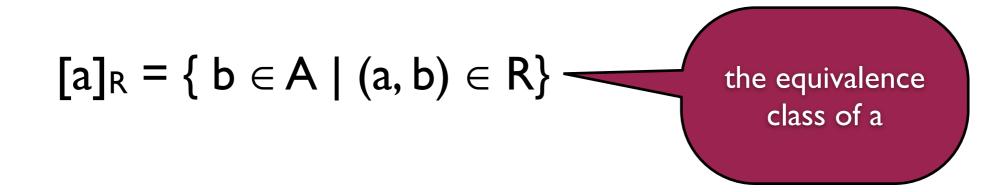
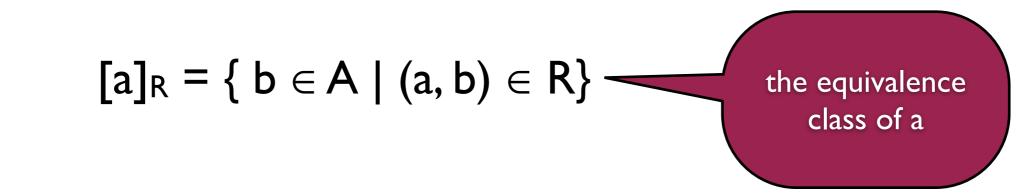
Def. Let R be an equivalence over A and $a \in A$. Then

 $[a]_{R} = \{ b \in A \mid (a, b) \in R \}$

Def. Let R be an equivalence over A and $a \in A$. Then

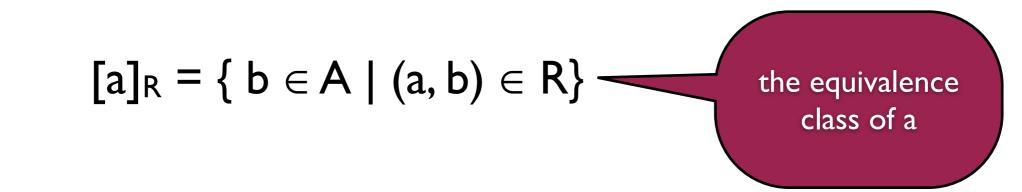


Def. Let R be an equivalence over A and $a \in A$. Then



Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Def. Let R be an equivalence over A and $a \in A$. Then



Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Task: Describe the equivalence classes of \equiv_n How many classes are there?

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Α Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ A $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ ΑυΒ В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α **A** ∩ **B** В In general, for sets A_1 , A_2 , ..., A_n with $n \ge I$,

 $A_1 \cup A_2 \cup ... \cup A_n = \bigcup_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for some } i \in \{1, ... n\}\}$

 $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for all } i \in \{1,..n\}\}$

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В Α Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ A $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α **A** ∩ **B** В In general, for a family of sets $(A_i | i \in I)$

$$\bigcup_{i \in I} A_i = \{ x \mid x \in A_i \text{ for some } i \in I \}$$

 $\bigcap_{i \in I} A_i = \{ x \mid x \in A_i \text{ for all } i \in I \}$

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

all equivalence classes of R

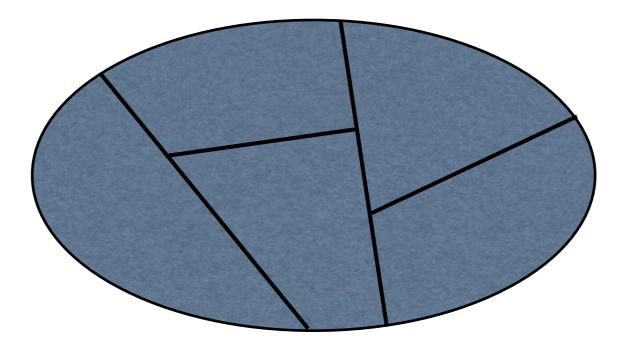
Back to equivalence classes

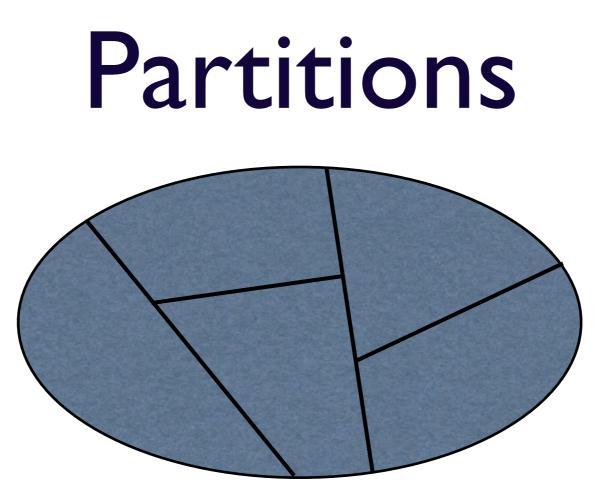
Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

all equivalence classes of R

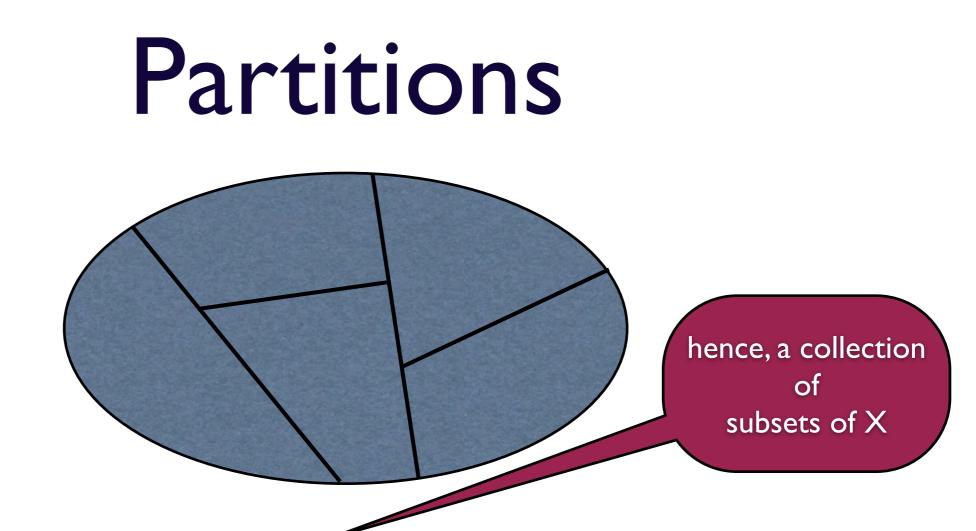
Lemma E2: $A = \bigcup_{a \in A} [a]_R$. The union is disjoint.





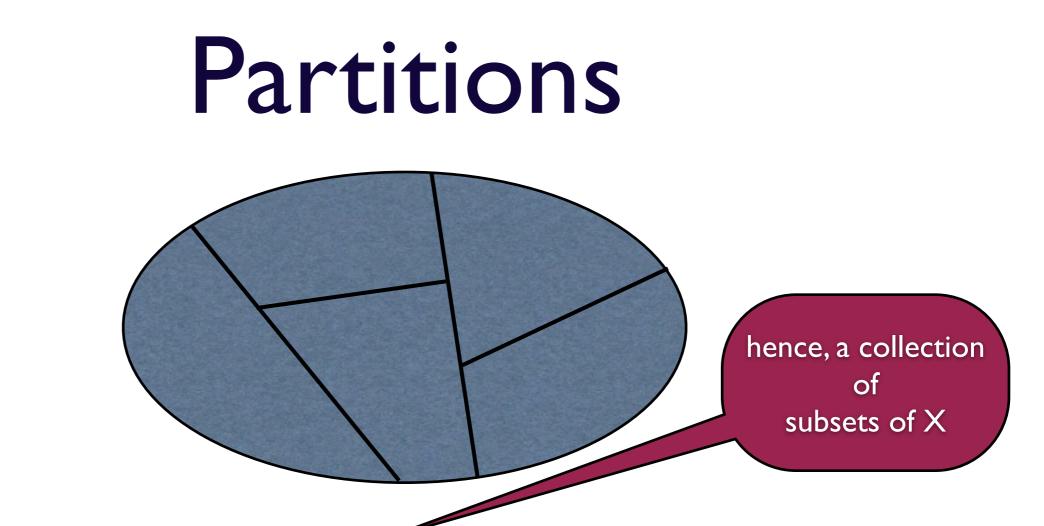
Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$



Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

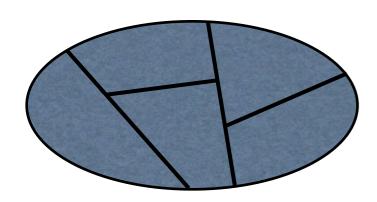
(1) For all $A \in P$, $A \neq \emptyset$ (2) For all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$ (3) $\bigcup_{A \in P} A = X$



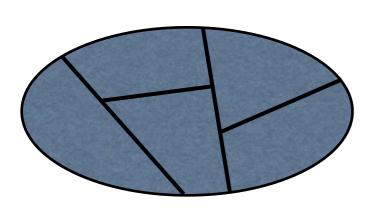
Х

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$



Partitions = Equivalences



Partitions = Equivalences

Theorem PE: Let X be a set.

(1) If R is an equivalence on X, then the set $P(R) = \{ [x]_R | x \in X \}$ is a partition of X.

(2) If P is a partition of X, then the relation $R(P) = \{(x,y) \in X \times X \mid \text{there is } A \in P \text{ such that } x, y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e., R(P(R)) = R and P(R(P)) = P.

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

 $\mathbf{R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n}}$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} R^{n} \qquad \qquad R^{n+1} = R^{n} \circ R$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} R^{n} \qquad \qquad R^{n+1} = R^{n} \circ R$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$\mathbf{R}^* = \bigcup_{n \in \mathbb{N}} \mathbf{R}^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$\mathbf{R}^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} \mathbf{R}^{n} \qquad \qquad \mathbf{R}^{n+1} = \mathbf{R}^{n} \circ \mathbf{R}$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R⁺, is the relation

$$R^{+} = \bigcup_{n \in \mathbb{N}, n \neq 0} R^{n} \qquad \qquad R^{n+1} = R^{n} \circ R$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^{*}, is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Proposition TC: Let R be a relation on X. The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive R.

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: $A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb.

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: A \longrightarrow B iff for every $a \in A$, there exists a unique $b \in B$ such that aFb.

> the image of a, b = F(a) $a \mapsto b$

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: $A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb.

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: $A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb. the image of a, B b = F(a)Α Α $a \mapsto b$ B Α

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: $A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb. the image of a, B b = F(a)Α Α $a \mapsto b$ B B Α Α

Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation F: $A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb. the image of a, B b = F(a)Α Α $a \mapsto b$ B B Α Α $\{(a, F(a)) \mid a \in A\}$ is the graph of the function F

When f: $A \longrightarrow B$ then dom f = A and cod f = B

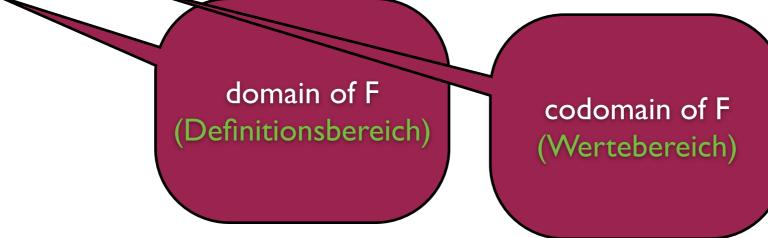
When f: $A \longrightarrow B$ then dom f = A and cod f = B

domain of F (Definitionsbereich)

When f: $A \longrightarrow B$ then dom f = A and cod f = B

domain of F (Definitionsbereich) codomain of F (VVertebereich)

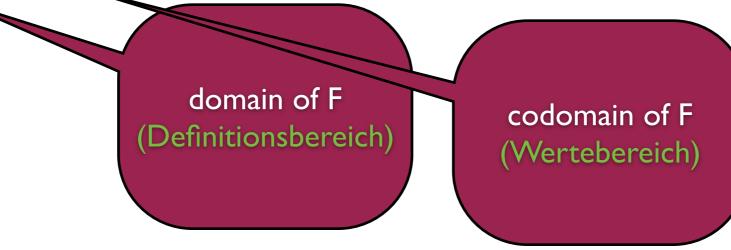
When f: $A \longrightarrow B$ then dom f = A and cod f = B



Let f: $A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = {f(a) | a \in A'} \subseteq B$.

When f: $A \longrightarrow B$ then dom f = A and cod f = B

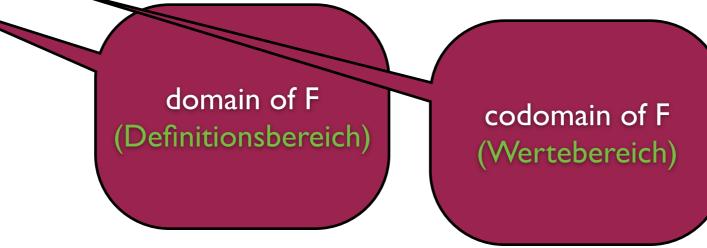


Let f: $A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = {f(a) | a \in A'} \subseteq B$.

if $a \in A$ ', then $f(a) \in f(A')$

When f: $A \longrightarrow B$ then dom f = A and cod f = B

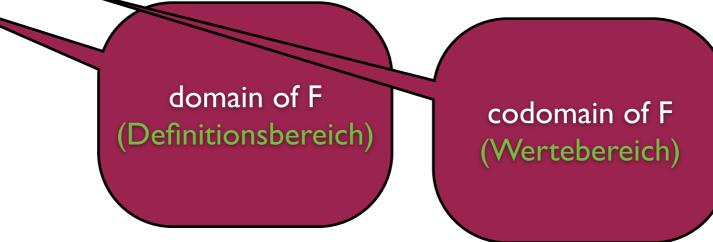


Let f: A \longrightarrow B and A' \subseteq A. The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A$ ')

When f: $A \longrightarrow B$ then dom f = A and cod f = B



Let f: A \longrightarrow B and A' \subseteq A. The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A')$

So f extends to a function f: $\mathcal{P}(A) \longrightarrow \mathcal{P}(B)$, the image-function.