Other equivalences with
quantifiers

Monotonicity of quantifiers

V.[P:Q = R] = (V,[P:Q] = V,[P:R]) Y T
V.|P:Q = R| = (3.|P:Q| = 3.|P:R]) vt

- J
tautologies

LemmaEl: P2 Qiff P < Q is a tautology.
val still hold (in

LemmaW4: P = Q iff P = () is a tautology. [N

val val

LemmaW5: If Q = R then V,|P:Q| = V.|P:R].




Derivations / Reasoning



Limitations of proofs by
calculation

Proofs by calculation are formal and well-structured, but
often undirected and not particularly intuitive.

g )
P A (PVQ) = (PVF) A(PVQ)

val

= Pv(F AQ)

=PvF more intuitively by

va .
=P reasoning
N y

we can prove this

Conclusions

[ PA(PVQ)ZP PA(PVQ) & PET J




An example of a mathematical
proof

" N —
If x is odd than

The

and 2y y € Z.

So,- and we have a-




Exposing logical structure

Proof Let xe 7

If x2 is even, then x is even (x € Z).

2

Assume X“ is even.

Assume that x is odd.

Then x = 2y+| for some y ¢ Z.

Then x? = 2y+1)2 =4y + 4y + | =
2(2y? + 2y) + | and 2y% + 2y € Z.

So, x% is odd

a contradiction.
So, X is even

Thanks to Bas Luttik



Single inference rule

Q is a correct conclusion from n premises Py, .., P,

iff |
(PiA P2 A...A Py) =Q

val

If n=0,then Py AP A... AP,=T

val

Note thatT = Q means that Q =T Q holds

unconditionally




Derivation

a formal system

based on the single
Q is a correct conclusion from n premises Py, .., P, inference rule

iff » for proofs that closely
(PiIA P2 A...A PR) EQ follow our

Intuitive reasoning

Two types of inference rules:
(particularly useful)

elimination rules instances of the single
inference rule

introduction rules



Conjunction elimination

How do we use a conjunction in a proof?

\

-
| 1]
(k)  PAQ
1]
{r-elim on (K))
L (m) P

J

(k < m)

e
[|]]
(k) PAQ
[|1]
{An-elim on (k)}
Q
Nk y
(k < m)



Implication elimination

How do we use an implication in a proof? P=Q & 2
(k) P=Q
Inl
) P

1]
{=-elim on (k) and (l)}

k(m) Q )

(k <m,| <m)




Conjunction introduction

How do we prove a conjunction?

4 N

(k) P
) Q

{/;.-i.ntro on (k) and (1)}

(m) PAQ
\ %

(k <m,| <m)




Implication introduction

How do we prove an implication?

-

o

{A.s..sume}
(k) | P
(-Dl Q

{=-intro on (k) and (I-1)}
() P=Q

/

truly new
and
necessary for

reasoning with
hypothesis




Negation introduction

How do we prove a negation!?

4 )
{Assume}
(k) | P
(I-1)] F
{=-intro on (k) and (I-1)}
() =P

- /




Negation elimination

How do we use a negation in a proof!

4 )
1]

(ky P
Inl

) P

1]
{=-elim on (k) and (l)}
(m) F
- /

(k <m,| <m)




F introduction

How do we prove F!

4 )
(k) P
) P
{iz.-.intro on (k) and (1)}
(m) F
- /

(k <m,| <m)




F elimination

How do we use F in a proof?

it’s very useful!

/ \ val
1]

(k) F

{F-elim on (k)}
(m) P

- /

(k < m)




Double negation introduction

How do we prove !

4 )
(k) P
{.-.I.-I-intro on (k)}
(m) P
- /

(k < m)



Double negation elimination

How do we use =171 in a proof?

4 )
1]

(g =P

{7—-elim on (k)}
(m) P

- /

(k < m)




Proof by contradiction

Let xe 7

If x2 is even, then x is even (x € Z).

Proof

2

Assume X“ is even.

Assume that x is odd.

Then x = 2y+| for some y ¢ Z.

Then x? = 2y+1)2 =4y + 4y + | =
2(2y? + 2y) + | and 2y% + 2y € Z.

So, x% is odd

a contradiction.
So, X is even

Thanks to Bas Luttik



Proof by contradiction

How do we prove P by a contradiction!?

-P = FE--PEP

4 N
{Assume}
(k) | =P
(I-1)| F
{=-intro on (k) and (I-1)}
() =P
{7—1-elim on (1)}
(I+1) P
- /

(k < m)



