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numbers

On natural numbers we can define a notion of a successor; a mapping
s:IN = N

by s(n) = n+1

The successor mapping imposes a structure on the set that enables us to
count:

|) there is a starting natural number O
2) for every natural number n, there is a next natural number s(n) = n+1.
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(Some) Peano Axioms

Important properties
(1) Different natural numbers have different successors:

vn,m [n,m € N :s(m) =s(n) = m = n]

(2) 0 is not a successor: Vn[ne N :=1(s(n) =0)]

(3) All natural numbers except 0 are successors:

vn[ne N A(n=0):3m[m e N: n=s(m)]
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Induction

P(O) AVi[ie N: P(i) = P(i+l)] = vn[ne N: P(n)]

Variant of the Peano Axiom:
"Let K € N have the property that

(a) 0 e Kand
(b) forallne N,n e K= (n+l]) € K.

_Then K = I\ )
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Inductive proof: truth is passed on
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Inductive definitions

Inductive proof: truth is passed on

well defined by induction
Inductive definition: construction is passec

The sequence of real numbers (ai | i € N) is

defined inductively by
ap =2
ai+] = 2ai - |

a0 [ dl | A2 | 43 | A4

For all n € N it holds that

an = 2n+|

proof by induction
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Strong induction

vk [ke N : vi[je N aj<k:PG{]=P(K)] = vn[neN: P(n)]

@ ( Definition of

(ai|ieN)

with strong
induction

an is defined via
aO, ey dn-|




