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Def.  Let R be an equivalence over A and a ∈ A.  Then	

!
              [a]R = { b ∈ A | (a, b) ∈ R}	
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Lemma E1:   Let R be an equivalence over the set A.  Then 	

              for all a, b ∈ A,  [a]R  = [b]R   or  [a]R  ∩ [b]R = ∅

Task:       Describe the equivalence classes of ≣n 	


                     How many classes are there?
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In general,  for a family of sets  (Ai | i ∈ I)  	

        	

  ∪i ∈ I Ai =  {x | x ∈ Ai for some i ∈ I}	

!

  ∩ i ∈ I Ai =  {x | x ∈ Ai for all i ∈ I}
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classes

!
Example:  Let R be an equivalence over A and a ∈ A.  Then	

!
                ( [a]R , a ∈ A ) is a family of sets.	
 all equivalence 	


classes of R

Lemma E2:   A = ∪a ∈ A [a] R .  The union is disjoint.
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Partitions

Def.   Let X be a set.  A subset P of the powerset P(X) is	

         a partition (Klasseneinteilung) of X if it satisfies:	

!
              (1) For all A ∈ P,   A ≠ ∅	

              (2) For all A, B ∈ P,  if A ≠ B 	

                                          then A ∩ B = ∅     	

              (3) ∪A ∈ P A  = X 

hence, a collection 
of	


subsets of X

that are non-empty, 	

pairwise disjoint, 	


and their union equals X
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Partitions = 	

 Equivalences

Theorem PE:   Let X be a set.  	

!
(1) If R is an equivalence on X, then the set	

           P(R) =  { [x]R | x ∈ X } 	

     is a partition of X.	

!
(2) If P is a partition of X, then the relation	

           R(P) = {(x,y) ∈ X x X | there is A ∈ P such that x,y ∈ A}	

     is an equivalence relation.	

!

Moreover, the assignments R ↦ P(R) and P ↦ R(P) are inverse	

to each other, i.e.,  R(P(R)) = R and P(R(P)) = P .
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Transitive closure
Let R be a relation on a set  X.  The transitive closure (transitive 
Hülle) of R, notation R+, is the relation	

!
                      R+ = ∪n ∈ N, n ≠ 0 Rn

Proposition TC:   Let R be a relation on X.  The transitive closure 
of R is the smallest transitive relation that contains R.  The 
reflexive and transitive closure of R is the smallest reflexive and 
transitive relation that contains R.

The reflexive and transitive closure (reflexive und transitive Hülle)	

of R, notation R*, is the relation	

!
                      R* = ∪n ∈ N Rn

Rn+1 = Rn ￮ R

R0 = ΔR
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Functions, mappings
Def.  If A and B are sets, then a relation F ⊆ A x B “is” a function 
(mapping,  Abbildung)  from A to B, notation F:  A ⟶ B  iff 	

       for every a ∈ A, there exists a unique b ∈ B such that aFb.

the image of a,	

b = F(a)	

a ↦ b

A B

A B

BA

A B

{(a, F(a)) | a ∈ A}  is the graph of the function F
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Functions, mappings
When f:  A ⟶ B  then dom f = A and cod f = B

domain of F	

(Definitionsbereich)

codomain of F	

(Wertebereich)

Let f:  A ⟶ B and A’ ⊆ A. 	


The image (Bild) of A’ is the set  f(A’) = {f(a) | a ∈ A’} ⊆ B.	

!
 

So f extends to a function f: P(A) ⟶ P(B), the image-function. 

if a ∈ A’, then f(a) ∈ f(A’)f(A’) = {b ∈ B | there is an a ∈ A’ with b = f(a)}


