Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{val}}{=} Q$, iff they induce the same truth-function.

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{d}}{=} Q$, iff they induce the same truth-function.

Property: The relation $\stackrel{\text{\tiny M}}{=}$ is an equivalence on the set of all abstract propositions.

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny val}}{=} Q$, iff they induce the same truth-function.

on any sequence containing their common variables

Property: The relation $\stackrel{\text{\tiny M}}{=}$ is an equivalence on the set of all abstract propositions.

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

all tautologies are equivalent

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

all tautologies are equivalent

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

all contradictions are equivalent

Def. An abstract proposition P is a tautology iff its truth-function is constant 1.

all tautologies are equivalent

Def. An abstract proposition P is a contradiction iff its truth-function is constant 0.

but not all contingencies!

all contradictions are equivalent

Propositional Logic Standard Equivalences

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$P \Rightarrow Q \stackrel{val}{\neq} Q \Rightarrow P$$

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
0	$\mid 1 \mid$	1	0

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$

$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$

 $(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow (Q \Rightarrow R)$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Commutativity

$$P \wedge Q \stackrel{val}{=} Q \wedge P$$

$$P \vee Q \stackrel{val}{=} Q \vee P$$

$$P \Leftrightarrow Q \stackrel{val}{=} Q \Leftrightarrow P$$

$$(P \land Q) \land R \stackrel{val}{=} P \land (Q \land R)$$
$$(P \lor Q) \lor R \stackrel{val}{=} P \lor (Q \lor R)$$
$$(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{val}{=} P \Leftrightarrow (Q \Leftrightarrow R)$$

$$(P \Rightarrow Q) \Rightarrow R \stackrel{val}{\neq} P \Rightarrow (Q \Rightarrow R)$$

Idempotence and Double Negation

Idempotence

$$P \wedge P \stackrel{val}{=} P$$
$$P \vee P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Idempotence and Double Negation

Idempotence

$$P \wedge P \stackrel{val}{=} P$$

$$P \vee P \stackrel{val}{=} P$$

$$P \Rightarrow P \stackrel{val}{\neq} P$$
$$P \Leftrightarrow P \stackrel{val}{\neq} P$$

Double negation

$$\neg \neg P \stackrel{val}{=} P$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=}$$

$$P \wedge F \stackrel{val}{=}$$

$$P \vee T \stackrel{val}{=}$$

$$P \vee F \stackrel{val}{=}$$

Inversion

$$\neg T \stackrel{val}{=} F$$
$$\neg F \stackrel{val}{=} T$$

Negation

$$\neg P \stackrel{val}{=} P \Rightarrow F$$

Contradiction

$$P \wedge \neg P \stackrel{val}{=} F$$

Excluded Middle

$$P \vee \neg P \stackrel{val}{=} T$$

T/F - elimination

$$P \wedge T \stackrel{val}{=} P$$

$$P \wedge F \stackrel{val}{=} F$$

$$P \vee T \stackrel{val}{=} T$$

$$P \vee F \stackrel{val}{=} P$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

 $P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R)$

$$P \lor (Q \land R) \stackrel{val}{=} (P \lor Q) \land (P \lor R)$$

Distributivity, De Morgan

Distributivity

$$P \wedge (Q \vee R) \stackrel{val}{=} (P \wedge Q) \vee (P \wedge R)$$

$$P \vee (Q \wedge R) \stackrel{val}{=} (P \vee Q) \wedge (P \vee R)$$

De Morgan

$$\begin{cases}
\neg (P \land Q) \stackrel{val}{=} \neg P \lor \neg Q \\
\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q
\end{cases}$$

$$\neg (P \lor Q) \stackrel{val}{=} \neg P \land \neg Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

Implication and Contraposition

Implication

$$P \Rightarrow Q \stackrel{val}{=} \neg P \lor Q$$
$$P \lor Q \stackrel{val}{=} \neg P \Rightarrow Q$$

Contraposition

$$P \Rightarrow Q \stackrel{val}{=} \neg Q \Rightarrow \neg P$$

$$P \Rightarrow Q \neq \neg P \Rightarrow \neg Q$$

$$\land$$

$$common$$

$$mistake!$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=}$$

Bi-implication and Self-equivalence

Bi-implication

$$P \Leftrightarrow Q \stackrel{val}{=} (P \Rightarrow Q) \land (Q \Rightarrow P)$$

Self-equivalence

$$P \Leftrightarrow P \stackrel{val}{=} T$$

Calculating with equivalent propositions (the use of standard equivalences)

Recall...

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny M}}{=} Q$, iff they induce the same truth-function.

on any sequence containing their common variables

Property: The relation $\stackrel{\text{\tiny M}}{=}$ is an equivalence on the set of all abstract propositions.

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simultaneous

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$

meta rule

Simple

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P] \stackrel{val}{=} \psi[\xi/P]$$

Sequential

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P][\eta/Q] \stackrel{val}{=} \psi[\xi/P][\eta/Q]$$

Simultaneous

$$\phi \stackrel{val}{=} \psi$$

$$\phi[\xi/P, \eta/Q] \stackrel{val}{=} \psi[\xi/P, \eta/Q]$$

Leibnitz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

Leibnitz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

single occurrence is replaced!

Leibnitz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

formula that has ϕ as a sub formula

single occurrence is replaced!

Leibnitz

$$\phi \stackrel{val}{=} \psi$$

$$C[\phi] \stackrel{val}{=} C[\psi]$$

formula that has ϕ as a sub formula

meta rule

single occurrence is replaced!

Strengthening and weakening

We had

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny Yal}}{=} Q$, iff

- (I) Always when P has truth value I, also Q has truth value I, and
- (2) Always when Q has truth value I, also P has truth value I.

We had

Definition: Two abstract propositions P and Q are equivalent, notation $P \stackrel{\text{\tiny Yal}}{=} Q$, iff

- (I) Always when P has truth value I, also Q has truth value I, and
- (2) Always when Q has truth value I, also P has truth value I.

if we relax this, we get strengthening

```
Definition: The abstract proposition P is stronger than Q, notation P Q, iff

(1) Always when P has truth value I, also Q has truth value I, and

(2) Always when Q has truth value I, also P has truth value I.
```

Definition: The abstract proposition P is stronger than Q, notation $P \stackrel{\text{Yal}}{\models} Q$, iff (1) Always when P has truth value I,

(1) Always when P has truth value I, also Q has truth value I, and

(2) Always when Q has truth value I, also P has truth value I.

Q is weaker than P

Definition: The abstract proposition P is stronger than Q, notation $P \models^{al} Q$, iff always when P has truth value I, also Q has truth value I.

Definition: The abstract proposition P is stronger than Q, notation P \(\begin{aligned}
\text{P} \\ \text{Q}, \text{ iff} \\
always when P has truth value I, \\
also Q has truth value I.

always when P is true, Q is also true

Definition: The abstract proposition P is stronger than Q, notation $P \stackrel{\text{\tiny Yal}}{=} Q$, iff always when P has truth value I, also Q has truth value I.

always when P is true, Q is also true

Q is weaker than P

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EWI: $P\stackrel{val}{=} Q$ iff $P\stackrel{val}{\models} Q$ and $Q\stackrel{val}{\models} P$.

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EWI: $P \stackrel{val}{=} Q$ iff $P \stackrel{val}{\models} Q$ and $Q \stackrel{val}{\models} P$.

Lemma W2: Weakening is a reflexive relation on abstract propositions.

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EWI: $P\stackrel{val}{=} Q$ iff $P\stackrel{val}{\models} Q$ and $Q\stackrel{val}{\models} P$.

Lemma W2: Weakening is a reflexive relation on abstract propositions.

Lemma W3: Weakening is a transitive relation on abstract propositions.

Lemma EI: $P \stackrel{val}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Lemma EWI: $P\stackrel{val}{=} Q$ iff $P\stackrel{val}{\models} Q$ and $Q\stackrel{val}{\models} P$.

Lemma W2: Weakening is a reflexive relation on abstract propositions.

Lemma W3: Weakening is a transitive relation on abstract propositions.

Lemma W4: $P \models Q \text{ iff } P \Rightarrow Q \text{ is a tautology.}$