Special relations

A relation $R \subseteq A \times A$ is:

iff	for all $a \in A$, (a,a) $\in R$
iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
iff	for all $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$,
	then $(a,c) \in R$
iff	for all $a \in A$, (a,a) $\notin R$
iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
	then a = b
iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \not\in R$
iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$
	iff iff iff iff iff iff

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
transitive	iff	for all $a,b,c \in A$, if $(a,b) \in R$ and $(b,c) \in R$,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\notin R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \not\in R$
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

(infix) notation aRb for $(a,b) \in R$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

- equivalence iff R is reflexive, symmetric, and transitive
- partial order iff R is reflexive, antisymmetric, and transitive
- strict order iff R is irreflexive and transitive
- preorder iff R is reflexive and transitive

total (linear) order

iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.

4. If $R \subseteq A \times A$ is a relation that contains cycles, i.e. there are $a, b \in A$ such that $a \neq b$, $(a,b) \in R$ and $(b,a) \in R$, then R is not a preorder, nor a partial order, nor a total order.

Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

- Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation
- $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

so again we write $R^n = R \circ R \circ ... \circ R$ n times

Let $R \subseteq A \ge B$ be a relation. The inverse relation of R is the relation

$$\mathsf{R}^{\mathsf{-I}} = \{(\mathsf{b},\mathsf{a}) \in \mathsf{B} \times \mathsf{A} \mid (\mathsf{a},\mathsf{b}) \in \mathsf{R}\}$$

Characterizations

Lemma: Let R be a relation over the set A. Then

- I. R is reflexive iff $\Delta_A \subseteq R$
- 2. R is symmetric iff $R \subseteq R^{-1}$
- 3. R is transitive iff $R^2 \subseteq R$

Def. For a natural number n, the relation \equiv_n is defined as

 $i \equiv_n j$ iff $n \mid j - i$

Def. For a natural number n, the relation \equiv_n is defined as

```
\begin{split} i &\equiv_n j \quad \text{iff } n \mid j - i \\ & [\text{iff } j\text{-}i \text{ is a multiple of } n ] \\ & [\text{iff there exists } k \in \mathbb{Z} \text{ s.t. } j\text{-}i = k \cdot n ] \\ & [\text{iff } \exists k \ (k \in \mathbb{Z} \ \land j\text{-}i = k \cdot n) ] \end{split}
```

Def. For a natural number n, the relation \equiv_n is defined as

Def. For a natural number n, the relation \equiv_n is defined as

Def. Let R be an equivalence over A and $a \in A$. Then

 $[a]_{R} = \{ b \in A \mid (a, b) \in R \}$

Def. Let R be an equivalence over A and $a \in A$. Then

Def. Let R be an equivalence over A and $a \in A$. Then

Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Def. Let R be an equivalence over A and $a \in A$. Then

Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Task: Describe the equivalence classes of \equiv_n How many classes are there?