## Special functions



## Simple characterisations

Lemma II: A function f:A  $\longrightarrow$  B is injective iff for all  $b \in B$ ,  $|f^{-1}(\{b\})| \leq 1$ .

at most one incoming arrow injection

Lemma SI: A function f:A  $\longrightarrow$  B is surjective iff  $|f^{-1}(\{b\})| \ge I \text{ for all } b \in B \text{ iff} \text{ at least one incoming arrow } f(A) = B.$ 

Lemma BI: A function f:A  $\longrightarrow$  B is bijective iff  $|f^{-1}(\{b\})| = I \text{ for all } b \in B \text{ iff}$  exactly one incoming arrow bijection

## Some properties

Lemma I2: Let  $f:A \longrightarrow B$  be injective and let  $A' \subseteq A$ . Then  $f(x) \in f(A')$  iff  $x \in A'$ . if holds always! Prop. I3: Let  $f:A \longrightarrow B$  be injective and let  $A' \subseteq A$ . Then  $f^{-1}(f(A')) = A'$ .

**Prop. S2:** Let  $f: A \longrightarrow B$  be surjective and let  $B' \subseteq B$ . Then  $f(f^{-1}(B')) = B'$ .

### Inverse function



Lemma B2: The inverse function f<sup>-1</sup> for a bijection f is bijective.

## Function composition



### Function composition

Let 
$$f: A \longrightarrow B$$
 and  $g: B \longrightarrow C$ 

 $\begin{array}{c} \text{``after''} \\ g \circ f \colon A \longrightarrow B \longrightarrow C \end{array}$ 

Def. The composition  $g \circ f$  is a function  $g \circ f : A \longrightarrow C$  given by  $g \circ f(a) = g(f(a))$ , for  $a \in A$ .

Lemma I4: Let  $f: A \longrightarrow B$  and  $g: B \longrightarrow C$  be injective. Then  $g \circ f$  is injective.

Lemma S3: Let f:A  $\longrightarrow$  B and g: B  $\longrightarrow$  C be surjective. Then  $g \circ f$  is surjective.

Corollary B2: Let f:  $A \longrightarrow B$  and g:  $B \longrightarrow C$  be bijective. Then so is  $g \circ f$ .

# A characterization of bijections



## Equality of functions

Let  $f: A \longrightarrow B$  and  $g: C \longrightarrow D$ 

Def. The functions f: A  $\rightarrow$  B and g: C  $\rightarrow$  D are equal iff (1) A = C (2) B = D (3) for all a  $\in$  A, f(a) = g(a). cod f = cod g

## The structure of natural numbers

is helpful for proving properties  $\forall n[n \in \mathbb{N}: P(n)]$ 

## The structure of natural numbers

On natural numbers we can define a notion of a successor, a mapping

 $s:\mathbb{N}\to\mathbb{N}$ 

by s(n) = n+1

The successor mapping imposes a structure on the set that enables us to count:

- I) there is a starting natural number 0
- 2) for every natural number n, there is a next natural number s(n) = n+1.

### (Some) Peano Axioms

#### Important properties

(1) Different natural numbers have different successors:

 $\forall n,m \ [n,m \in \mathbb{N} : s(m) = s(n) \Rightarrow m = n]$  stated positively s is injective!

(2) 0 is not a successor:  $\forall n \ [n \in \mathbb{N} : \neg (s(n) = 0) ]$ 

(3) All natural numbers except 0 are successors:

 $\forall n[n \in \mathbb{N} \land \neg(n = 0) : \exists m[m \in \mathbb{N} : n = s(m)]$ 

### There is more to it - induction

Imagine an infinite sequence of dominos



If we know that

- I.  $D_0$  falls
- 2. The dominos are close enough together so that if  $D_i$  falls, then  $D_{i+1}$  falls (for all  $i\in\mathbb{N})$

Then we can conclude that every domino  $D_n$  ( $n \in \mathbb{N}$ ) falls!





#### Induction



#### Inductive definitions

