Strengthening and weakening

Strengthening

Definition: The abstract proposition P is stronger than Q, notation $P \models^{al} Q$, iff always when P has truth value I, also Q has truth value I.

Strengthening

Definition: The abstract proposition P is stronger than Q, notation P ⊨ Q, iff always when P has truth value I, also Q has truth value I.

> always when P is true, Q is also true

Strengthening

Definition: The abstract proposition P is stronger than Q, notation P ⊨ Q, iff always when P has truth value I, also Q has truth value I.

> always when P is true, Q is also true

Q is weaker than P

Standard Weakenings

and-or-weakening

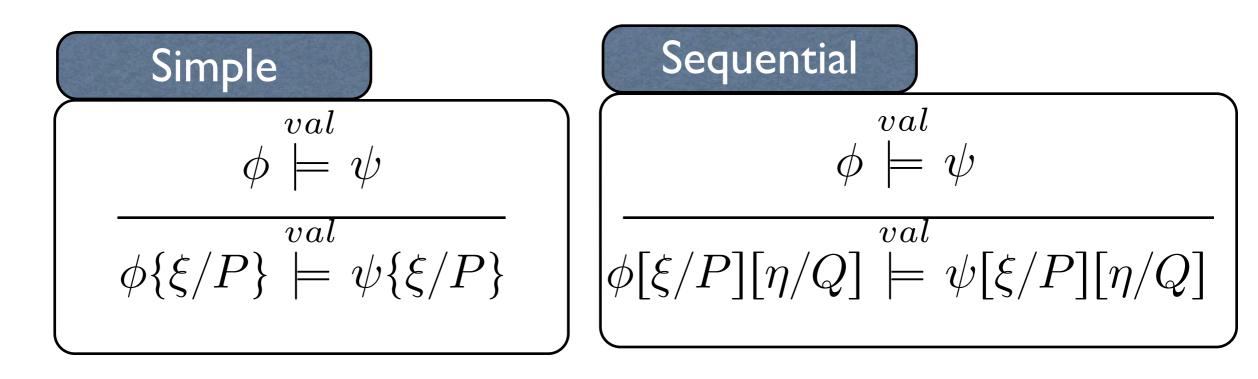
$$P \land Q \models P$$

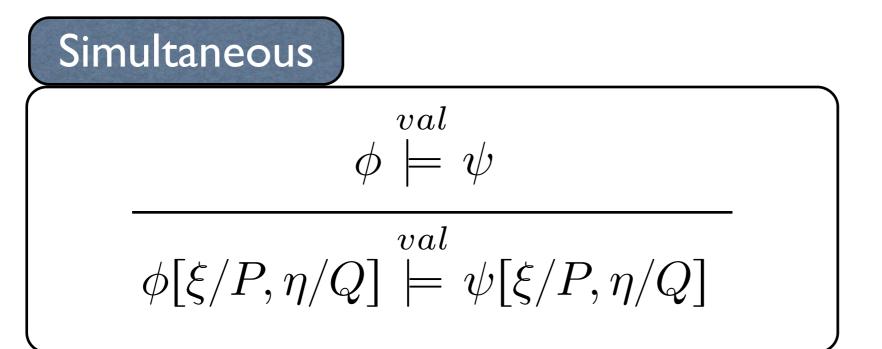
 val
 $P \models P \lor Q$

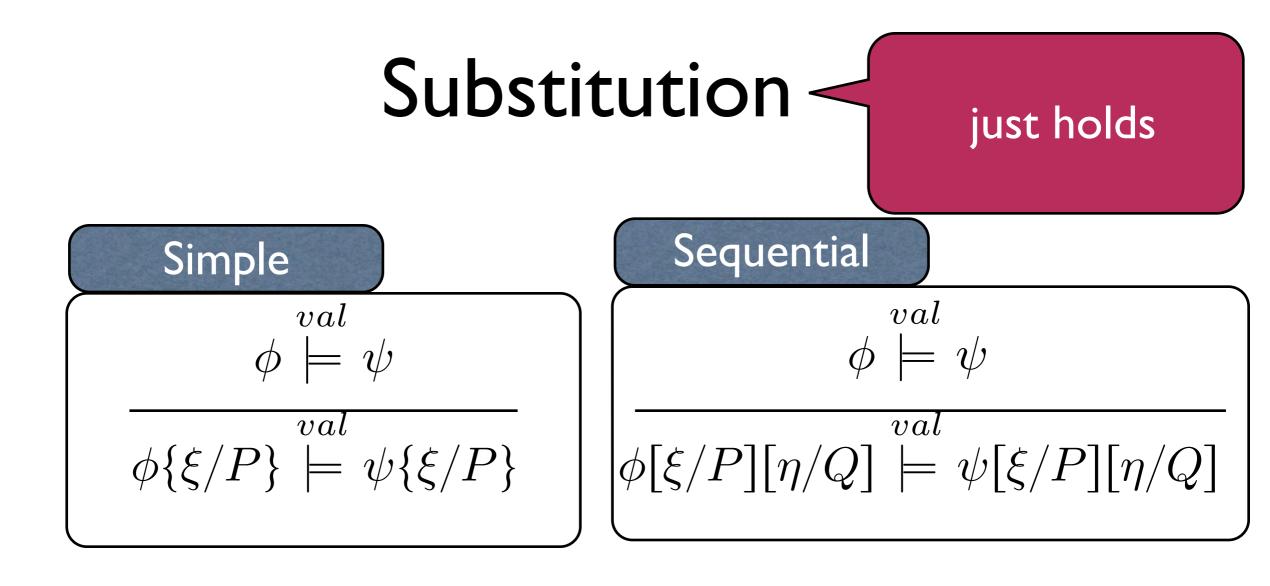
$$\begin{array}{c} \text{val} \\ F \models P \\ P \models T \end{array}$$

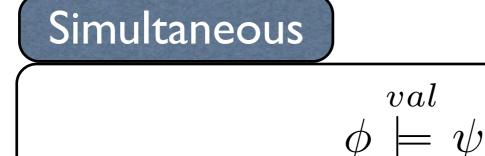
Calculating with weakenings (the use of standard weakenings)

Substitution

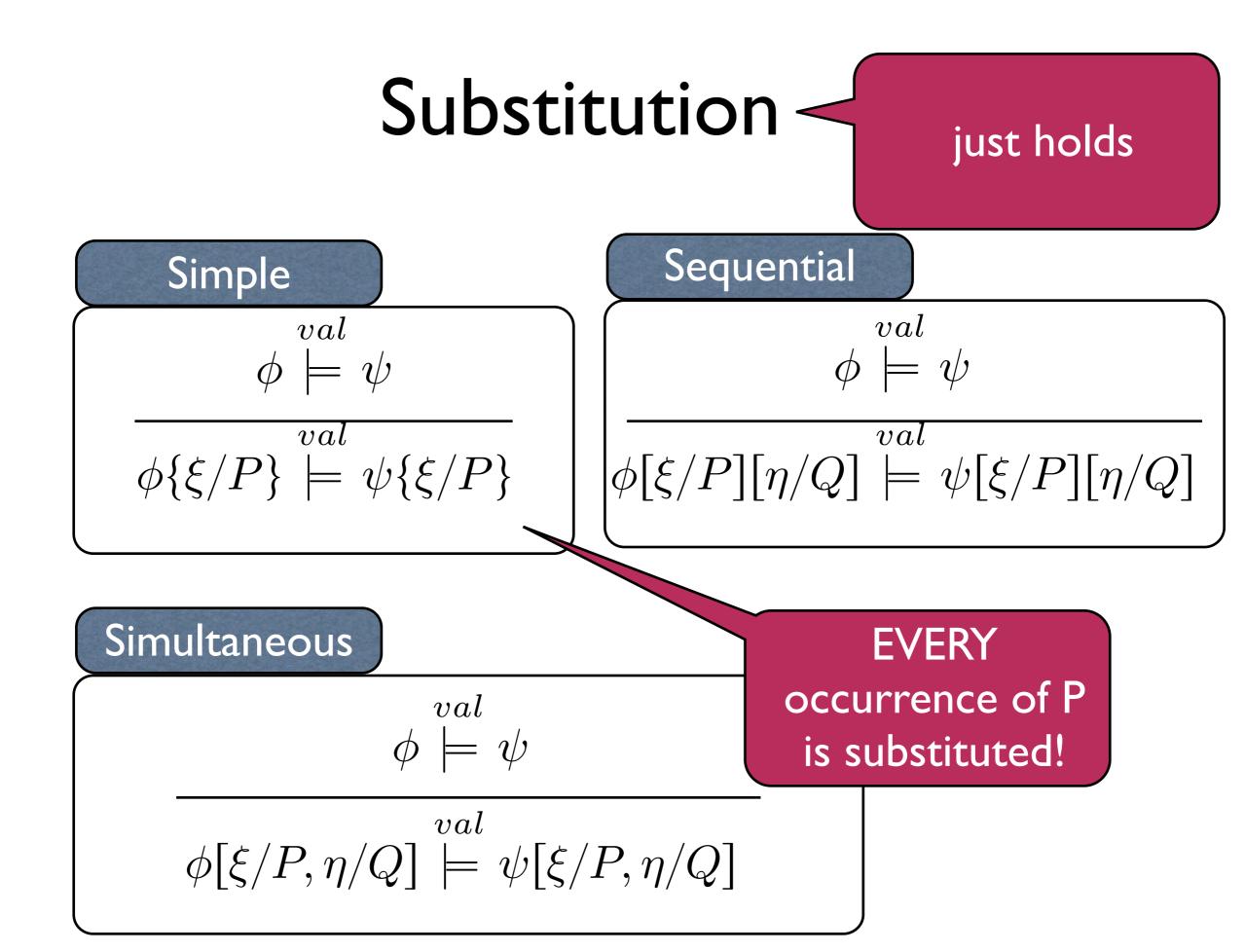


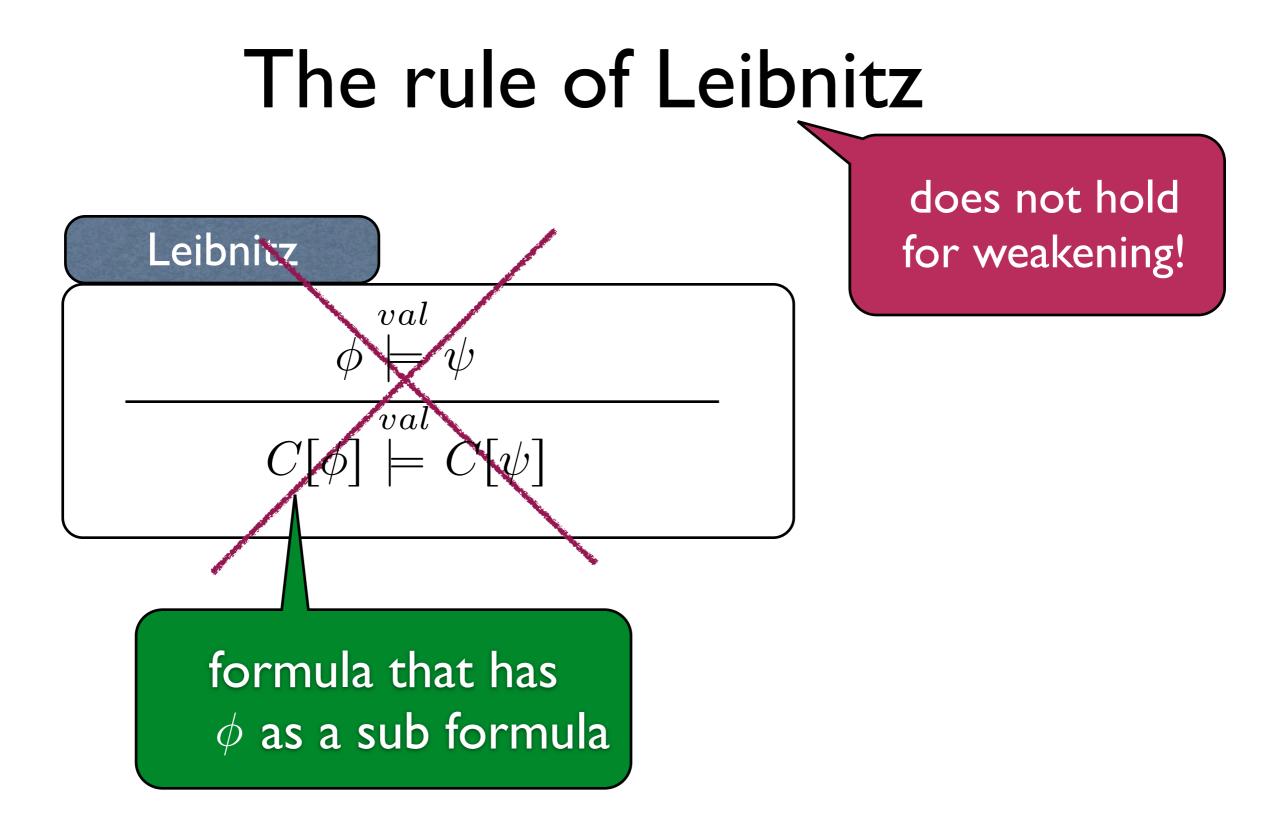






val $\phi[\xi/P,\eta/Q] \models \psi[\xi/P,\eta/Q]$







Predicate logic

Limitations of propositional logic

Propositional logic only allows us to reason about completed statements about things, not about the things themselves.

Example

Some chicken cannot fly All chicken are birds

Some birds cannot fly

this reasoning can not be expressed in propositional logic

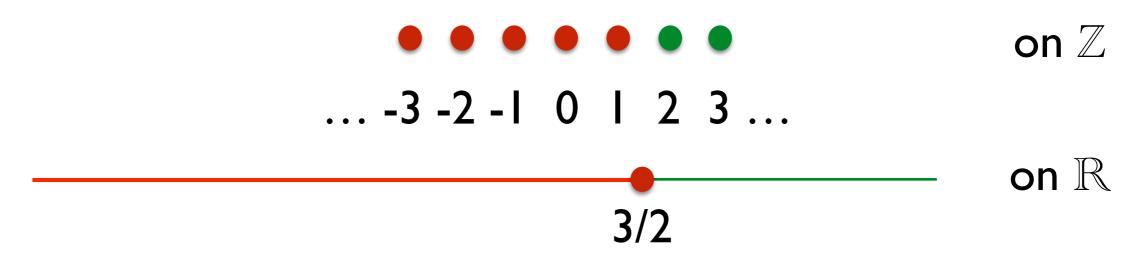
Example

Every player except the winner looses a match

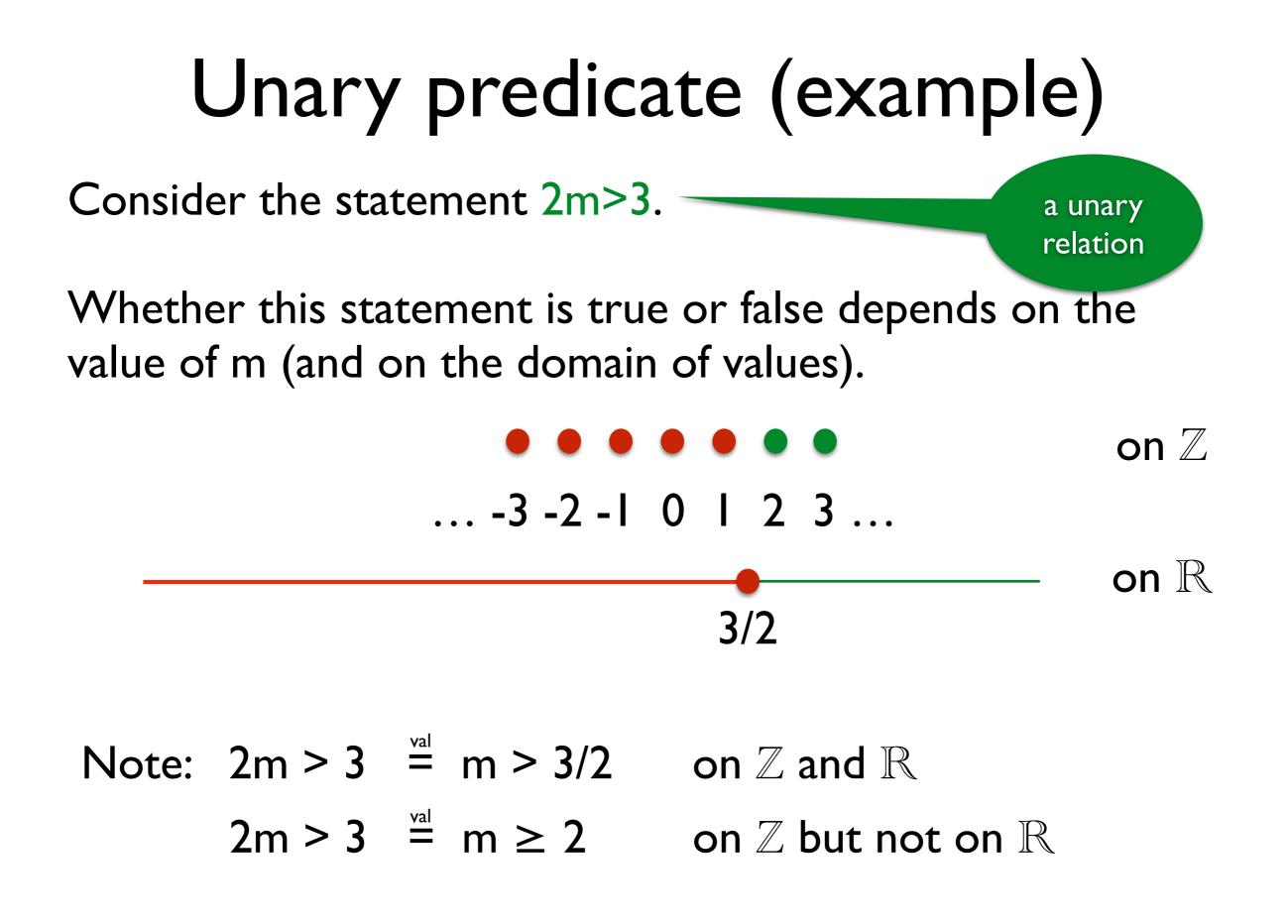
Consider the statement 2m>3.

Consider the statement 2m>3.

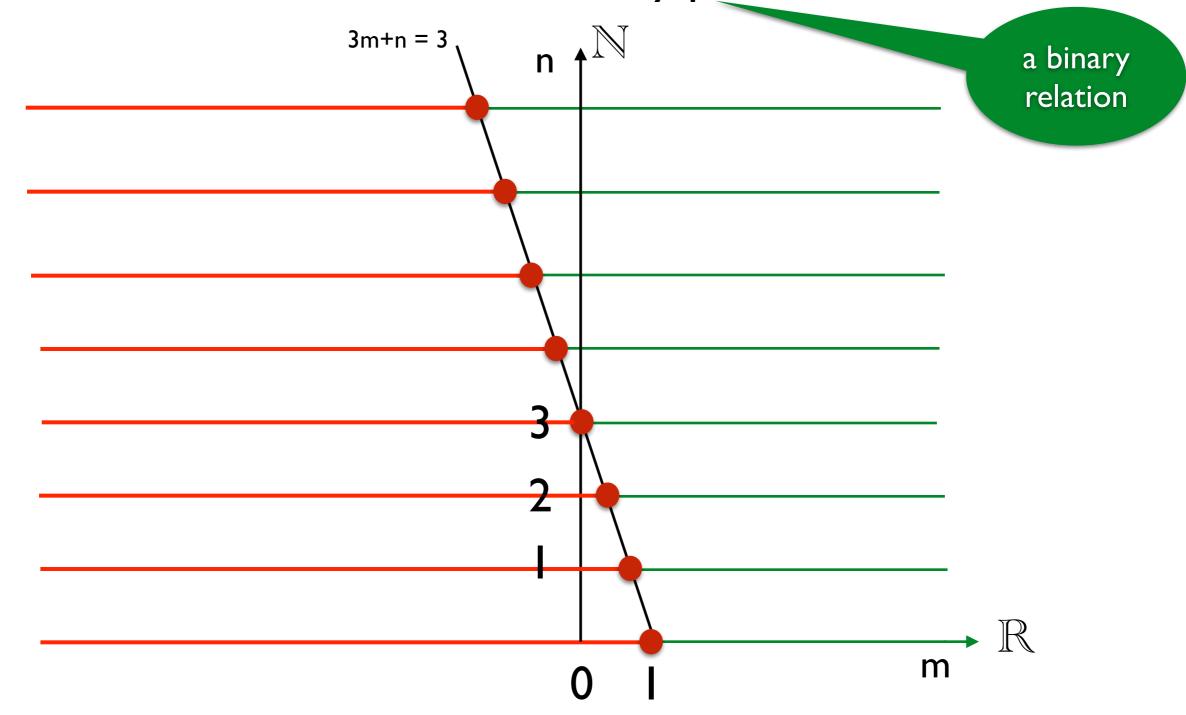
Consider the statement 2m>3.



Consider the statement 2m>3.



The statement 3m+n > 3 is a binary predicate on $\mathbb{R} \times \mathbb{N}$.



In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, .., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

true for certain values of the variables

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

true for certain values of the variables

We can turn a predicate, into a proposition in three ways:

- I. By assigning values to the variables.
- 2. By universal quantification.
- 3. By existential quantification.

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

true for certain values of the variables

We can turn a predicate, into a proposition in three ways:

I. By assigning values to the variables.

2m>3

- 2. By universal quantification.
- 3. By existential quantification.

In general, an n-ary predicate is an n-ary relation.

If it is on a domain D, then it's a relation $P(x_1, ..., x_n) \subseteq D^n$ or equivalently a function $P: D^n \rightarrow \{0, 1\}$.

true for certain values of the variables

We can turn a predicate, into a proposition in three ways:

I. By assigning values to the variables.

2m>3

- 2. By universal quantification.
- 3. By existential quantification.

for m=2 2 · 2 >3 is a true proposition

The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:

For all m in \mathbb{Z} , 2m > 3

The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:

false, e.g. for m = l For all m in \mathbb{Z} , 2m > 3

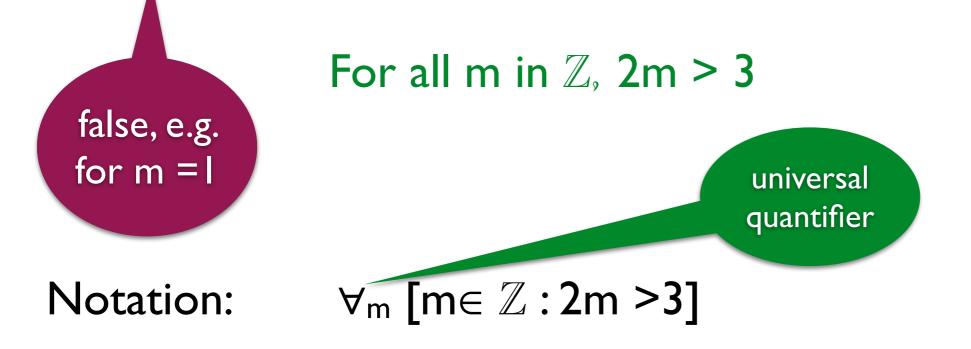
The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:

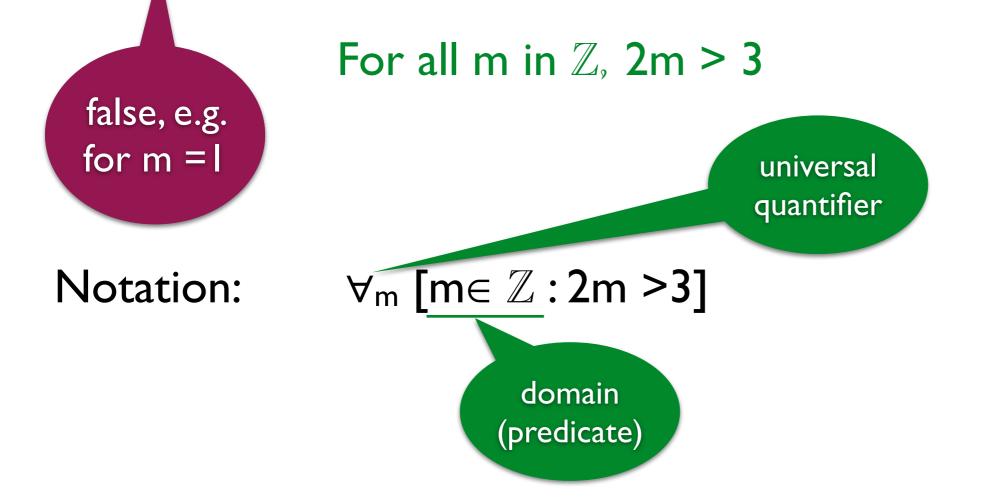
false, e.g. for m =1

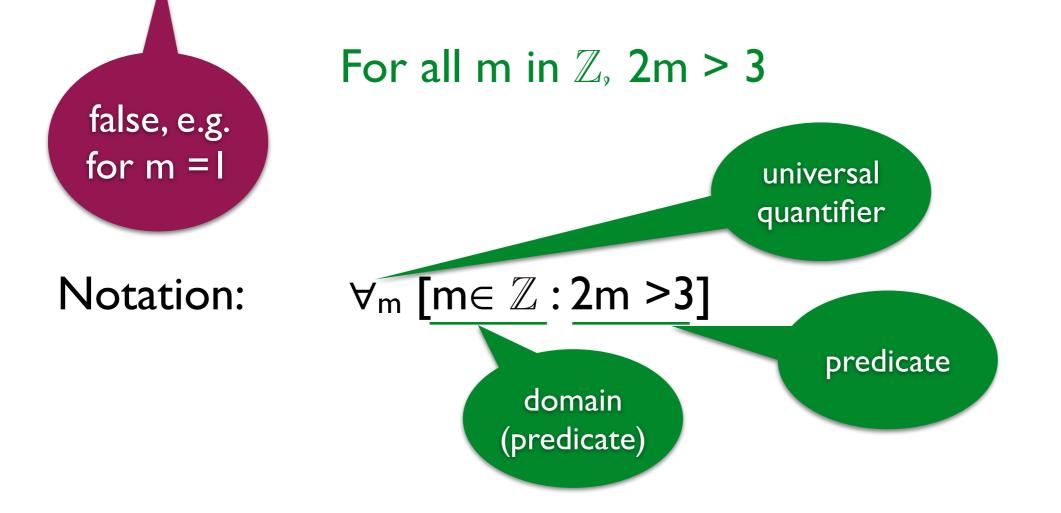
```
For all m in \mathbb{Z}, 2m > 3
```

Notation:

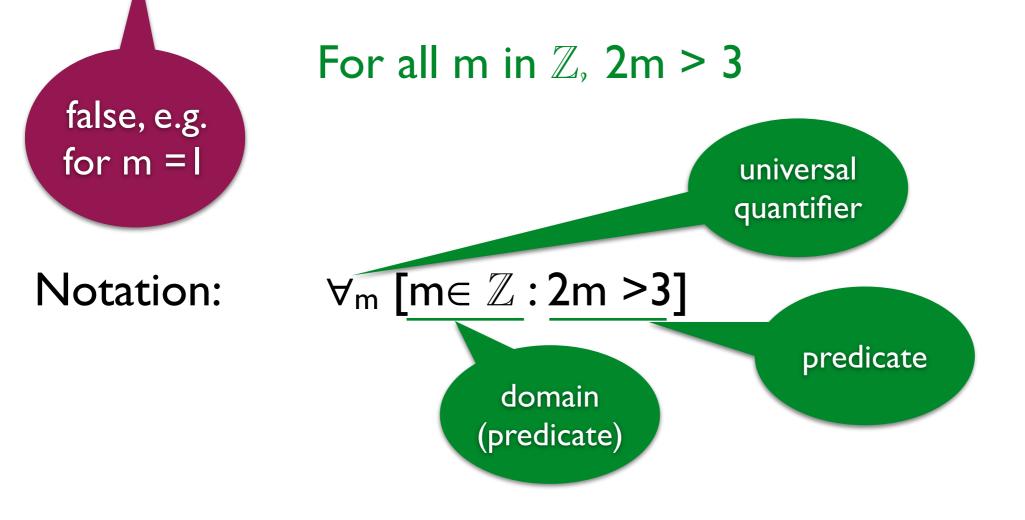
∀_m [m∈ ℤ : 2m >3]



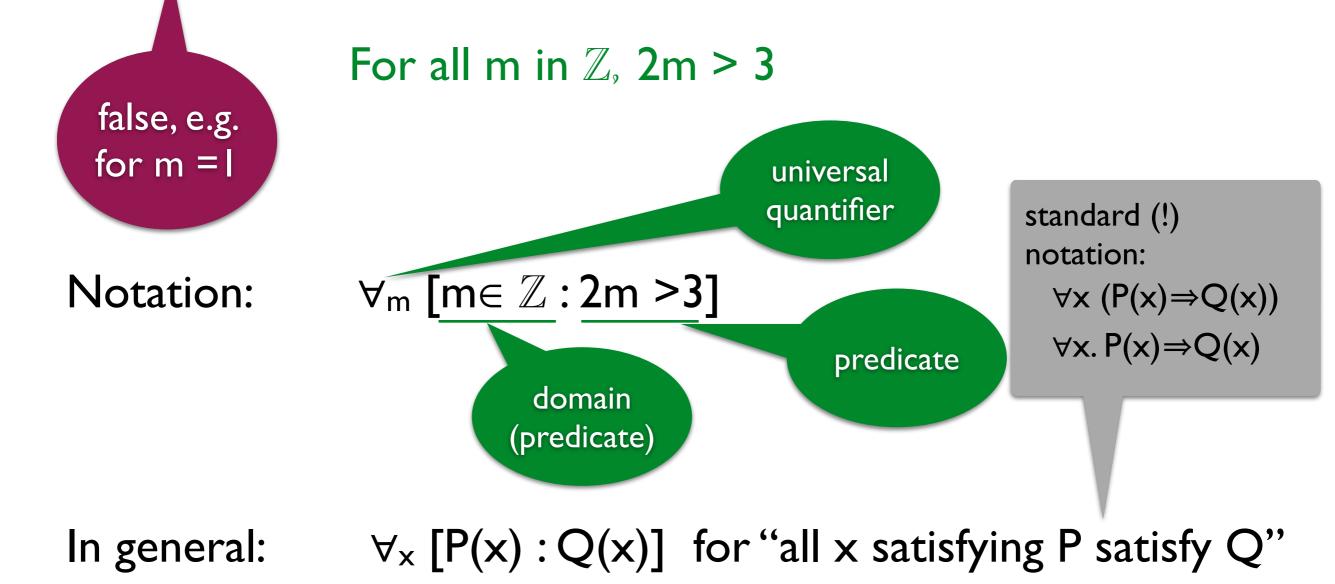




The unary predicate 2m > 3 on \mathbb{Z} can be turned into a proposition by universal quantification:



In general: $\forall_x [P(x) : Q(x)]$ for "all x satisfying P satisfy Q"



Existential quantification

Existential quantification

The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification:

There exists m in \mathbb{Z} , 2m > 3

Existential quantification

The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification:

There exists m in \mathbb{Z} , 2m > 3

true, e.g. m =2

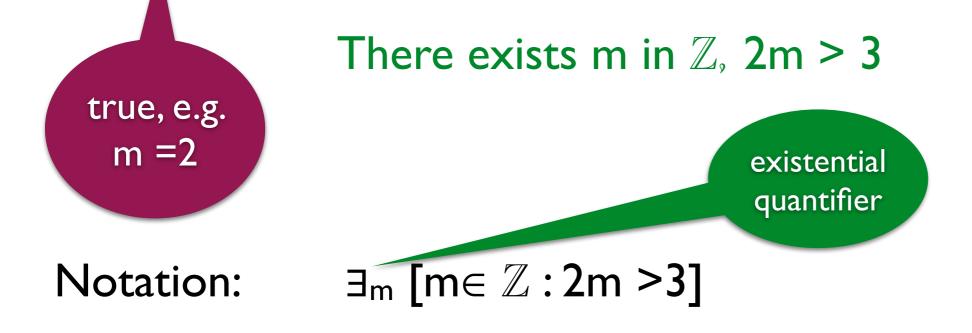
The unary predicate 2m > 3 on \mathbb{Z} can also be turned into a proposition by existential quantification:

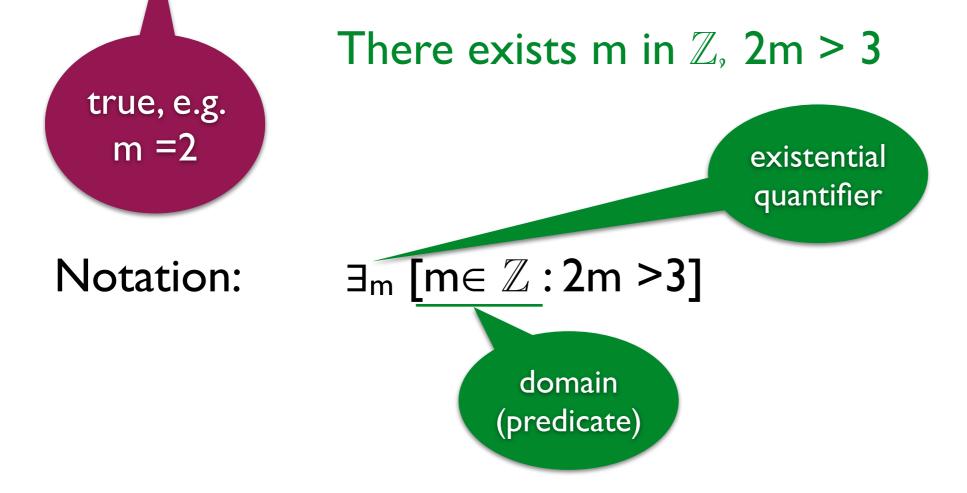
There exists m in \mathbb{Z} , 2m > 3

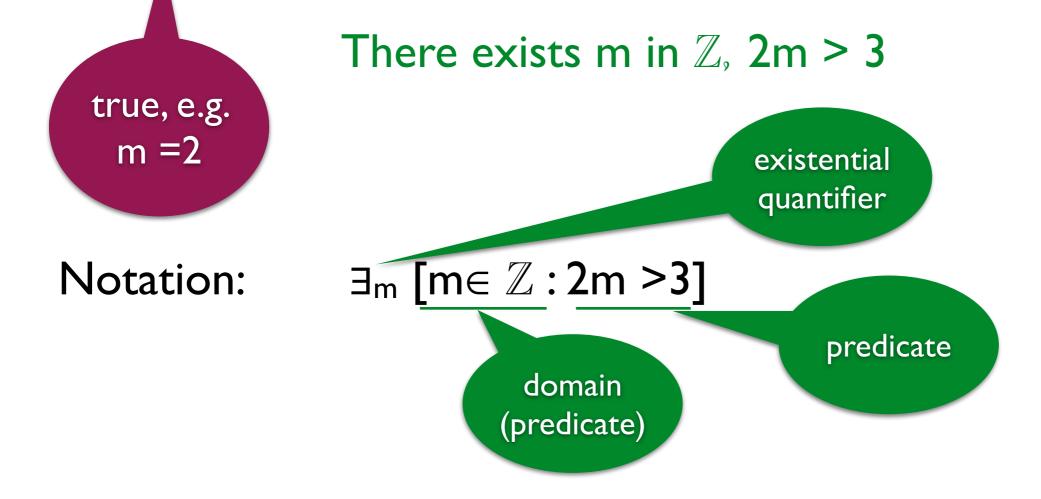
Notation: $\exists_m [m \in \mathbb{Z} : 2m > 3]$

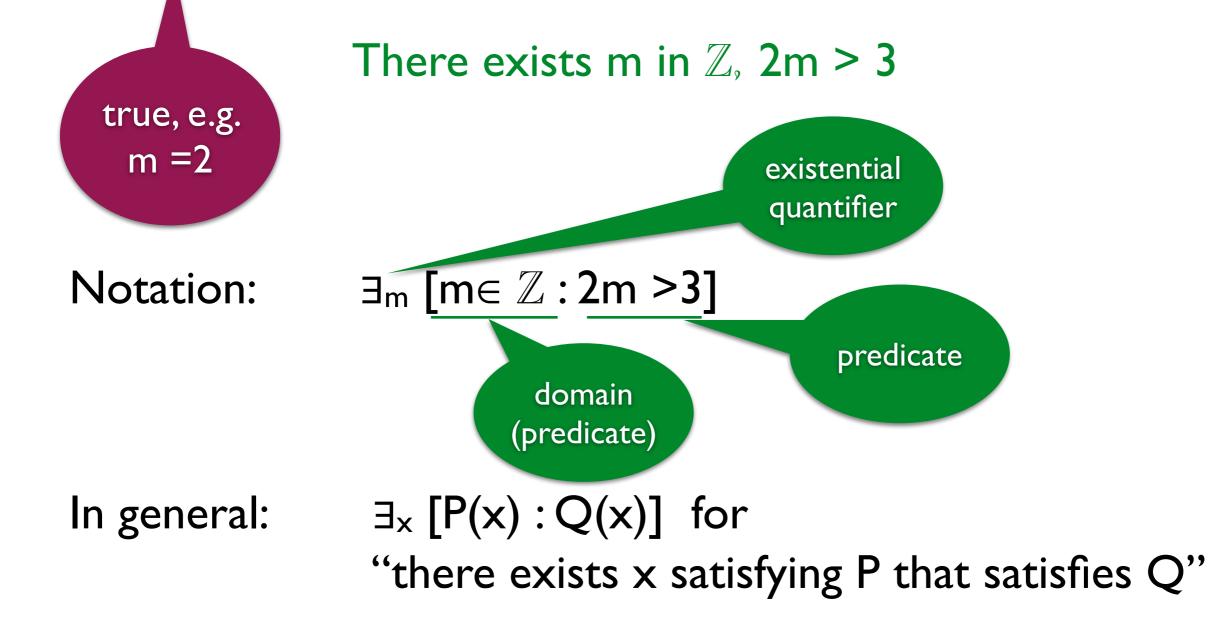
true, e.g.

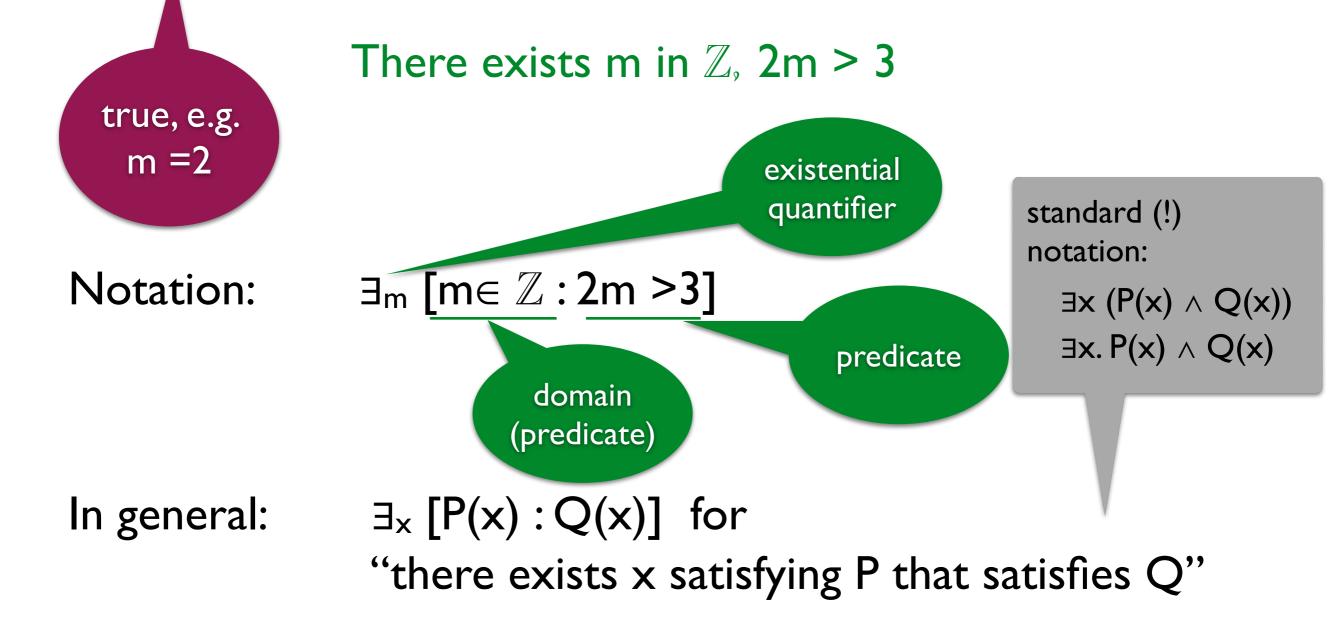
m =2











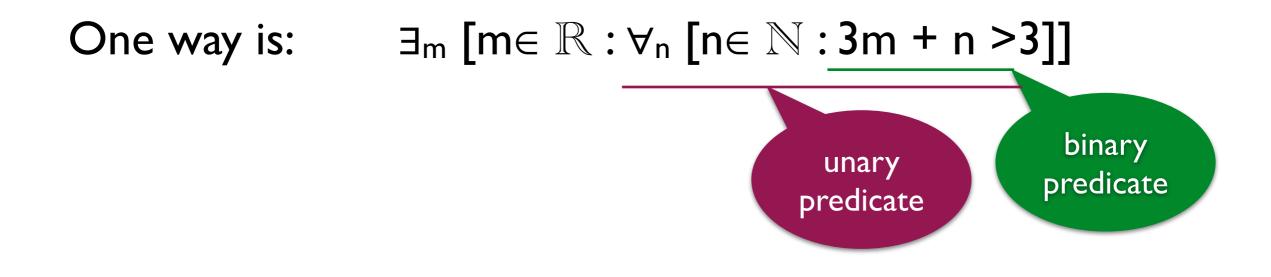
The binary predicate 3m+n > 3 on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification:

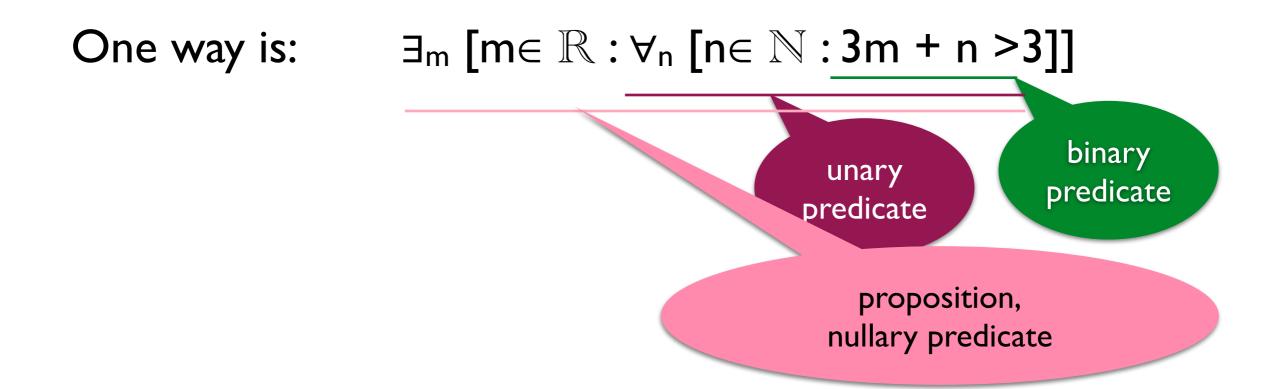
One way is: $\exists_m [m \in \mathbb{R} : \forall_n [n \in \mathbb{N} : 3m + n > 3]]$

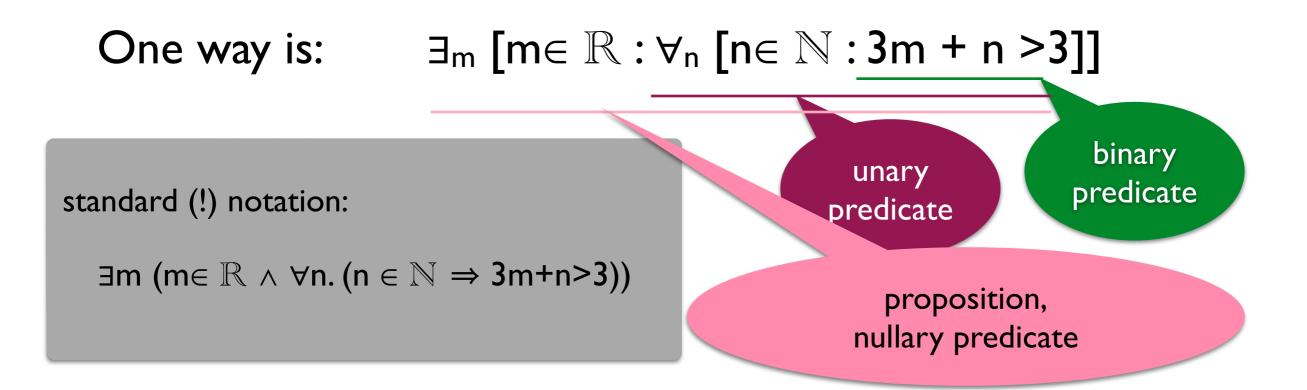
The binary predicate 3m+n > 3 on $\mathbb{R} \times \mathbb{N}$ can also be turned into a proposition by quantification:

One way is: $\exists_m [m \in \mathbb{R} : \forall_n [n \in \mathbb{N} : 3m + n > 3]]$

binary predicate





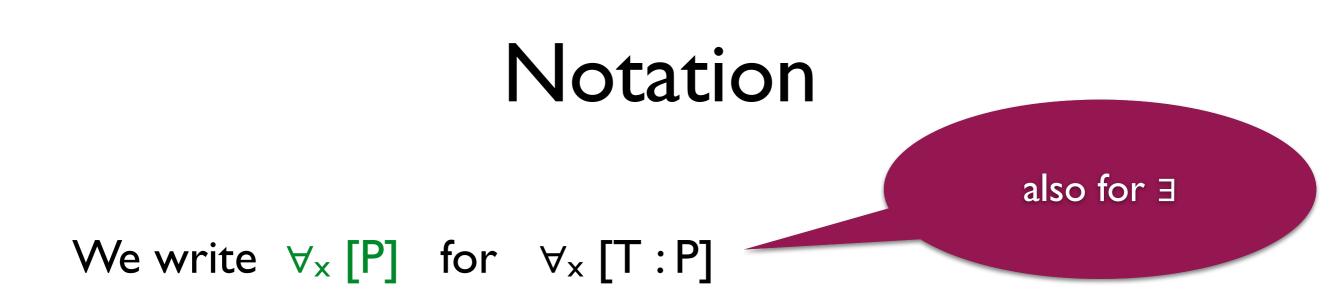


Notation

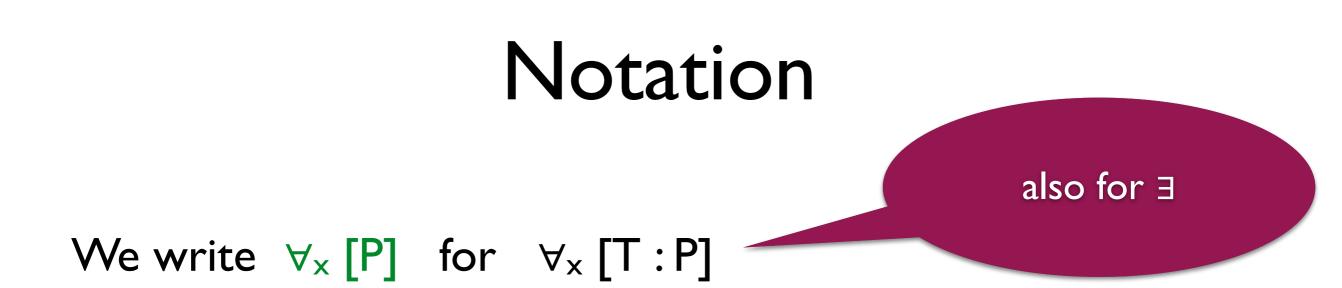
Notation

We write $\forall_x [P]$ for $\forall_x [T:P]$

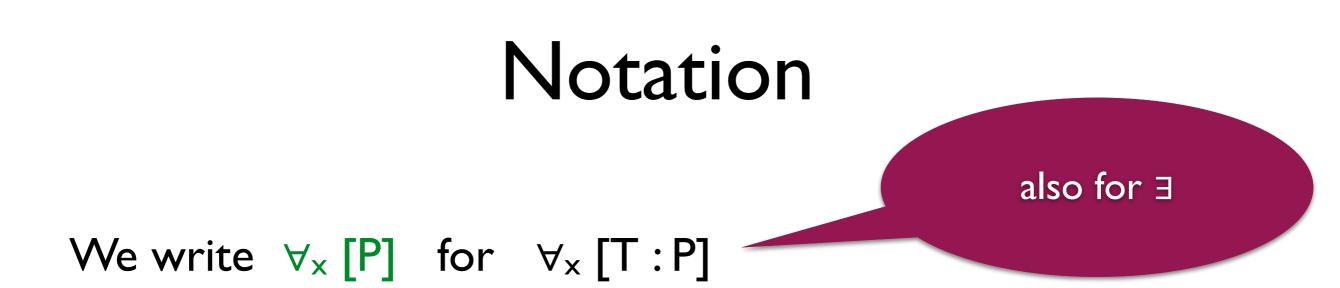




We also write $\exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]]$



We also write $\exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]]$



We also write $\exists_{m,} \forall_{n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_{m} [m \in \mathbb{R} : \forall_{n} [n \in \mathbb{N} : 3m + n > 3]]$

And even $\exists_{m,n} [(m,n) \in \mathbb{R} \times \mathbb{N} : 3m + n > 3]$ for $\exists_m [m \in \mathbb{R} : \exists_n [n \in \mathbb{N} : 3m + n > 3]]$ but only for the same quantifier!

Quantification - task

Let P be the set of all tennis players. Let $w \in P$ be the winner.

For $p, q \in P$, write $p \neq q$ for "p and q are different players".

Let M be the set of all matches. For $p \in P$ and $m \in M$, write L(p,m) for "player p loses match m".

Write the following sentence as a formula with predicates and quantifiers:

Every player except the winner loses a match.

Quantification - task

Let P be the set of all tennis players. Let $w \in P$ be the winner.

Thanks to Bas Luttik

For p, $q \in P$, write $p \neq q$ for "p and q are different players".

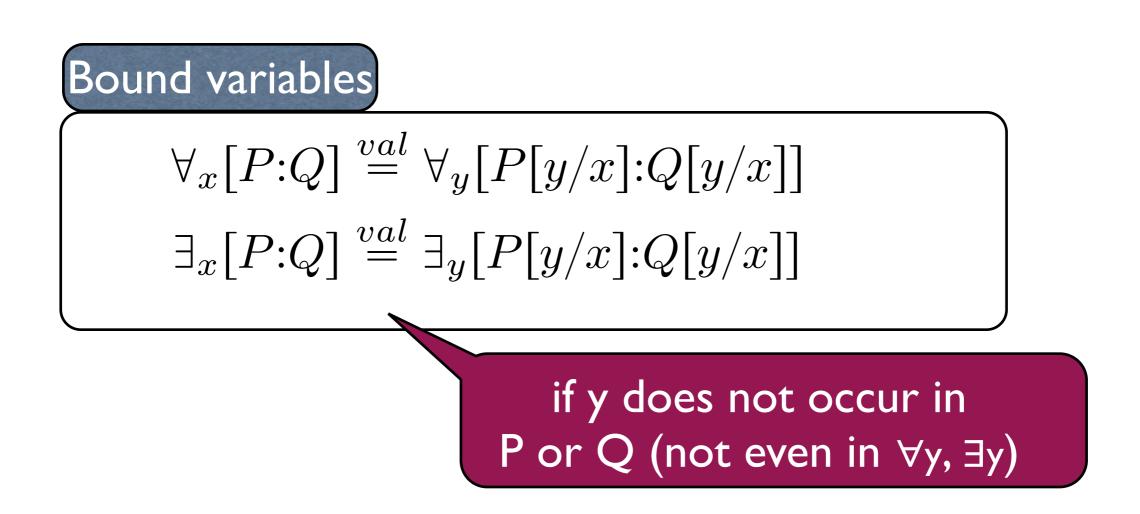
Let M be the set of all matches. For $p \in P$ and $m \in M$, write L(p,m) for "player p loses match m".

Write the following sentence as a formula with predicates and quantifiers:

Every player except the winner loses a match.

Equivalences with quantifiers

Renaming bound variables



Domain splitting

Examples:

$$\forall_x [x \leq 1 \lor x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\stackrel{val}{=} \forall_x [x \leq 1 \colon x^2 - 6x + 5 \geq 0] \land \forall_x [x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

Domain splitting

Examples:

$$\forall_x [x \leq 1 \lor x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\stackrel{val}{=} \forall_x [x \leq 1 \colon x^2 - 6x + 5 \geq 0] \land \forall_x [x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\exists_k [0 \leq k \leq n : k^2 \leq 10]$$

$$\stackrel{val}{=} \exists_k [0 \leq k \leq n-1 \lor k = n : k^2 \leq 10]$$

$$\stackrel{val}{=} \exists_k [0 \leq k \leq n-1 : k^2 \leq 10] \lor \exists_k [k = n : k^2 \leq 10]$$

Domain splitting

Examples:

$$\forall_x [x \leq 1 \lor x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\stackrel{val}{=} \forall_x [x \leq 1 \colon x^2 - 6x + 5 \geq 0] \land \forall_x [x \geq 5 \colon x^2 - 6x + 5 \geq 0]$$

$$\begin{aligned} \exists_k [0 \leq k \leq n : k^2 \leq 10] \\ \stackrel{val}{=} \exists_k [0 \leq k \leq n-1 \lor k = n : k^2 \leq 10] \\ \stackrel{val}{=} \exists_k [0 \leq k \leq n-1 : k^2 \leq 10] \lor \exists_k [k=n : k^2 \leq 10] \end{aligned}$$

Domain splitting

$$\forall_x [P \lor Q : R] \stackrel{val}{=} \forall_x [P : R] \land \forall_x [Q : R]$$
$$\exists_x [P \lor Q : R] \stackrel{val}{=} \exists_x [P : R] \lor \exists_x [Q : R]$$