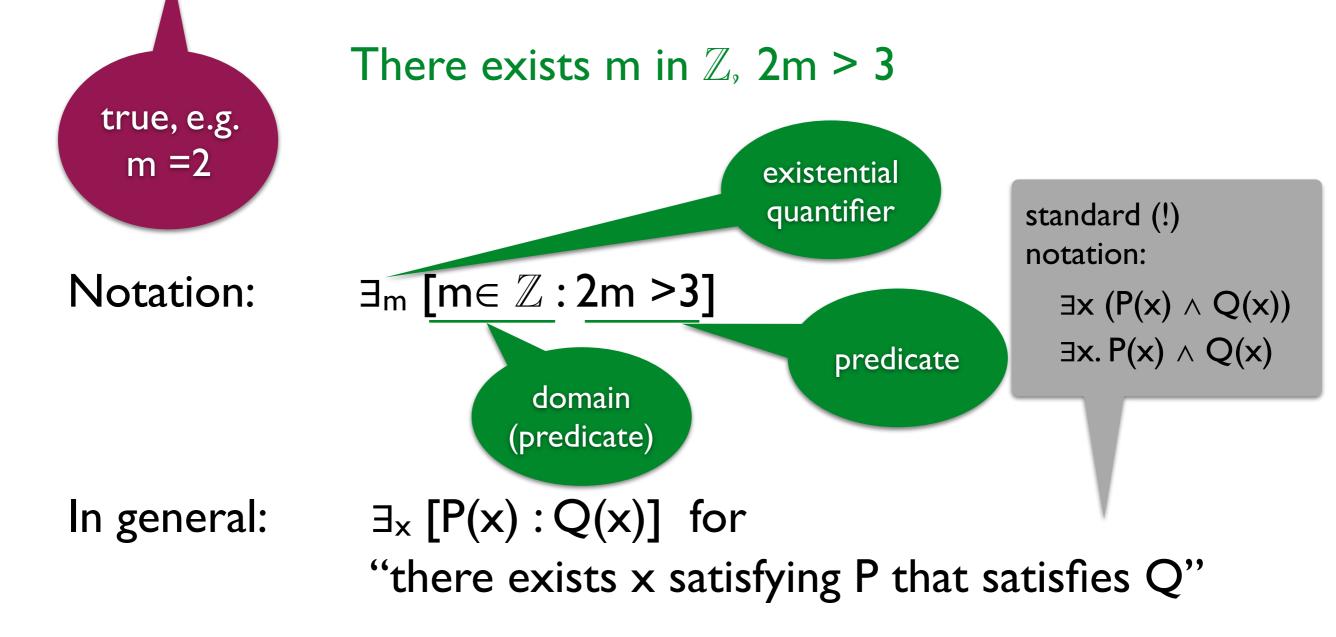
Universal quantification

The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:



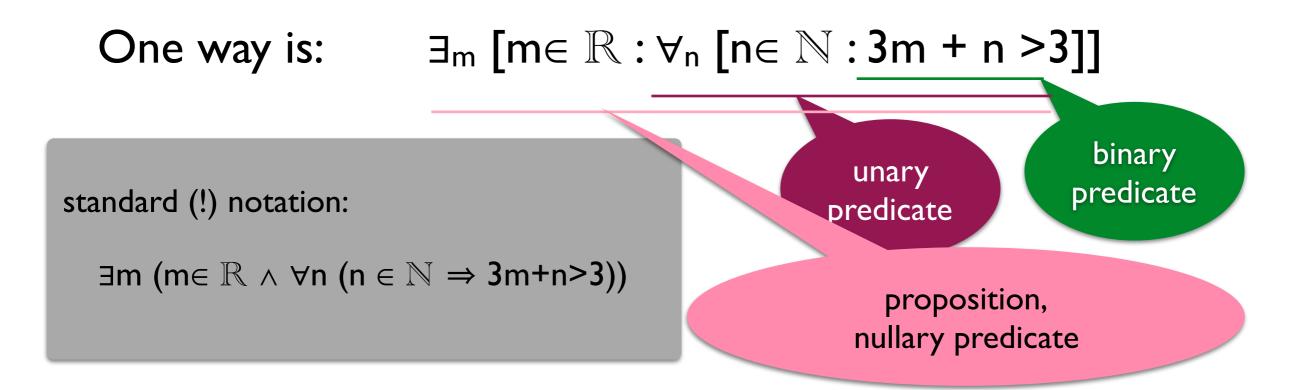
Existential quantification

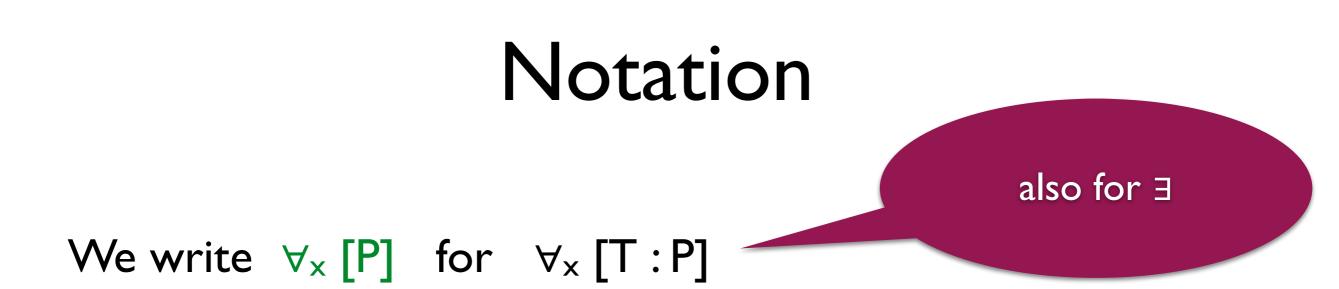
The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification:



Quantification

The binary predicate 3m+n > 3 on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification:





We also write $\exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]]$

And even $\exists_{m,n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_m [m \in \mathbb{R} : \exists_n [n \in \mathbb{N} : 3m + n > 3]]$ but only for the same quantifier!

Quantification - task

Let P be the set of all tennis players. Let $w \in P$ be the winner.

Thanks to Bas Luttik

For p, $q \in P$, write $p \neq q$ for "p and q are different players".

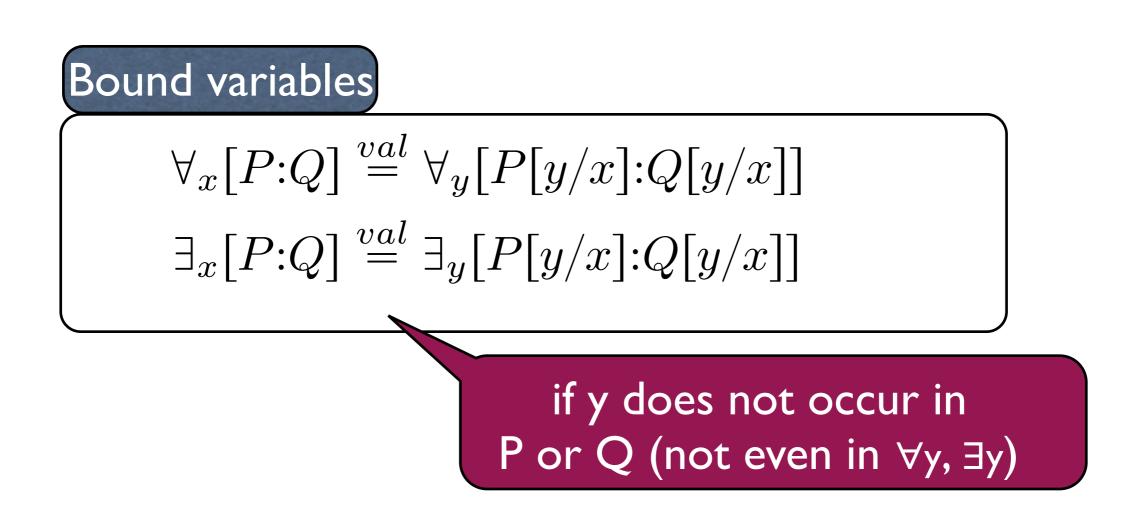
Let M be the set of all matches. For $p \in P$ and $m \in M$, write L(p,m) for "player p loses match m".

Write the following sentence as a formula with predicates and quantifiers:

Every player except the winner loses a match.

Equivalences with quantifiers

Renaming bound variables



Domain splitting

Examples:

$$\forall_x [x \leq 1 \lor x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\stackrel{val}{=} \forall_x [x \leq 1 \colon x^2 - 6x + 5 \geq 0] \land \forall_x [x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

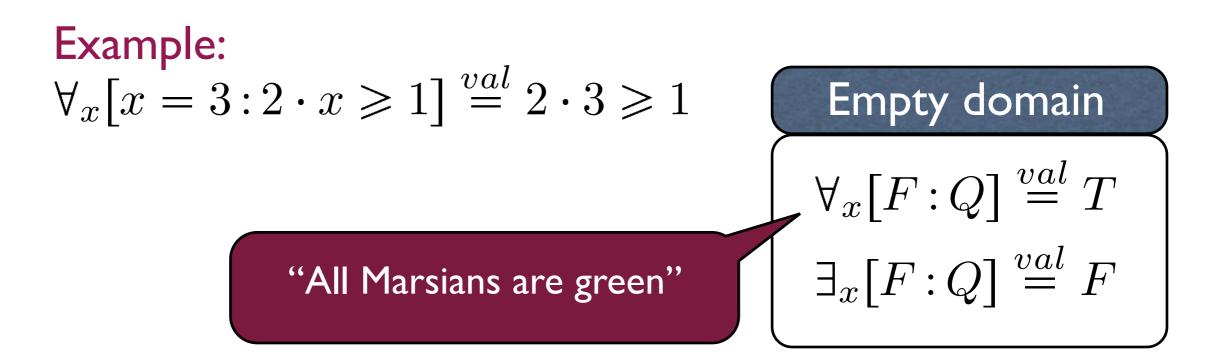
$$\begin{aligned} \exists_k [0 \leq k \leq n : k^2 \leq 10] \\ \stackrel{val}{=} \exists_k [0 \leq k \leq n-1 \lor k = n : k^2 \leq 10] \\ \stackrel{val}{=} \exists_k [0 \leq k \leq n-1 : k^2 \leq 10] \lor \exists_k [k=n : k^2 \leq 10] \end{aligned}$$

Domain splitting

$$\forall_x [P \lor Q : R] \stackrel{val}{=} \forall_x [P : R] \land \forall_x [Q : R]$$
$$\exists_x [P \lor Q : R] \stackrel{val}{=} \exists_x [P : R] \lor \exists_x [Q : R]$$

Equivalences with quantifiers

One-element domain $\forall_x [x = n : Q] \stackrel{val}{=} Q[n/x]$ $\exists_x [x = n : Q] \stackrel{val}{=} Q[n/x]$

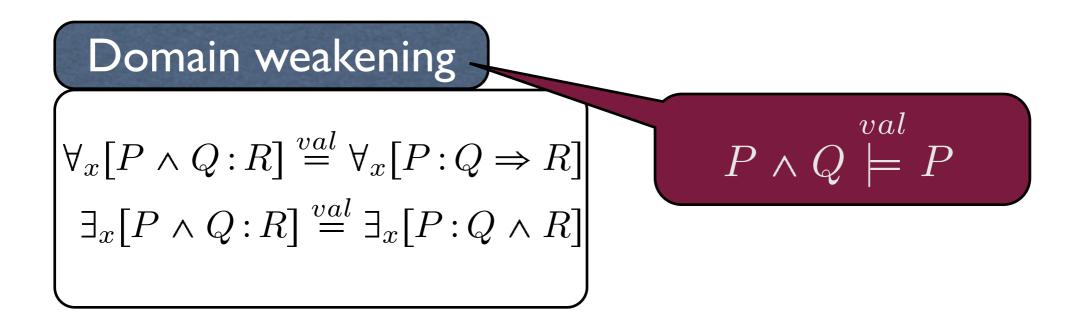


Domain weakening

Intuition: The following are equivalent

 $\forall_x [x \in D : A(x)] \quad \text{and} \quad \forall_x [x \in D \Rightarrow A(x)]$ $\exists_x [x \in D : A(x)] \quad \text{and} \quad \exists_x [x \in D \land A(x)]$

The same can be done to parts of the domain



De Morgan with quantifiers

De Morgan

$$\neg \forall_x [P:Q] \stackrel{val}{=} \exists_x [P:\neg Q]$$

$$\neg \exists_x [P:Q] \stackrel{val}{=} \forall_x [P:\neg Q]$$

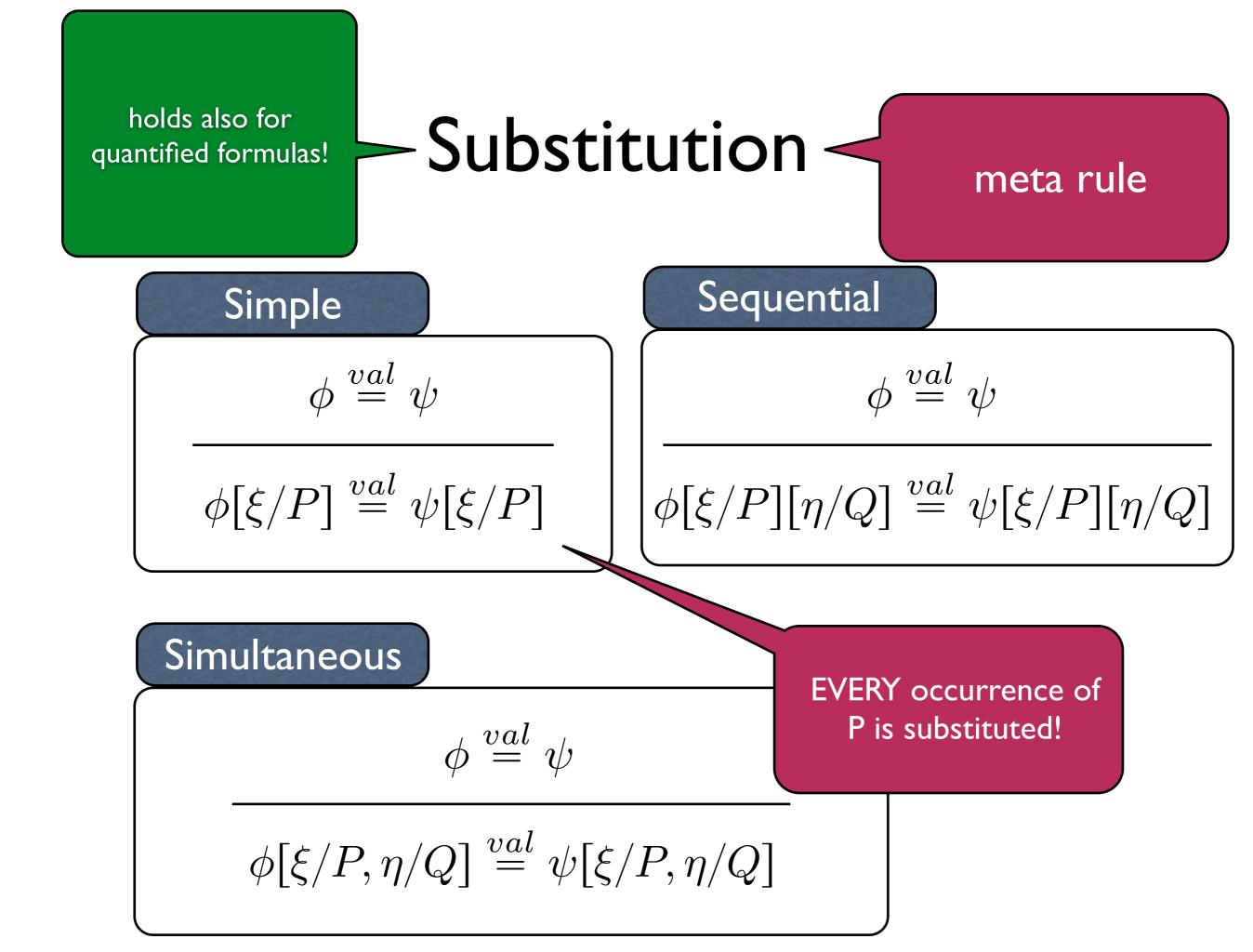
not for all = at least for one not

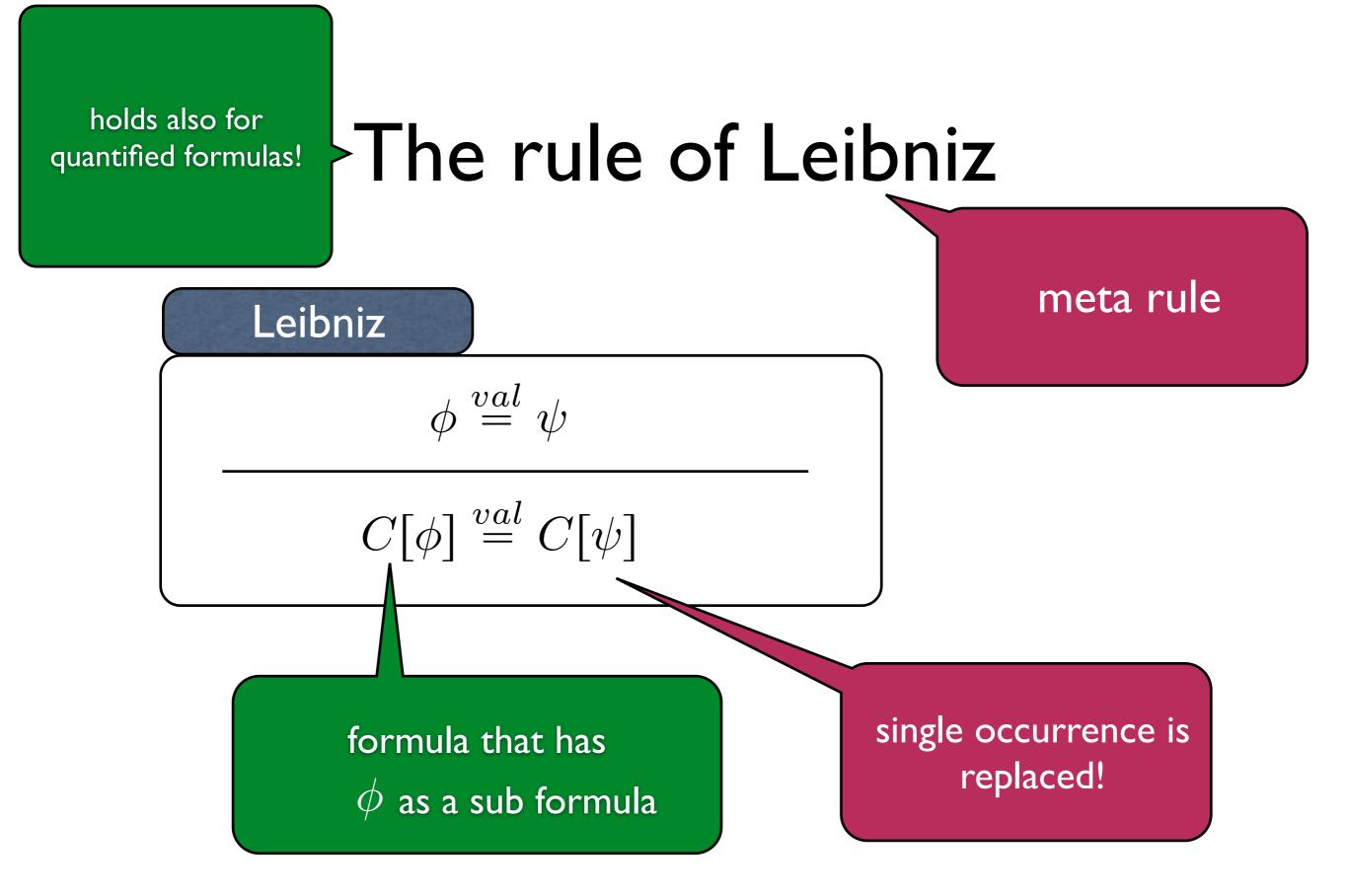
not exists = for all not

Hence:
$$\neg \forall = \exists \neg$$
 and $\neg \exists = \forall \neg$

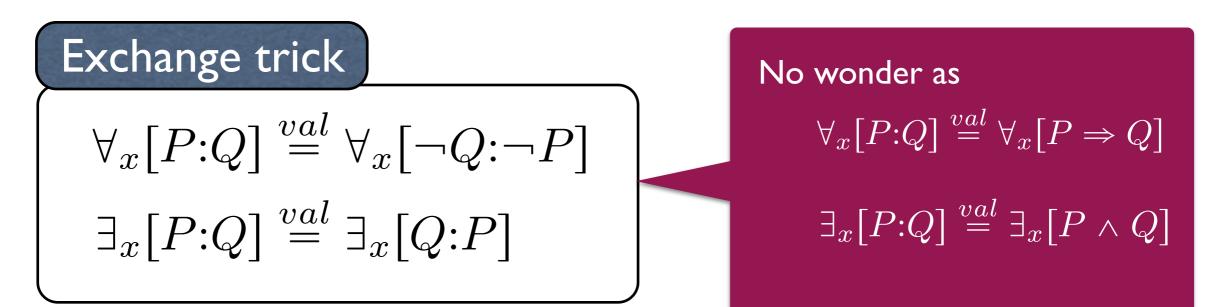
It holds further that:

$$\neg \forall_x \neg = \exists_x \neg \neg = \exists_x$$
$$\neg \exists_x \neg = \forall_x \neg \neg = \forall_x$$





Other equivalences with quantifiers



Term splitting

$$\forall_x [P:Q \land R] \stackrel{val}{=} \forall_x [P:Q] \land \forall_x [P:R] \\ \exists_x [P:Q \lor R] \stackrel{val}{=} \exists_x [P:Q] \lor \exists_x [P:R] \\ \end{cases}$$

Other equivalences with quantifiers

Monotonicity of quantifiers

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\forall_x [P:Q] \Rightarrow \forall_x [P:R]) \stackrel{val}{=} T$$
$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\exists_x [P:Q] \Rightarrow \exists_x [P:R]) \stackrel{val}{=} T$$

tautologies

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. Lemma W4: $P \models Q$ iff $P \Rightarrow Q$ is a tautology. Lemma W5: If $Q \models R$ then $\forall_x [P:Q] \models \forall_x [P:R]$.