Other equivalences with quantifiers

Monotonicity of quantifiers

$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\forall_x [P:Q] \Rightarrow \forall_x [P:R]) \stackrel{val}{=} T$$
$$\forall_x [P:Q \Rightarrow R] \Rightarrow (\exists_x [P:Q] \Rightarrow \exists_x [P:R]) \stackrel{val}{=} T$$

tautologies

Lemma E1: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology. Lemma W4: $P \models Q$ iff $P \Rightarrow Q$ is a tautology. Lemma W5: If $Q \models R$ then $\forall_x [P:Q] \models \forall_x [P:R]$.

Derivations / Reasoning

Limitations of proofs by calculation

Proofs by calculation are formal and well-structured, but often undirected and not particularly intuitive.

Example

An example of a mathematical proof

Thanks to Bas Luttik

Exposing logical structure

Single inference rule

Q is a correct conclusion from n premises $P_1, ..., P_n$ iff $(P_1 \land P_2 \land ... \land P_n) \stackrel{val}{\vDash} Q$

Derivation

 $\begin{array}{l} Q \text{ is a correct conclusion from n premises } P_1, \dots, P_n \\ & \quad \text{iff} \\ \left(P_1 \wedge P_2 \ \wedge \dots \wedge P_n\right) \stackrel{\text{val}}{\vDash} Q \end{array}$

a formal system based on the single inference rule for proofs that closely follow our intuitive reasoning

Conjunction elimination

Implication elimination

Conjunction introduction

Implication introduction

Negation introduction

Negation elimination

F introduction

F elimination

Double negation introduction

Double negation elimination

Proof by contradiction

Proof by contradiction

