Finite Automata

Def

 \sum - alphabet (finite set)

 $\sum_{i=1}^{n} = \{a_1 a_2 ... a_n \mid a_i \in \sum\}$ is the set of words of length n

 $\Sigma^* = \{ w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \Sigma. w = a_1 a_2 ... a_n \}$ is the set of all words over Σ

Def

 \sum - alphabet (finite set)

 $\Sigma^0 = \{\mathcal{E}\}\$ contains only the empty word

 $\sum_{i=1}^{n} = \{a_1 a_2 ... a_n \mid a_i \in \sum\}$ is the set of words of length n

 $\Sigma^* = \{ w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \Sigma. w = a_1 a_2 ... a_n \}$ is the set of all words over Σ

Def

 \sum - alphabet (finite set)

 $\Sigma^0 = \{\mathcal{E}\}\$ contains only the empty word

 $\sum_{i=1}^{n} = \{a_1 a_2 ... a_n \mid a_i \in \sum\}$ is the set of words of length n

 $\Sigma^* = \{ w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \Sigma. w = a_1a_2...a_n \}$ is the set of all words over Σ

A language L over Σ is a subset L $\subseteq \Sigma^*$

Informal example

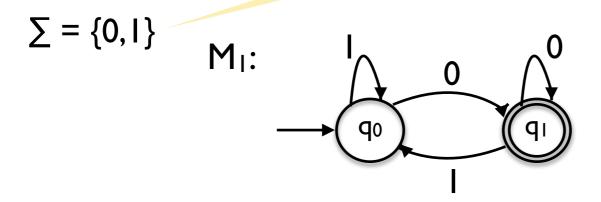
$$\sum = \{0,1\}$$

$$M_1:$$

$$q_0$$

alphabet

Informal example



alphabet

Informal example

$$\sum = \{0,1\}$$

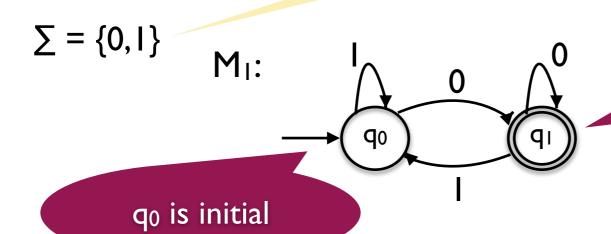
$$M_1:$$

$$q_0$$

qo, qı are states

alphabet

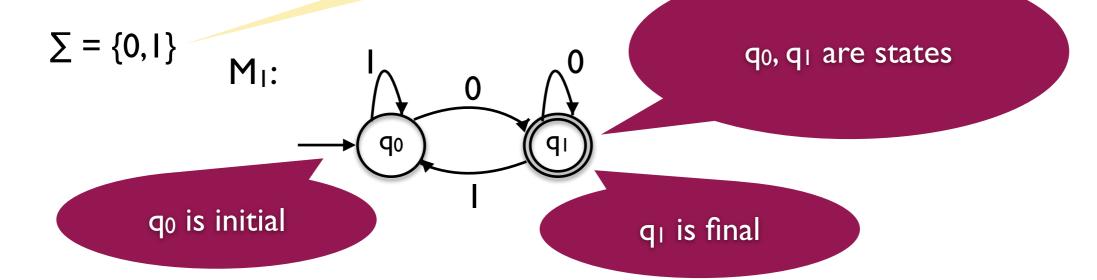
Informal example



q₀, q₁ are states

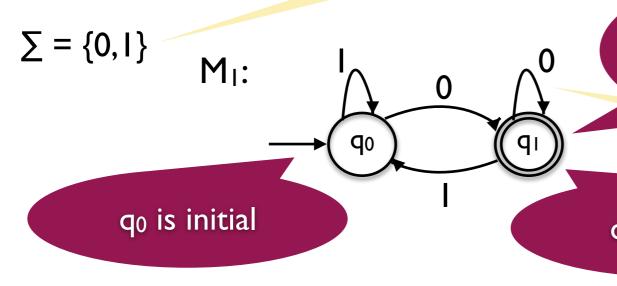
alphabet

Informal example



alphabet

Informal example



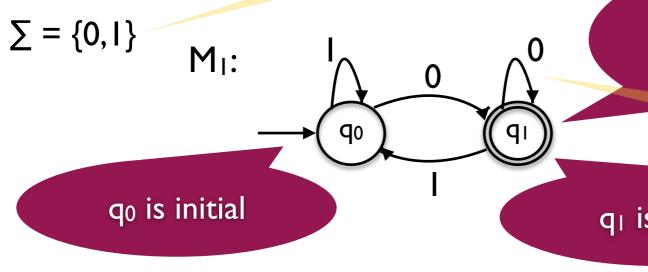
q₀, q₁ are states

q1 is final

transitions, labelled by alphabet symbols

alphabet

Informal example



q₀, q₁ are states

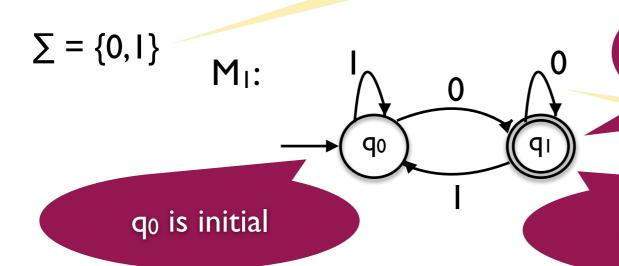
q₁ is final

transitions, labelled by alphabet symbols

Accepts the language $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a 0}\} = \Sigma^* 0$

alphabet

Informal example



q₀, q₁ are states

q₁ is final

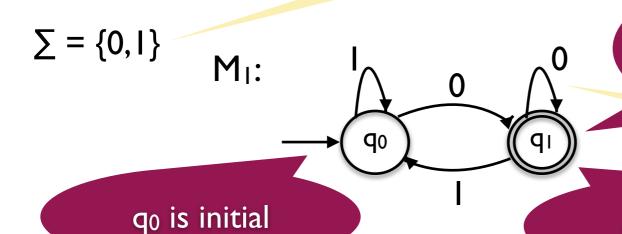
transitions, labelled by alphabet symbols

Accepts the language $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a 0}\} = \Sigma^* 0$

regular language

alphabet

Informal example



q₀, q₁ are states

q₁ is final

transitions, labelled by alphabet symbols

Accepts the language $L(M_1) = \{w \in \Sigma^* \mid w \text{ ends with a 0}\} = \Sigma^* 0$

regular language

regular expression

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

In the example M_I

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

In the example M₁

 $M_1 = (Q, \sum, \delta, q_0, F)$ for

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

In the example M₁

$$M_1 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1\}$$

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

In the example M₁

$$M_1 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1\}$$

$$\sum = \{0, 1\}$$

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

In the example $M_1 = (Q, \Sigma, \delta, q_0, F)$ for

$$M_1 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1\}$$
 $F = \{q_1\}$

$$\Sigma = \{0, 1\}$$

Definition

A deterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

In the example M₁

$$Q = \{q_0, q_1\}$$
 $F = \{q_1\}$
 $\sum = \{0, 1\}$

$$\sum = \{0, 1\}$$

$$M_1 = (Q, \sum, \delta, q_0, F)$$
 for

$$\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$$

$$\delta(q_1,0) = q_1, \delta(q_1,1) = q_0$$

The extended transition function

The extended transition function

Given $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*\!\!:\! Q\times \Sigma^*\!\!\longrightarrow Q$$

inductively, by:

$$\delta^*(q, \varepsilon) = q$$
 and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

The extended transition function

Given $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

$$\delta^*(q, \epsilon) = q$$
 and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

In M_I, $\delta^*(q_0, 110010) = q_1$

The extended transition function

Given $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

$$\delta^*(q, \epsilon) = q$$
 and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

In M_I, $\delta^*(q_0, 110010) = q_1$

Definition

The language recognised / accepted by a deterministic finite automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M) = \{w \in \Sigma^* | \delta^*(q_0, w) \in F\}$$

The extended transition function

Given $M = (Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

$$\delta^*(q, \epsilon) = q$$
 and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

In M_I, $\delta^*(q_0, 110010) = q_1$

Definition

The language recognised / accepted by a deterministic finite automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M) = \{w \in \Sigma^* | \delta^*(q_0, w) \in F\}$$

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$ is regular

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

 $L(M_I) = \{w0|w \in \{0,I\}^*\}$ is regular

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

Regular operations

 $L(M_I) = \{w0|w \in \{0,I\}^*\}$ is regular

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

Regular operations

Let L_1 , L_2 be languages over Σ . Then $L_1 \cup L_2$, $L_1 \cdot L_2$, and L^* are languages, where

$$L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

$$L^* = \{w \mid \exists n \in \mathbb{N}. \exists w_1, w_2, ..., w_n \in L. w = w_1w_2..w_n\}$$

 $L(M_I) = \{w0|w \in \{0,I\}^*\}$ is regular

Definition

Let Σ be an alphabet. A language L over Σ (L $\subseteq \Sigma^*$) is regular iff it is recognised by a DFA.

Regular operations

Let L, L₁, L₂ be languages over \sum . Then L₁ \cup L₂, L₁ \cdot L₂, and L* are languages, where

$$L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

 $L^* = \{w \mid \exists n \in \mathbb{N}. \exists w_1, w_2, ..., w_n \in L. w = w_1w_2..w_n\}$

 $E \in L^*$ always

Theorem CI

The class of regular languages is closed under union

also under intersection

Theorem CI

The class of regular languages is closed under union

also under

intersection

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

also under intersection

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Closure under regular operations

also under intersection

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Closure under regular operations

also under intersection

Theorem CI

The class of regular languages is closed under union

We can already prove these!

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Closure under regular operations

also under intersection

Theorem CI

The class of regular languages is closed under union

We can already prove these!

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

But not yet these two...

Theorem C4

The class of regular languages is closed under Kleene star

Regular expressions

Definition

Regular expressions

Definition

Regular expressions

Definition

Let \sum be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

Regular expressions

inductive

Definition

Let \sum be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

Regular expressions

inductive

Definition

example: $(ab \cup a)^*$

Let \sum be an alphabet. The following are regular expressions

- I. a for $a \in \sum$
- 2. ε3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

Regular expressions

inductive

Definition

example: $(ab \cup a)^*$

Let \sum be an alphabet. The following are regular expressions

- 1. a for $a \in \sum$
- 2. ε3. Ø
- 4. $(R_1 \cup R_2)$ for R_1 , R_2 regular expressions
- 5. $(R_1 \cdot R_2)$ for R_1 , R_2 regular expressions
- 6. $(R_1)^*$ for R_1 regular expression

corresponding languages

$$L(a) = \{a\}$$

$$L(\epsilon) = \{\epsilon\}$$

$$L(\emptyset) = \emptyset$$

$$L(R_1 \cup R_2) = L(R_1) \cup L(R_2)$$

$$L(R_1 \cdot R_2) = L(R_1) \cdot L(R_2)$$

$$L(R_1^*) = L(R_1)^*$$

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Proof ← easy, as the constructions for the closure properties,

⇒ not so easy, we'll skip it for now...

Theorem (Kleene)

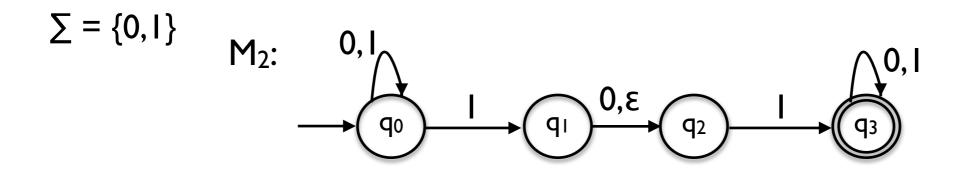
A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

needs nondeterminism

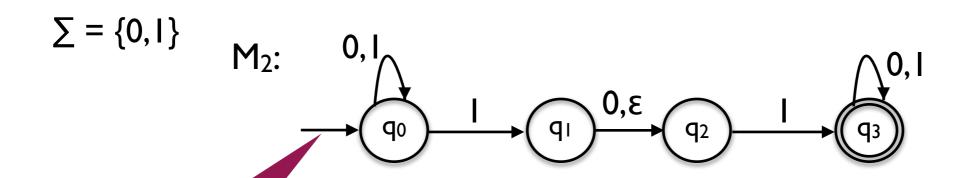
Proof ← easy, as the constructions for the closure properties,

⇒ not so easy, we'll skip it for now...

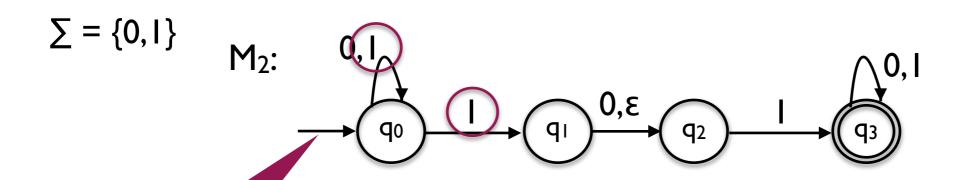
Informal example



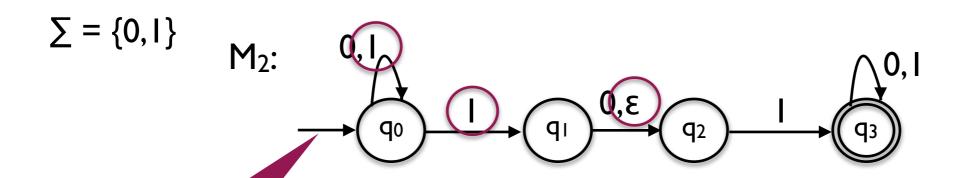
Informal example



Informal example

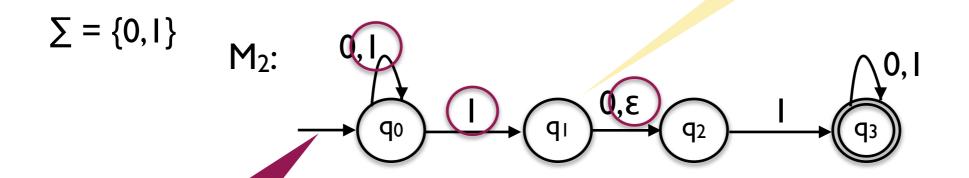


Informal example



no I transition

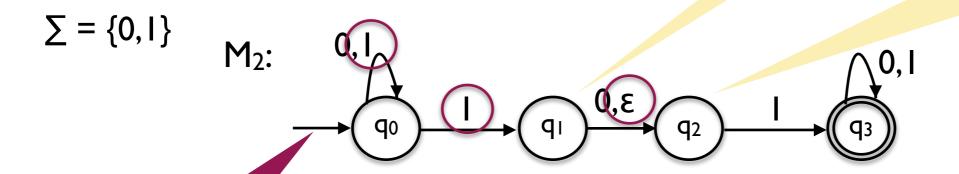
Informal example



no I transition

Informal example

no 0 transition



no I transition

Informal example

no 0 transition

sources of nondeterminism

Accepts a word iff there exists an accepting run

Definition

A nondeterministic automaton M is a tuple $M = (Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

∑ is a finite alphabet

δ: $Q \times \sum_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example M₂

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: Q x $\sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example
$$M_2 = (Q, \Sigma, \delta, q_0, F)$$
 for

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: Q x $\sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example $M_2 = (Q, \Sigma, \delta, q_0, F)$ for

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: Q x $\sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example $M_2 = (Q, \Sigma, \delta, q_0, F)$ for

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

δ: Q x $\sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in \mathbb{Q}$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example $M_2 = (Q, \Sigma, \delta, q_0, F)$ for

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$
 $F = \{q_3\}$

Definition

A nondeterministic automaton M is a tuple M = $(Q, \sum, \delta, q_0, F)$ where

Q is a finite set of states

 \sum is a finite alphabet

 $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the transition function

 q_0 is the initial state, $q_0 \in Q$

F is a set of final states, $F \subseteq Q$

$$\sum_{\epsilon} = \sum_{\epsilon} \cup \{\epsilon\}$$

In the example M₂

$$Q = \{q_0, q_1, q_2, q_3\}$$

$$\Sigma = \{0, 1\}$$
 $F = \{q_3\}$

$$M_2 = (Q, \sum, \delta, q_0, F)$$
 for

$$\delta(q_0,0)=\{q_0\}$$

$$\delta(q_0, 1) = \{q_0, q_1\}$$

$$\delta(q_0, \epsilon) = \emptyset$$

.

The extended transition function

The extended transition function

Given an NFA M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

inductively, by:

$$\delta^*(q, \varepsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

 $E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, .., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, .., n-1\}$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

inductively, b/:

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

$$E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: \mathbb{Q} \times \Sigma^* \longrightarrow \mathcal{P}(\mathbb{Q})$$

inductively, by:

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

$$E(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \to \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

NFA

$$E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

In M_{2} , $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

NFA

$$E(q) = \left\{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\right\}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \rightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, by:

In
$$M_2$$
, $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

 $\delta^*(q, \epsilon) = E(q)$ and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

Definition

The language recognised / accepted by a nondeterministic finite automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \cap F \neq \emptyset \}$$

NFA

$$E(q) = \{q' \mid q' = q \vee \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta(q_i, \epsilon), \text{ for } i = 0, ..., n-1\}$$

The extended transition function

Given an N M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$$

$$E(X) = U_{x \in X} E(x)$$

inductively, b/:

In
$$M_2$$
, $\delta^*(q_0,0110) = \{q_0,q_2,q_3\}$

$$\delta^*(q, \epsilon) = E(q)$$
 and $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$

Definition

The language recognised / accepted by a automaton $M = (Q, \sum, \delta, q_0, F)$ is

$$\begin{split} L(M_2) &= \{ \text{ulolw} \mid u, w \in \{0, 1\}^* \} \\ & \quad \cup \\ \{ \text{ullw} \mid u, w \in \{0, 1\}^* \} \end{split}$$

$$L(M) = \{ w \in \Sigma^* | \delta^*(q_0, w) \cap F \neq \emptyset \}$$

Definition

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Proof via the "powerset construction" / determinization

Definition

Two automata M_1 and M_2 are equivalent if $L(M_1) = L(M_2)$

Theorem NFA ~ DFA

Every NFA has an equivalent DFA

Proof via the "powerset construction" / determinization

Corollary

A language is regular iff it is recognised by a NFA

Theorem CI

The class of regular languages is closed under union

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Now we can prove these too

Theorem C4

The class of regular languages is closed under Kleene star

Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \Sigma^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. $|xy| \le p$

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \Sigma^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= $\{0^n1^n \mid n \in \mathbb{N}\}$ is nonregular.

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \Sigma^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof easy, using the pigeonhole principle

Example "corollary"

L= $\{0^n1^n \mid n \in \mathbb{N}\}\$ is nonregular.

Note the logical structure!