The structure of natural numbers

is helpful for proving properties $\forall n[n \in \mathbb{N}: P(n)]$

The structure of natural numbers

On natural numbers we can define a notion of a successor, a mapping

$$s: \mathbb{N} \to \mathbb{N}$$

by
$$s(n) = n+1$$

The successor mapping imposes a structure on the set that enables us to count:

- 1) there is a starting natural number 0
- 2) for every natural number n, there is a next natural number s(n) = n+1.

(Some) Peano Axioms

Important properties

(I) Different natural numbers have different successors:

$$\forall n,m [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$$

stated positively

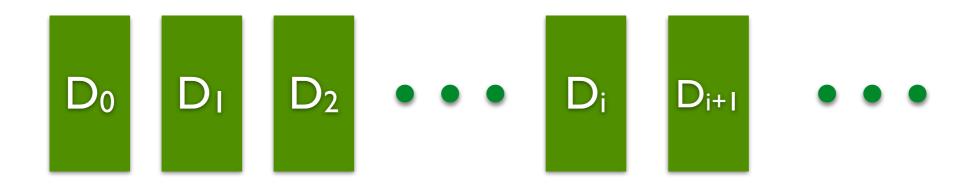
s is injective!

- (2) 0 is not a successor: $\forall n [n \in \mathbb{N} : \neg (s(n) = 0)]$
- (3) All natural numbers except 0 are successors:

$$\forall n[n \in \mathbb{N} \land \neg(n = 0) : \exists m[m \in \mathbb{N} : n = s(m)]$$

There is more to it - induction

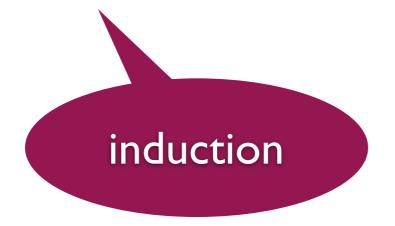
Imagine an infinite sequence of dominos



If we know that

- I. D_0 falls
- 2. The dominos are close enough together so that if D_i falls, then D_{i+1} falls (for all $i \in \mathbb{N}$)

Then we can conclude that every domino D_n ($n \in \mathbb{N}$) falls!



Induction

P - unary predicate over N

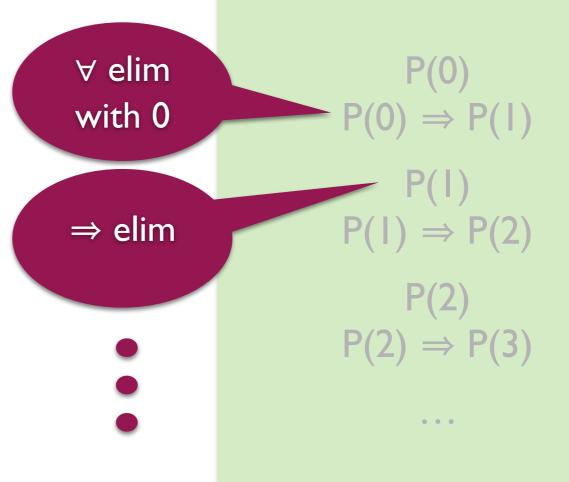
$$P(0) \land \forall i \ [i \in \mathbb{N} : P(i) \Rightarrow P(i+1)] \Rightarrow \forall n \ [n \in \mathbb{N} : P(n)]$$

Variant of the Peano Axiom:

Let $K \subseteq \mathbb{N}$ have the property that

- (a) $0 \in K$ and
- (b) for all $n \in \mathbb{N}$, $n \in K \Rightarrow (n+1) \in K$.

Then $K = \mathbb{N}$.



Induction

```
P(0) \wedge \forall i \ [i \in \mathbb{N}: \ P(i) \Rightarrow P(i+1)] \ \Rightarrow \forall n \ [n \in \mathbb{N}: \ P(n)]
```

P - unary predicate over N

(m) {Assume} (k) **var** $i; i \in \mathbb{N}$ (k+1)(I-I) P(i+1) $\{\Rightarrow$ -intro on (k+1) and $(l-1)\}$ $| P(i) \Rightarrow P(i+1)$ **(l)** $\{\forall$ -intro on (k) and (l) $\}$ $(I+I) \forall i[i \in \mathbb{N} : P(i) \Rightarrow P(i+I)]$ {induction on (m) and (I+I)}

(I+2) \forall n[n \in N : P(n)]

Basis

induction hypothesis

Induction step

Inductive definitions

Inductive proof: truth is passed on

Inductive definition: construction is passed on

well defined by induction

Example

The sequence of real numbers (a_i | i \in \mathbb{N}) is

defined inductively by

$$a_0 = 2$$

 $a_{i+1} = 2a_i - 1$

a ₀	aı	a ₂	a ₃	a4	• • •
2	3	5	9	17	

proof by induction

Conjecture

For all $n \in \mathbb{N}$ it holds that

$$a_n = 2^{n+1}$$

Strong induction

P - unary predicate over N

 $\forall k \; [k \in \mathbb{N}: \; \forall j [j \in \mathbb{N} \; \land \; j \leq k : P(j)] \Rightarrow P(k)] \; \Rightarrow \forall n \; [n \in \mathbb{N}: \; P(n)]$

 $\forall \text{ elim with } k=1$ $P(0) \Rightarrow P(1)$ $P(0) \land P(1)$ $P(0) \land P(1) \Rightarrow P(2)$ $\land \text{ intro}$ $P(0) \land P(1) \land P(2)$ $P(0) \land P(1) \land P(2) \Rightarrow P(3)$ \cdots

Definition of $(a_i \mid i \in \mathbb{N})$ with strong induction

 a_n is defined via $a_0, ..., a_{n-1}$