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Def. Let R be an equivalence over A and a € A. Then

[a]R — { beA | (a, b) = P\} the equivalence

class of a

Lemma EI: Let R be an equivalence over the set A. Then
foralla,b € A, [a]Jr = [b]Jr or [a]r n [b]Jr= T

Describe the equivalence classes of =,
How many classes are there!
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Unions and intersections
of multiple sets

Union AuB={x|xeAorxe B}
A AuB B
Intersection AnB={x|xeAandx e B}

A and B are if AnB=9 A AnB B

In general, for a family of sets (Ai| i€ l)
Uier Ai= {x| x €A for someie |}

NiclAi= {X‘XEAifOI’a||i€|}
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Back to equivalence
classes

Example: Let R be an equivalence over A and a € A. Then

( [a]R ,aceA ) IS a famlly of sets. all equivalence

classes of R

Lemma E2: A= U, ca[a]r. The union is disjoint.
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Partitions

hence, a collection
of
subsets of X

Def. Let X be a set. A subset P of the powerset 2(X) is
a partition (Klasseneinteilung) of X if it satisfies:

that are non-empty,

(I) ForallAe P A+ © pairwise disjoint,
(2) ForallALBeP ifA+B and their union equals X
thenAnB =9

(3) U AcpA =X
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Partitions =
Equivalences

Theorem PE: Let X be a set.

(1) If R is an equivalence on X, then the set
PR) = { [XIr| x € X}
is a partition of X.

(2) If P is a partition of X, then the relation
R(P) = {(x,y) € X x X | there is A € P such that x,y € A}

is an equivalence relation.

Moreover, the assighments R — P(R) and P — R(P) are inverse
to each other,i.e,, R(P(R)) = R and P(R(P)) =P.
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Transitive closure

Let R be a relation on a set X. The transitive closure (transitive
Hulle) of R, notation R™, is the relation

R* = U EN,nq&ORn

The reflexive and transitive closure (reflexive und transitive Hulle)
of R, notation R, is the relation

R* = U, en RO

Proposition TC: Let R be a relation on X. The transitive closure
of R is the smallest transitive relation that contains R. The
reflexive and transitive closure of R is the smallest reflexive and
transitive relation that contains R.
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Functions, mappings

Def. If A and B are sets, then a relation F € A x B “is”’ a function
(mapping, Abbildung) from A to B, notation F: A — B iff
for every a € A, there exists a unique b € B such that aFb.

the image of a,

A B Al o= b = F(a)

® a—b

A . B A T, B

{(a,F(a)) | a € A} is the of the function F
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Functions, mappings

When f: A— B thendomf=Aandcodf=B

domain of F

codomain of F

Letf: A— Band A’ CA.
The image (Bild) of A’ is the set f(A’) ={f(a) |a € A’} C B.

if a € A’, then f(a) € f(A’)

f(A’) = {b € B | there is an a € A’ with b = f(a)}

So f extends to a function f: 2(A) — 2(B), the image-function.



