
Special functions

Def.  A function f: A ⟶ B is injective iff  	
                     for all a, b ∈ A, if f(a) = f(b) then a = b.

A B

A B

Def.  A function f: A ⟶ B is surjective iff  	
                     for all b ∈ B, there exists a ∈ A such that f(a) = b.

Def.  A function f: A ⟶ B is bijective iff  	
                     for all b ∈ B, there exists unique a ∈ A with f(a) = b.



Simple characterisations

Lemma I1:  A function f: A ⟶ B is injective iff  	
                    for all b ∈ B,  |f-1({b})| ≤ 1.

Lemma S1:  A function f: A ⟶ B is surjective iff  	
                     |f-1({b})| ≥ 1  for all b ∈ B  iff 	
                     f(A) = B.

Lemma B1:  A function f: A ⟶ B is bijective iff 	
                    |f-1({b})| = 1 for all b ∈ B    iff	
                    f is both injective and surjective.

at most one incoming arrow	
injection

at least one incoming arrow	
surjection

exactly one incoming arrow	
bijection



Some properties

Lemma I2:  Let f: A ⟶ B be injective and let A’ ⊆ A.  Then  	

                    f(x) ∈ f(A’) iff x ∈ A’.

Prop.  I3:     Let f: A ⟶ B be injective and let A’ ⊆ A.  Then  	

                     f-1(f(A’)) = A’.

Prop. S2:     Let f: A ⟶ B be surjective and let B’ ⊆ B.  Then 	

                    f(f-1(B’)) = B’.

if holds always!



Inverse function

Def.    The inverse function f-1: B ⟶ A is defined as 	

                    f-1(b) = a  iff   f(a) = b,   b ∈ B.

Let f:A ⟶ B be a bijection

A B

well defined only if f is bijective!

Lemma B2:  The inverse function f-1 for a bijection f is bijective.



Function composition
Let f: A ⟶ B and g: B ⟶ C



Function composition
Let f: A ⟶ B and g: B ⟶ C

Def.    The composition g ￮ f is a function g ￮ f : A ⟶ C given by 	
                    g ￮ f (a) = g(f(a)),  for a ∈ A.

“after” 	
g ￮ f :  A ⟶ B ⟶ C 

Lemma I4:  Let f: A ⟶ B and g: B ⟶ C be injective. Then  	
                    g ￮ f  is injective.

Lemma S3:  Let f: A ⟶ B and g: B ⟶ C be surjective. Then  	
                    g ￮ f  is surjective.

   Corollary B2:   Let f:  A ⟶ B and g: B ⟶ C be bijective. Then so is g ￮ f.



A characterization of 
bijections

Theorem B3:  A function f: A ⟶ B is bijective iff  	

                    there exists a function g: B ⟶ A with	
                                 g ￮ f = idA and f ￮ g = idB. 

 idA:  A ⟶ A,	
idA(a) = a,   for all a ∈ A 



Equality of functions
Let f: A ⟶ B and g: C ⟶ D

Def.    The functions f: A ⟶ B and g: C ⟶ D are equal iff 	
                    (1)  A = C	
                    (2)  B = D	
                    (3)  for all a ∈ A,  f(a) = g(a).

dom f = dom g 

cod f = cod g 



The structure of natural 
numbers

is helpful for proving 
properties 	

∀n[n∈N: P(n)]



The structure of natural 
numbers

if y is not free in P and Q

On natural numbers we can define a notion of a successor, a mapping	
!
s: N → N	
!
by s(n) = n+1	
!
!
The successor mapping imposes a structure on the set  that enables us to 
count:	
!
1) there is a starting natural number 0	
2) for every natural number n, there is a next natural number s(n) = n+1. 	



(Some) Peano Axioms

if y is not free in P and Q

Important properties	
!
(1) Different natural numbers have different successors:	
!
∀n,m [n,m ∈ N : s(m) = s(n) ⇒ m = n]	 stated positively

s is injective!

!
(2) 0 is not a successor:  ∀n [n ∈ N : ¬ (s(n) = 0) ]	

!
(3) All natural numbers except 0 are successors:	
!
∀n[n ∈ N ∧ ¬(n = 0) : ∃m[m ∈ N :  n = s(m)]	



There is more to it - induction
Imagine an infinite sequence of dominos

D0 D1 D2 Di+1Di

If we know that	
1. D0 falls	
2. The dominos are close enough together so that if Di falls, then Di+1 falls (for 

all i ∈ N)	

Then we can conclude that every domino Dn (n ∈ N) falls!

induction



Induction

if y is not free in P and Q

!
!
P(0) ∧ ∀i [i ∈ N :  P(i) ⇒ P(i+1)]  ⇒ ∀n [n ∈ N :  P(n)]	

P - unary predicate 
over N

P(0)	
P(0) ⇒ P(1)	

P(1)	
P(1) ⇒ P(2)	

P(2)	
P(2) ⇒ P(3)	

…

Variant of the Peano Axiom: 	
Let K ⊆ N have the property that 	

(a) 0 ∈ K and 	
(b) for all n ∈ N, n ∈ K ⇒ (n+1) ∈ K.  	

Then K = N. 

∀ elim 
with 0

⇒ elim



Induction

if y is not free in P and Q

!
!
P(0) ∧ ∀i [i ∈ N :  P(i) ⇒ P(i+1)]  ⇒ ∀n [n ∈ N :  P(n)]	 P - unary predicate 

over N
           …	
 (m)   P(0)	
         {Assume}	
(k)     var i; i ∈ N	
(k+1)    P(i) 	
            …	
!
(l-1)      P(i+1)	
          {⇒-intro on (k+1) and (l-1)}	

(l)       P(i) ⇒ P(i+1)       	

         {∀-intro on (k) and (l)}	
(l+1)  ∀i[i ∈ N : P(i) ⇒ P(i+1)]	

         {induction on (m) and (l+1)}	
(l+2)  ∀n[n ∈ N : P(n)]

Basis

Induction step

induction	
 hypothesis



Inductive definitions

Inductive proof:        truth is passed on	
!
Inductive definition:  construction is passed on

well defined by induction

Example The sequence of real numbers (ai | i ∈ N) is 

defined inductively by	
            a0   = 2	
            ai+1 = 2ai - 1

Conjecture For all n ∈ N it holds that	

            an   = 2n+1

proof by induction

a a a a a …

2 3 5 9 17 …


