Special functions

Def. A function f:A — B is injective iff
for all a,b € A, if f(a) = f(b) then a = b.

A « B

Def. A function A — B is surjective iff
for all b € B, there exists a € A such that f(a) = b.

A . B
Def. A function f:A — B is bijective iff
for all b € B, there exists unique a € A with f(a) = b.



Simple characterisations

Lemma |l: A function LA — B is injective iff (e
for allb e B, [f'({b})| < I.

Lemma S1: A function ;A — B is surjective iff

‘f-l({b})l > | forallbe B iff at least one incoming arrow
f(A) = B.

Lemma Bl: A function f: A — B is bijective iff

‘f'l({b})‘ = | forall b - . exactly one incoming arrow
f is both injective and surjective.



Some properties

Lemma I2: Let A — B be injective and let A’ C A. Then

f(x) € f(A) '

Prop. 13: Let A — B be injective and let A’ C A. Then
f-L(f(A)) = A

Prop.S2: Let f:A — B be surjective and let B’ C B. Then
f(f-'(B")) = B".



Inverse function

Let A — B bea

well defined only if f is bijective!
® ®
AL =><, B

® > ®

Def. The inverse function f':B — A is defined as
f-l(b) =a iff f(aQ)=b, be B.

Lemma B2: The inverse function f-! for a bijection f is bijective.



Function composition

Llet A — BandgB — C




Function composition

“after”
letfA— andg — C gof:A—B—C

Def. The composition g of is a function g sf :A — C given by
g of (a) = g(f(a)), for a e A.

Lemma [4: Let ;A — B and g:B — C be injective. Then
g of is injective.

Lemma S3: Let A — B and g:B — C be surjective.Then
g of is surjective.

Corollary B2: Letf: A— B and g:B — C be bijective. Then so is g O f.



A characterization of
bijections

Theorem B3: A function f:A — B is bijective iff

there exists a function g: B — A with
gof=idaandfo g =idg.

ida: A — A,

ida(a) = a, forallaeA




Equality of functions

Let:A— Band g C — D

Def. The functions A — B and g: C — D are equal iff

(2) B=D

(3) forjalla € A, f(a) = g(a).

codf=codg




The structure of natural
numbers




The structure of natural
numbers

On natural numbers we can define a notion of a successor; a mapping

s:IN = [N
by s(n) = n+1

The successor mapping imposes a structure on the set that enables us to
count:

|) there is a starting natural number O
2) for every natural number n, there is a next natural number s(n) = n+1.



(Some) Peano Axioms

Important properties
(1) Different natural numbers have different successors:

vn,m [n,m € N :s(m) =s(n) = m = n]

(2) O is not a successor: VYn[ne N :=(s(n) =0) ]

(3) All natural numbers except 0 are successors:

vn[ne N A(n=0):3m[m e N: n=s(m)]



There is more to it - induction

Imagine an infinite sequence of dominos

If we know that

|. Do falls
2. The dominos are close enough together so that if D; falls, then Di+) falls (for

all i € N)

Then we can conclude that every domino D, (n € N) falls!




Induction

P(O) AVi[ie N: P(i) = P(i+l)] = vn[ne N: P(n)]

Variant of the Peano Axiom:
Let K € N have the property that

(a) 0 e Kand
(b) forallne N,ne K= (ntl) e K.

_Then K = I\. )




Induction

P(O) AVi[ie N: P(i) = P(i+l)] = vn[ne N : P(n)]

" P
{Assume}
(k) |vari;ie N
(k+1)| | P(i)
(I-1) | | P(i+1)
{=-intro on (k+1) and (I-1)}
(1) P(i) = P(i+1)

{V-intro on (k) and (1)} Induction ste
(I+1) vi[li € N : P(i) = P(i+1)] P

{induction on (m) and (I+1)}
\_ (I+2) vn[n € N : P(n)]




Inductive definitions

Inductive proof: truth is passed on

well defined by induction
Inductive definition: construction is passec

The sequence of real numbers (ai | i € IN) is

defined inductively by
ap =2
ai+| = 2ai - |

proof by induction

For all n € N it holds that

an = 2"+|



