Transitive closure

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^* , is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

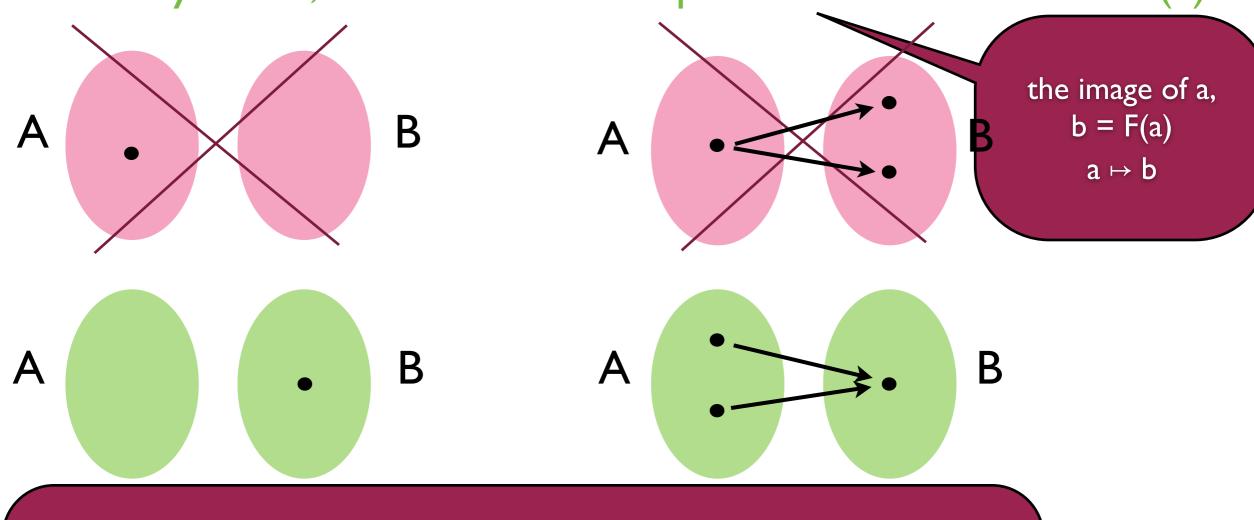
Proposition TC: Let R be a relation on X. The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive relation that contains R.

Functions, mappings

Def. If A and B are sets, then F is a function (mapping,

Abbildung) from A to B, notation F: $A \longrightarrow B$ iff

for every $a \in A$, there exists a unique $b \in B$ such that b = F(a).



 $\{(a, F(a)) \mid a \in A\}$ is the graph of the function F

Functions, mappings

When f: A \longrightarrow B then dom f = A and cod f = B

domain of F (Definitionsbereich)

codomain of F (Wertebereich)

Let $f: A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A')$

So f extends to a function f: $\mathcal{P}(A) \longrightarrow \mathcal{P}(B)$, the image-function.

Functions, mappings

Let $f: A \longrightarrow B$ and $B' \subseteq B$.

The inverse image (Urbild) of B' is the set
$$f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$$

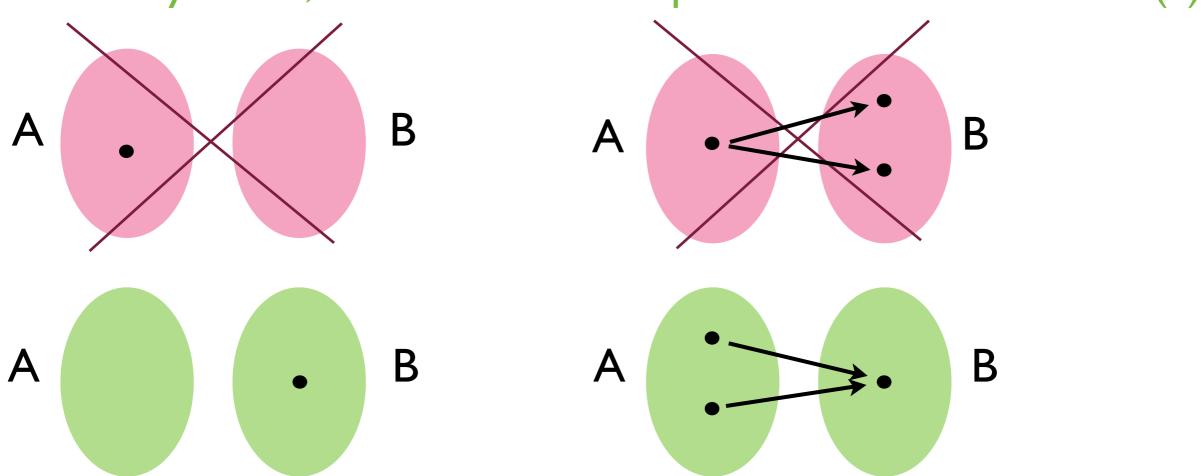
 $a \in f^{-1}(B')$ iff $f(a) \in B'$

Again the inverse image induces a function f^{-1} : $\mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

Lemma FI: Let $f: A \longrightarrow B$, $A' \subseteq A$, and $B' \subseteq B$. Then $A' \subseteq f^{-1}(f(A'))$ and $f(f^{-1}(B')) \subseteq B'$ (in general no more than this holds)

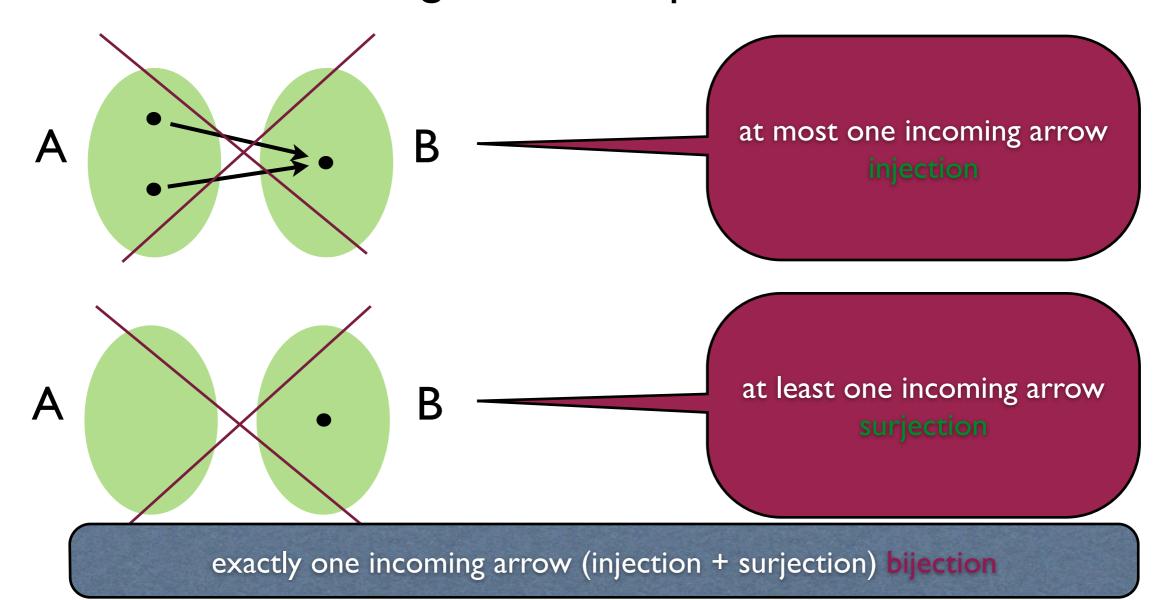
Recall...

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation $F: A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that b = F(a).



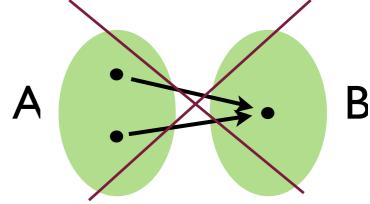
Special functions

The number of ingoing arrows for a function can be 0,1, or more. Based on this, we distinguish some special functions.



Special functions

Def. A function $f:A \longrightarrow B$ is injective iff for all $a, b \in A$, if f(a) = f(b) then a = b.



Def. A function $f:A \longrightarrow B$ is surjective iff for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Def. A function $f:A \longrightarrow B$ is bijective iff for all $b \in B$, there exists unique $a \in A$ with f(a) = b.

Simple characterisations

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma SI: A function f:A → B is surjective iff

 $|f^{-1}(\{b\})| \ge 1$ for all $b \in B$ iff f(A) = B.

at least one incoming arrow surjection

Lemma BI: A function f:A → B is bijective iff

 $|f^{-1}(\{b\})| = 1$ for all $b \in B$ iff f is both injective and surjective.

exactly one incoming arrow bijection

Some properties

- Lemma I2: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then
 - $f(x) \in f(A')$ iff $x \in A'$.

if holds always!

- Prop. I3: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f^{-1}(f(A')) = A'$.
- Prop. S2: Let $f:A \longrightarrow B$ be surjective and let $B' \subseteq B$. Then $f(f^{-1}(B')) = B'$.