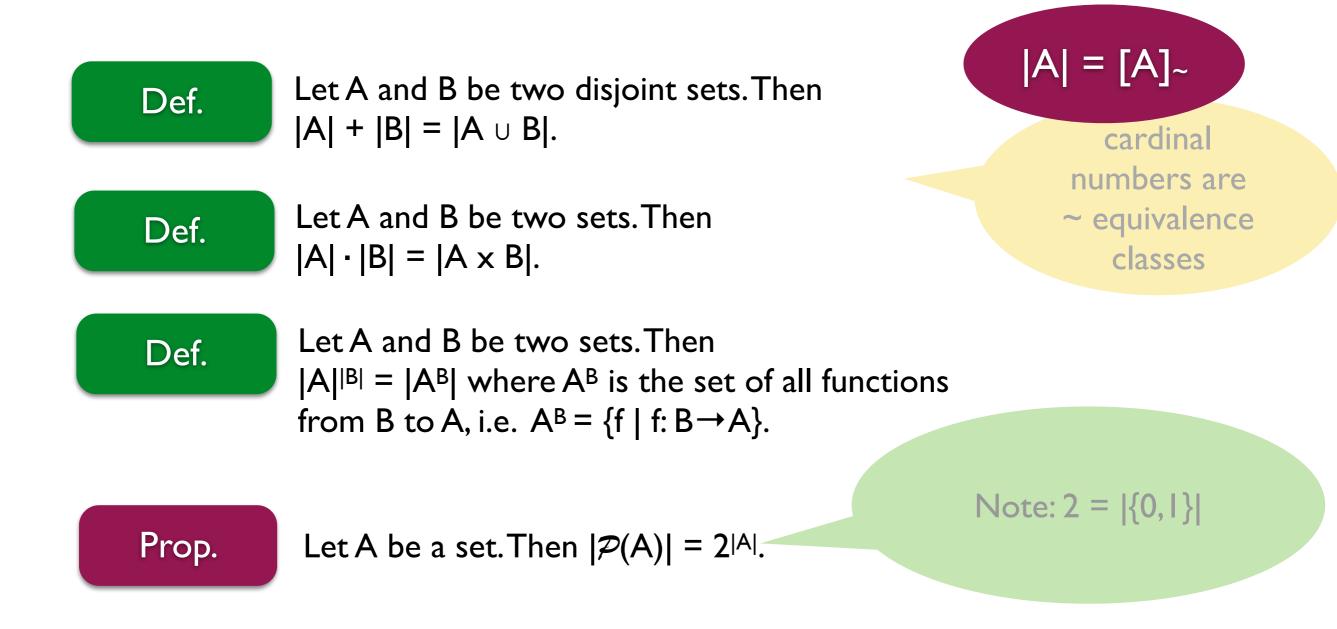
Cardinality

Cardinals

Def.	Two sets A and B have the same cardinality (are equinumerous) if there is a bijection $f: A \rightarrow B$. Notation A ~ B, or $ A = B $.	A = [A]~
Prop.	The relation \sim is an equivalence relation on sets.	cardinal numbers are ~ equivalence
Def.	A set A has at most as large cardinality as a set B if there is an injection $f: A \rightarrow B$. Notation $ A \leq B $.	classes
Def.	A set A has at least as large cardinality as a set B if there is a surjection f:A \rightarrow B. Notation A \geq B .	Theorem (Cantor) If $ A \le B $
Def.	A set A has smaller cardinality than a set B if there is an injection $f:A \rightarrow B$ and there is no surjection $f:A \rightarrow B$. Notation $ A < B $.	and $ B \leq A ,$ then A = B .

Operations on cardinals



Finite sets, finite cardinals

We write \mathbb{N}_k for the set $\{0, 1, ..., k-1\}$. Then $\mathbb{N}_0 = \emptyset$.

We will also write k for $|N_k|$.

A set A is finite if and only if $|A| = |N_k|$, for some $k \in \mathbb{N}$. We write then |A| = k.

Hence

A set A is finite if and only if there is a natural number $k \in \mathbb{N}$ and a bijection f:A $\rightarrow \mathbb{N}_{k}$.

if and only if A has k elements, for some $k \in \mathbb{N}$

E.g. If |A| = k and |B| = mfor some k,m $\in \mathbb{N}$ then $|AxB| = k \cdot m$

|A| = [A]~

cardinal

numbers are

 \sim equivalence

classes

The operations on cardinals when restricted to finite cardinals coincide with the operations on natural numbers! This justifies the notation.

Infinite, countable and uncountable sets

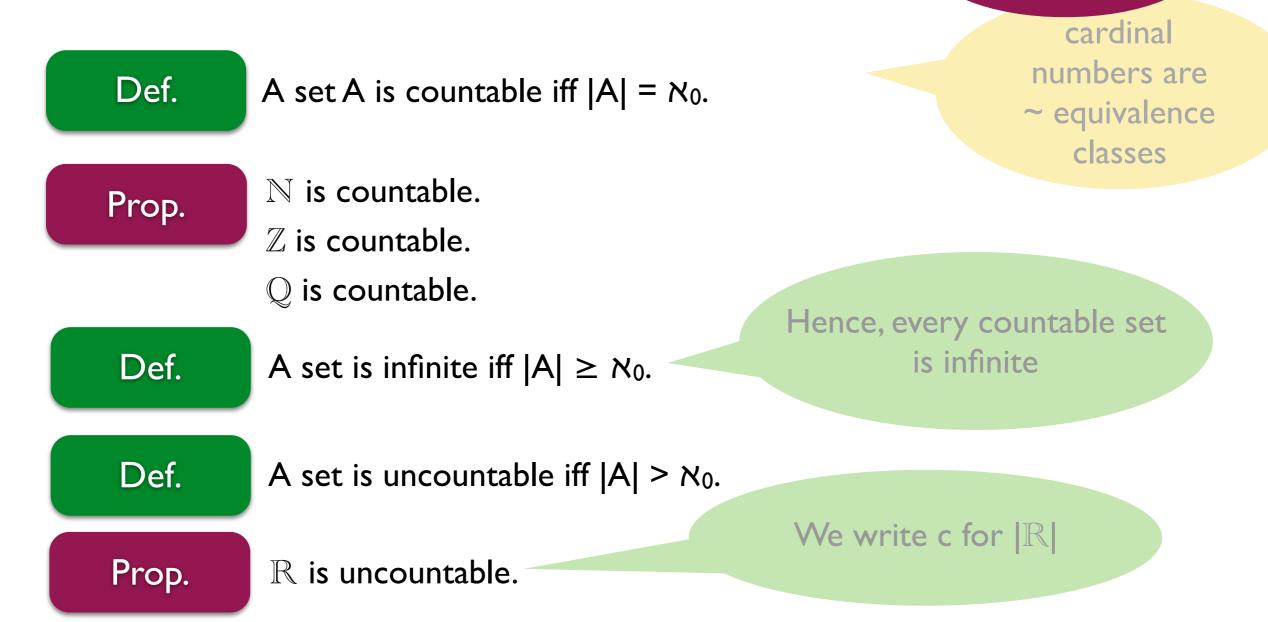
Time for a video!

Hilbert's infinite hotel :-)

Infinite, countable and uncountable sets

|A| = [A]~

We write \aleph_0 or the cardinality of natural numbers. Hence $\aleph_0 = |\mathbb{N}|$.



Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

|A| = [A]~

cardinal numbers are ~ equivalence classes

Hence, for every cardinal there is a larger one.

Finite Automata

Alphabets and Languages

 $\sum_{i=1}^{n} = \{E\}$ contains only the

empty word

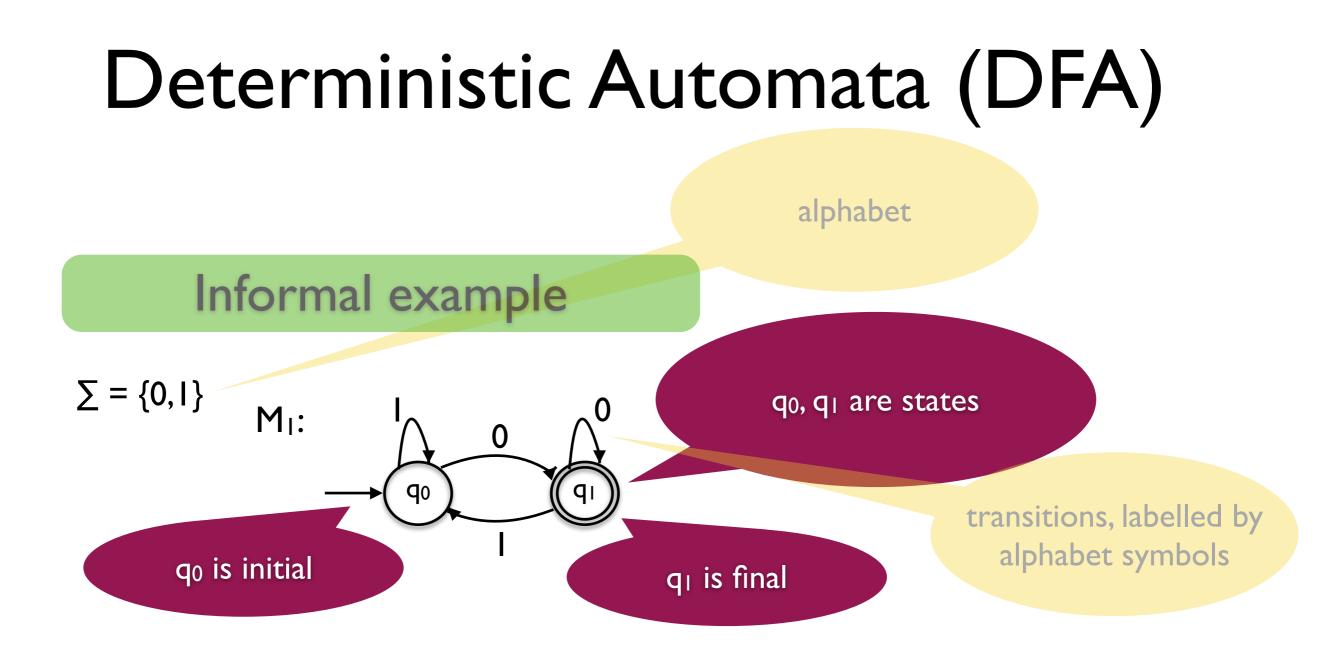
Def

 Σ - alphabet (finite set)

 \sum^n = $\{a_1a_2..a_n \mid a_i \in \Sigma\}$ is the set of words of length n

 $\Sigma^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \Sigma. w = a_1a_2..a_n\} \text{ is the set of all words over } \Sigma$

A language L over Σ is a subset $L \subseteq \Sigma^*$



Accepts the language $L(M_1) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$

regular language

regular expression

DFA

A deterministic automaton M is a tuple M = (Q, \sum , δ , q_0 , F) where

Q is a finite set of states Σ is a finite alphabet $\delta: Q \times \Sigma \longrightarrow Q$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$

In the example M₁ $M_1 = (Q, \Sigma, \delta, q_0, F)$ for

$Q = \{q_0, q_1\}$ $F = \{q_1\}$	$\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$
$\sum = \{0, 1\}$	$\delta(q_1,0) = q_1,\delta(q_1,1) = q_0$

DFA

The extended transition function

Given M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

 $\delta^*: Q \times \Sigma^* \longrightarrow Q$

inductively, by:

 $\delta^*(q, \epsilon) = q$ and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

Definition

The language recognised / accepted by a deterministic finite automaton M = $(Q, \Sigma, \delta, q_0, F)$ is

 $L(M) = \{w \in \Sigma^* | \ \delta^*(q_0, w) \in F\}$

 $\ln M_{1,} \delta^{*}(q_{0}, 110010) = q_{1}$

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$