

Lecturer: Dr. Ana Sokolova Instructions: Dr. Ana Sokolova + Markus Flatz

http://cs.uni-salzburg.at/~anas/Ana_Sokolova/FormaleSysteme2015/

The Rules of the Game

- Lectures Wednesday 2 pm 2:45 pm in T01 Thursday 10:15 am - 12 am in T01
- Instructions

Group I, Thursday I:15 pm - 3 pm (AS) in T01 Group 2, Thursday I:15 pm - 3 pm (MF) in T03 Group 3, Thursday I:15 pm - 3 pm (SA?) in T02

Tutors Markus Reiter and Sarah Sophie Sallinger
 Friday 12 noon - 1:30 pm in T03

starting next week

Books

Logical Reasoning: A First Course by R. Nederpelt and F. Kamaraddine

Modellierung: Grundlagen und formale Methoden by U. Kastens and H. Kleine Büning

Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani and J.D. Ullman

The Rules... Instructions (PS)

- Instruction exercises on the web <u>http://cs.uni-salzburg.at/~anas/Ana_Sokolova/</u> <u>FormaleSystemeProseminar2015/</u> on Thursday afternoons
- To be solved by the students (ideally alone)
- In class we will have a small test every week except the first week (I simple exercise) and then present solutions/discuss the exercises (sometimes students will be asked to present)

The Rules... Instructions (PS)

- The test exercise will be graded each week
- The graded exercise will be returned to you in class (with feedback)
- Grade based on
 (1) the grades of the test exercises and
 (2) activity in class (ability to present solutions)
- All information about the course / rules / exams / grading is / will be on the course webpage

The Rules... Exam (VO)

- Written exams
- Written exam in February, April, and July or two partial tests during the semester
- Grade based on the # of points on the written exam (or sum of the points on the partial tests)
- For better grade oral exam after the written one upon appointment
- You can pass the course if you have 55% of the maximal points on the exam.

The Rules... Tests (VO)

- One test end of November, one beginning of February
- The tests are partial (half material)
- You can pass via tests if the sum of your points on both tests is at least 55% of the sum of maximal points on the tests and if on each test you have at least 20% of the maximal points
- The tests and the exams consist of exercises / questions related to the material taught in class

Some advice

- It starts easy, but soon it gets more difficult
- There accumulates lots of material for the exam
- Best is to regularly study, practice, solve the exercises yourself!

Logic = study of correct reasoning

In the begining

Aristotle +/- 350 B.C.

Organon

19 syllogisms

Formal Logic

Gottfried Wilhelm Leibnitz (1646 - 1716)

Beginnings of symbolic logic

Boolean Logic

George Boole (1815 - 1864)

Boolean logic

Starting this week

- Naive Set Theory sets, relations, mappings, numbers and structures, ordered sets
- Logical Calculations propositional logic, predicate logic
- Logical Derivations reasoning
- Basics of formal models finite automata, transition systems, graphs, grammars...

Why formal models/ methods?

- For better understanding of a complex system, problem, task,... models, abstractions are needed
- For rigorous precise reasoning about a complex system, problem, task

- A man stands with a wolf, a goat, and a cabbage at the left bank of a river, that he wants to cross.
- The man has a boat that is large enough to carry him and another object to the other side.
- If the man leaves the wolf and the goat, or the goat and the cabbage on one side without supervision, one of them will get eaten :-(
- Is it possible to cross the river so that neither the goat nor the cabbage is eaten?

[Hopcroft et al, Kastens et al]

- A man stands with a wolf, a goat, and a cabbage at the left bank of a river, that he wants to cross.
- The man has a **boat** that is large enough to carry him and another object to the other side.
- If the man leaves the wolf and the goat, or the goat and the cabbage on one side without supervision, one of them will get eaten :-(
- Is it possible to cross the river so that neither the goat nor the cabbage is eaten?

- A man stands with a wolf, a goat, and a cabbage at the left bank of a river, that he wants to cross.
- The man has a **boat** that is large enough to carry him and another object to the other side.
- If the man leaves the wolf and the goat, or the goat and the cabbage on one side without supervision, one of them will get eaten :-(
- Is it possible to cross the river so that neither the goat nor the cabbage is eaten?

- A man stands with a wolf, a goat, and a cabbage at the left bank of a river, that he wants to cross.
- The man has a **boat** that is large enough to carry him and another object to the other side.
- If the man leaves the wolf and the goat, or the goat and the cabbage on one side without supervision, one of them will get eaten :-(
- Is it possible to cross the river so that neither the goat nor the cabbage is eaten?

Formalization with a finite automaton [Kastens et al.] :

states and transitions

Another model example

- A set S is a collection of different objects, the elements of S
- We write $x \in S$ for `x is an element of S'
- A set `can' be specified by

 (1) listing its elements, e.g. S = {1,3,7,18}
 (2) specifying a property, e.g. S = {x | P(x)}

P is a proposition over x, which is true or false

- Sets can be finite e.g. {♣,♥} or infinite e.g. ℕ
- The set with no elements is the empty set, notation \varnothing
- The `number' of elements in a set S is the cardinality of S, notation |S|

Sets - properties

- All elements of a set are different
- The elements of a set are not ordered
- The same set can be specified in different ways, e.g. $\{1,2,3,4\},\{2,3,1,4\},\{i\mid i\in\mathbb{N}\text{ and }0\leq i\leq5\}$

Subsets, equality

Def. A = B iff $A \subseteq B$ and $B \subseteq A$

Def. $A \subset B$ iff $A \subseteq B$ and $A \neq B$

Russell's paradox

- Let P be the set of all sets that are not an element of itself
- Hence, $P = \{ x \mid x \notin x \}$
- Is $P \in P$?
- Contradiction!

The need for a universal set U S = $\{x \mid x \in U \text{ and } P(x)\}$

Operations on sets

Def. Difference (Differenz) $A \setminus B = \{x \mid x \in A \text{ and } x \notin B\}$

Given a universal set U

ΑΑ\Β

Α

U

В

A^c

Def. Complement (Komplement) $A^c = \{x \mid x \in U \text{ and } x \notin A\}$

Properties of sets

Properties of sets

11.
$$X \cup \emptyset = X$$
12. $X \cap Y = Y \cap X$ (commutativity)13. $X \cup Y = Y \cup X$ (commutativity)14. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ (associativity)15. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ (associativity)16. $X \cap (X \cup Y) = X$ (absorption)17. $X \cup (X \cap Y) = X$ (absorption)18. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ (distributivity)19. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ (distributivity)20. $X \setminus Y \subseteq X$

Properties of sets

21.	$(X \setminus Y) \cap Y = \emptyset$
22.	$X \cup Y = X \cup (Y \setminus X)$
23.	$X \setminus X = \emptyset$
24.	$X \setminus \emptyset = X$
25.	$\emptyset \setminus X = \emptyset$
26.	If $X \subseteq Y$, then $X \setminus Y = \emptyset$
27.	$(X^c)^c = X$
28.	$(X \cap Y)^c = X^c \cup Y^c$ (De Morgan)
29.	$(X \cup Y)^c = X^c \cap Y^c$ (De Morgan)
30.	$X \times \emptyset = \emptyset \emptyset \times X = \emptyset$
31.	$\emptyset \times X = \emptyset$
32.	If $X \subseteq Y$, then $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$