Functions, mappings

Def. If A and B are sets, a function (mapping, Abbildung) f from A to B, notation f: $A \longrightarrow B$ is an assignment (of elements of B to elements of A, we write f(a) for the element assigned to a) s. t. for every $a \in A$, there exists a unique $b \in B$ such that b = f(a).

Functions, mappings

When f: $A \longrightarrow B$ then dom f = A and cod f = B

Let f: $A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = {f(a) | a \in A'} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A$ ')

So f extends to a function f: $\mathcal{P}(A) \longrightarrow \mathcal{P}(B)$, the image-function.

Functions, mappings

Let f: A \longrightarrow B and B' \subseteq B.

The inverse image (Urbild) of B' is the set $f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$

Again the inverse image induces a function $f^{-1}: \mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

 $a \in f^{-1}(B')$ iff $f(a) \in B'$

Lemma F1: Let f: A \longrightarrow B, A' \subseteq A, and B' \subseteq B. Then A' \subseteq f⁻¹(f(A')) and f(f⁻¹(B')) \subseteq B' (in general no more than this holds)

Equality of functions

Let $f: A \longrightarrow B$ and $g: C \longrightarrow D$

Def. The functions f: A \longrightarrow B and g: C \longrightarrow D are equal iff (1) A = C (2) B = D (3) for all a \in A, f(a) = g(a). cod f = cod g

Recall...

Def. If A and B are sets, a function f from A to B, notation f: $A \longrightarrow B$ is an assignment s.t. for every $a \in A$, there exists a unique $b \in B$ such that b = f(a). В Α B Α B B Α A

Special functions

The number of ingoing arrows for a function can be 0,1, or more. Based on this, we distinguish some special functions.

Special functions

Def. A function $f: A \longrightarrow B$ is injective iff for all $a, b \in A$, if f(a) = f(b) then a = b. B Α **Def.** A function $f: A \longrightarrow B$ is surjective iff for all $b \in B$, there exists $a \in A$ such that f(a) = b. B Α

Def. A function $f:A \longrightarrow B$ is bijective iff f is injective and surjective.

Simple characterisations

Lemma II: A function f:A \longrightarrow B is injective iff for all $b \in B$, $|f^{-1}(\{b\})| \leq I$.

at most one incoming arrow injection

Lemma SI: A function f:A \longrightarrow B is surjective iff $|f^{-1}(\{b\})| \ge I \text{ for all } b \in B \text{ iff} \text{ at least one incoming arrow } f(A) = B.$

Lemma BI: A function f:A \longrightarrow B is bijective iff $|f^{-1}({b})| = 1$ for all $b \in B$ iff f is both injective and surjective. exactly one incoming arrow bijection

Some properties

Lemma I2: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f(x) \in f(A')$ iff $x \in A'$. if holds always! Prop. I3: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f^{-1}(f(A')) = A'$.

Prop. S2: Let $f: A \longrightarrow B$ be surjective and let $B' \subseteq B$. Then $f(f^{-1}(B')) = B'$.

Inverse function

Lemma B2: The inverse function f⁻¹ for a bijection f is bijective.

Function composition

Function composition

Let f:A
$$\longrightarrow$$
 B and g: B \longrightarrow C

 $\begin{array}{c} \text{``after''} \\ \mathsf{g} \circ \mathsf{f} \colon \mathsf{A} \longrightarrow \mathsf{B} \longrightarrow \mathsf{C} \end{array}$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f(a) = g(f(a))$, for $a \in A$.

Lemma I4: Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be injective. Then $g \circ f$ is injective.

Lemma S3: Let f:A \longrightarrow B and g: B \longrightarrow C be surjective. Then $g \circ f$ is surjective.

Corollary B2: Let f: A \longrightarrow B and g: B \longrightarrow C be bijective. Then so is g $^{\circ}$ f.

A characterization of bijections

