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Logic = study of correct reasoning
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All K’s are M’s

from the two 
premises

one can 
always conclude the 

conclusion

independent of what the parameters K,L,M are

Logic (Logos, Greek for word, understanding, reason) deals with general 
reasoning laws in the form of formulas with parameters.
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Propositions

Def.  A proposition (Aussage) is a grammatically correct sentence 
that is either true or false.

logic deals with patterns! 
what matters are not particular 

propositions but the way in 
which (abstract) propositions 

are combined and what follows 
from them

Connectives

∧   for “and”	

∨   for “or”	

¬   for “not”	

⇒  for “if .. then” or “implies”	


⇔  for “if and only if”
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Abstract propositions

a recursive/inductive	

definition

Definition

 

Basis                Propositional variables are abstract propositions.	
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…and their structure

tree representation	

(no need of 
parenthesis)

the tree of	
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Dropping parenthesis

Example:   ((a ∧ b) ⇒ (¬c))	


                   becomes	

              a ∧ b ⇒ ¬cpriority schema	


(top binds the most)

incresing priority

decreasing priority¬
∧   ∨
⇒
⇔
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Truth tables

Disjunction

P Q P∨Q

0 0 0

0 1 1

1 0 1

1 1 1

true when either P 
or Q or both are 

true
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Truth tables

Negation

P ¬P

0 1

1 0

true when P 	

is false

unary connective
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Truth tables

Implication

P Q P ⇒ Q

0 0 1

0 1 1

1 0 0

1 1 1

only false when P is 
true and Q is false

needs more attention
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Truth tables

Bi-implication

P Q P ⇒ Q Q ⇒ P P ⇔ Q

0 0 1 1 1

0 1 1 0 0

1 0 0 1 0

1 1 1 1 1

P⇔Q 

is (P ⇒ Q)∧(Q ⇒ P) 

true when P and Q 
have the same truth 

value
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Truth-functions

Property:  Every abstract proposition P(a1,..,an) with ordered and 
specified variables induces a truth-function. 

a1, .. an are the variables in P (and more) ordered 
in a sequence

P(a,b,c): 	

!

                        induces

(a ∧ b) ∨ b

The sequence of specified 
variables matters! 

Note:  a, b, c	

(0,0,0) ⟼ 0	


(0,0,1) ⟼ 0	


(0,1,0) ⟼ 1	


(0,1,1) ⟼ 1	


(1,0,0) ⟼ 0	


(1,0,1) ⟼ 0	


(1,1,0) ⟼ 1	


(1,1,1) ⟼ 1
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Definition:   Two abstract propositions P and Q are equivalent,  	

                  notation P = Q, iff they induce the same truth-function.val

Property:    The relation = is an equivalence on the set of all 	

                 abstract propositions. 

val

on any sequence containing their common variables
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Example
b b c cAre the following equivalent? and

0 0 1 1 0 0

0 1 1 0 0 0

1 0 0 1 0 0

1 1 0 0 0 0

b b c ccb b c

Their truth values are the same, so they are equivalent
b b

val
c c


