Functions, mappings

Def. If A and B are sets, a function (mapping, $A b b i l d u n g$) f from A to B, notation $f: A \longrightarrow B$ is an assignment (of elements of B to elements of A, we write $f(a)$ for the element assigned to a) s.t. for every $a \in A$, there exists a unique $b \in B$ such that $b=f(a)$.

Functions, mappings

When $f: A \longrightarrow B$ then $\operatorname{dom} f=A$ and $\operatorname{cod} f=B$

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{A}^{\prime} \subseteq \mathrm{A}$.
The image (Bild) of A^{\prime} is the set $f\left(A^{\prime}\right)=\left\{f(a) \mid a \in A^{\prime}\right\} \subseteq B$.

$$
f\left(A^{\prime}\right)=\left\{b \in B \mid \text { there is an } a \in A^{\prime} \text { with } b=f(a)\right\}
$$

$$
\text { if } a \in A^{\prime} \text {, then } f(a) \in f\left(A^{\prime}\right)
$$

So f extends to a function $\mathrm{f}: \mathcal{P}(\mathrm{A}) \longrightarrow \mathcal{P}(\mathrm{B})$, the image-function.

Functions, mappings

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{B}^{\prime} \subseteq \mathrm{B}$.
The inverse image (Urbild) of B^{\prime} is the set

$$
f^{-1}\left(B^{\prime}\right)=\underbrace{\left\{a \mid f(a) \in B^{\prime}\right\} \subseteq A .}_{a \in f^{\prime}\left(B^{\prime}\right) \text { iff } f(a) \in B^{\prime}}
$$

Again the inverse image induces a function $f^{-1}: \mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

Lemma FI: Let $f: A \longrightarrow B, A^{\prime} \subseteq A$, and $B^{\prime} \subseteq B$. Then

$$
A^{\prime} \subseteq f^{-1}\left(f\left(A^{\prime}\right)\right) \text { and } f\left(f^{-1}\left(B^{\prime}\right)\right) \subseteq B^{\prime}
$$

(in general no more than this holds)

Equality of functions

$$
\text { Let } \mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B} \text { and } \mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D}
$$

Def. The functions $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{C} \longrightarrow \mathrm{D}$ are equal iff
(1) $A=C \quad \operatorname{dom} f=\operatorname{dom} g$
(2) $B=D$
(3) for all $a \in A, f(a)=g(a)$.

$$
\operatorname{cod} f=\operatorname{cod} g
$$

Recall...

Def. If A and B are sets, a function f from A to B, notation $f: A \longrightarrow B$ is an assignment s.t. for every $a \in A$, there exists a unique $b \in B$ such that $b=f(a)$.

Special functions

The number of ingoing arrows for a function can be $0, \mathrm{I}$, or more. Based on this, we distinguish some special functions.

Special functions

Def. A function $f: A \longrightarrow B$ is injective iff

$$
\text { for all } a, b \in A \text {, if } f(a)=f(b) \text { then } a=b \text {. }
$$

Def. A function $f: A \longrightarrow B$ is surjective iff for all $b \in B$, there exists $a \in A$ such that $f(a)=b$.

Def. A function $f: A \longrightarrow B$ is bijective iff

f is injective and surjective.

Simple characterisations

Lemma II: A function $f: A \longrightarrow B$ is injective iff for all $b \in B,\left|f f^{\prime}(\{b\})\right| \leq 1$.

Lemma $\mathrm{SI}: \mathrm{A}$ function $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ is surjective iff

$$
\begin{aligned}
& \left|f^{-1}(\{b\})\right| \geq I \text { for all } b \in B \text { iff least one incoming arrow } \\
& f(A)=B \text {. }
\end{aligned}
$$

Lemma $\mathrm{BI}: \mathrm{A}$ function $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ is bijective iff $\left|f^{-1}(\{b\})\right|=\mid$ for all $b \in B$ iff exactly one incoming arrow f is both injective and surjective.

Some properties

Lemma 12: Let $f: A \longrightarrow B$ be injective and let $A^{\prime} \subseteq A$. Then $f(x) \in f\left(A^{\prime}\right)$ iff $x \in A^{\prime}$.
if holds always!
Prop. I3: Let $f: A \longrightarrow B$ be injective and let $A^{\prime} \subseteq A$. Then

$$
f^{-1}\left(f\left(A^{\prime}\right)\right)=A^{\prime} .
$$

Prop. S2: Let $f: A \longrightarrow B$ be surjective and let $B^{\prime} \subseteq B$. Then

$$
f\left(f^{-1}\left(B^{\prime}\right)\right)=B^{\prime} .
$$

Inverse function

$$
\text { Let } \mathrm{f}: \mathrm{A} \longrightarrow \mathrm{~B} \text { be a bijection }
$$

Def. The inverse function $f^{-1}: B \longrightarrow A$ is defined as

$$
f^{-1}(b)=a \text { iff } f(a)=b, \quad b \in B .
$$

Lemma B2: The inverse function f^{-1} for a bijection f is bijective.

Function composition

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{C}$

Function composition

Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{C}$

$$
g \circ f: A \xrightarrow{\text { "after" }}
$$

Def. The composition g of is a function g o $f: A \longrightarrow C$ given by

$$
g \circ f(a)=g(f(a)) \text {, for } a \in A \text {. }
$$

Lemma 14: Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{C}$ be injective.Then g of is injective.

Lemma $\mathrm{S3}$: Let $\mathrm{f}: \mathrm{A} \longrightarrow \mathrm{B}$ and $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{C}$ be surjective. Then $g \circ f$ is surjective.

Corollary $B 2:$ Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be bijective. Then so is $g \circ f$.

A characterization of bijections

Theorem B3: A function $f: A \longrightarrow B$ is bijective iff there exists a function $\mathrm{g}: \mathrm{B} \longrightarrow \mathrm{A}$ with

