Properties of sets

Ι.	$\varnothing \subseteq X$
2.	If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
3.	$X \cap Y \subseteq X, X \cap Y \subseteq Y$
4.	$X \subseteq X \cup Y, Y \subseteq X \cup Y$
5.	If X
6.	If X
7.	$X \cap Y = X \text{ iff } X \subseteq Y$
8.	$X \cap X = X$ (idempotence)
9.	$X \cup X = X$ (idempotence)
10.	$X \cap \varnothing = \varnothing$

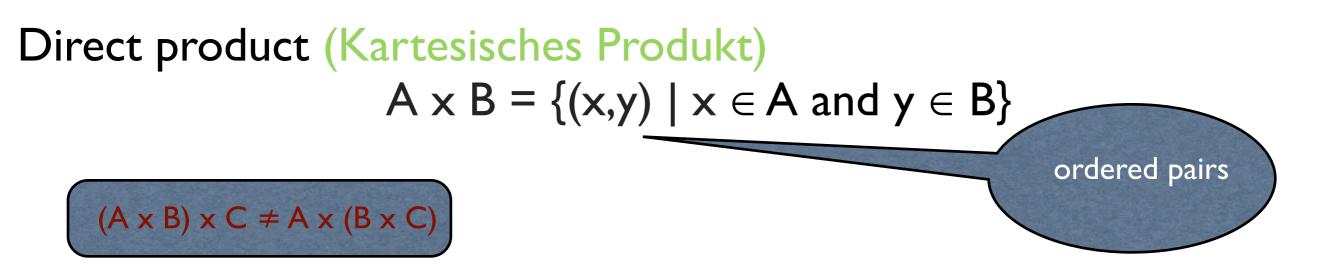
Properties of sets

11.
$$X \cup \emptyset = X$$
12. $X \cap Y = Y \cap X$ (commutativity)13. $X \cup Y = Y \cup X$ (commutativity)14. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ (associativity)15. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ (associativity)16. $X \cap (X \cup Y) = X$ (absorption)17. $X \cup (X \cap Y) = X$ (absorption)18. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ (distributivity)19. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ (distributivity)20. $X \setminus Y \subseteq X$

Properties of sets

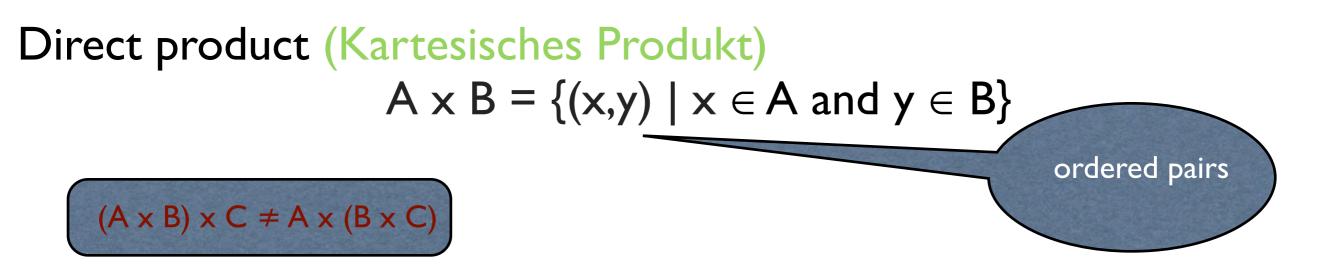
21.	$(X \setminus Y) \cap Y = \emptyset$
22.	$X \cup Y = X \cup (Y \setminus X)$
23.	$X \setminus X = \emptyset$
24.	$X \setminus \emptyset = X$
25.	$\emptyset \setminus X = \emptyset$
26.	If $X \subseteq Y$, then $X \setminus Y = \emptyset$
27.	(X
28.	(X
29.	(X
30.	$X \times \emptyset = \emptyset$
31.	$\emptyset \times X = \emptyset$
32.	If $X \subseteq Y$, then $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$

Direct product (Kartesisches Produkt) $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$ ordered pairs (A × B) × C ≠ A × (B × C)



Therefore, we define

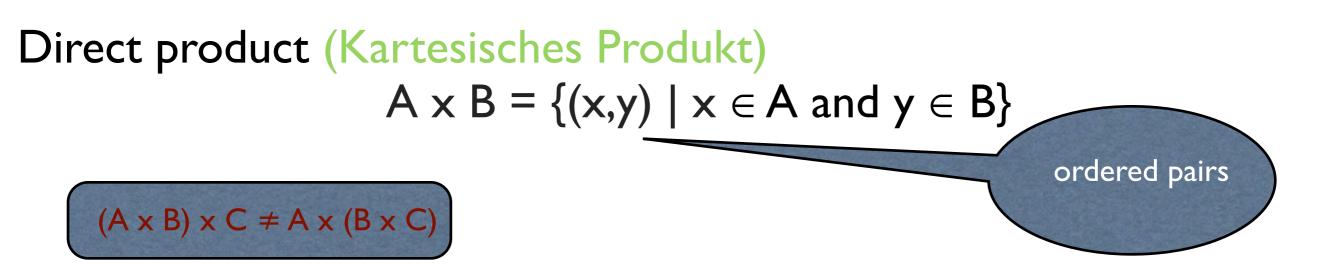
 $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$



Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge I$,

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$

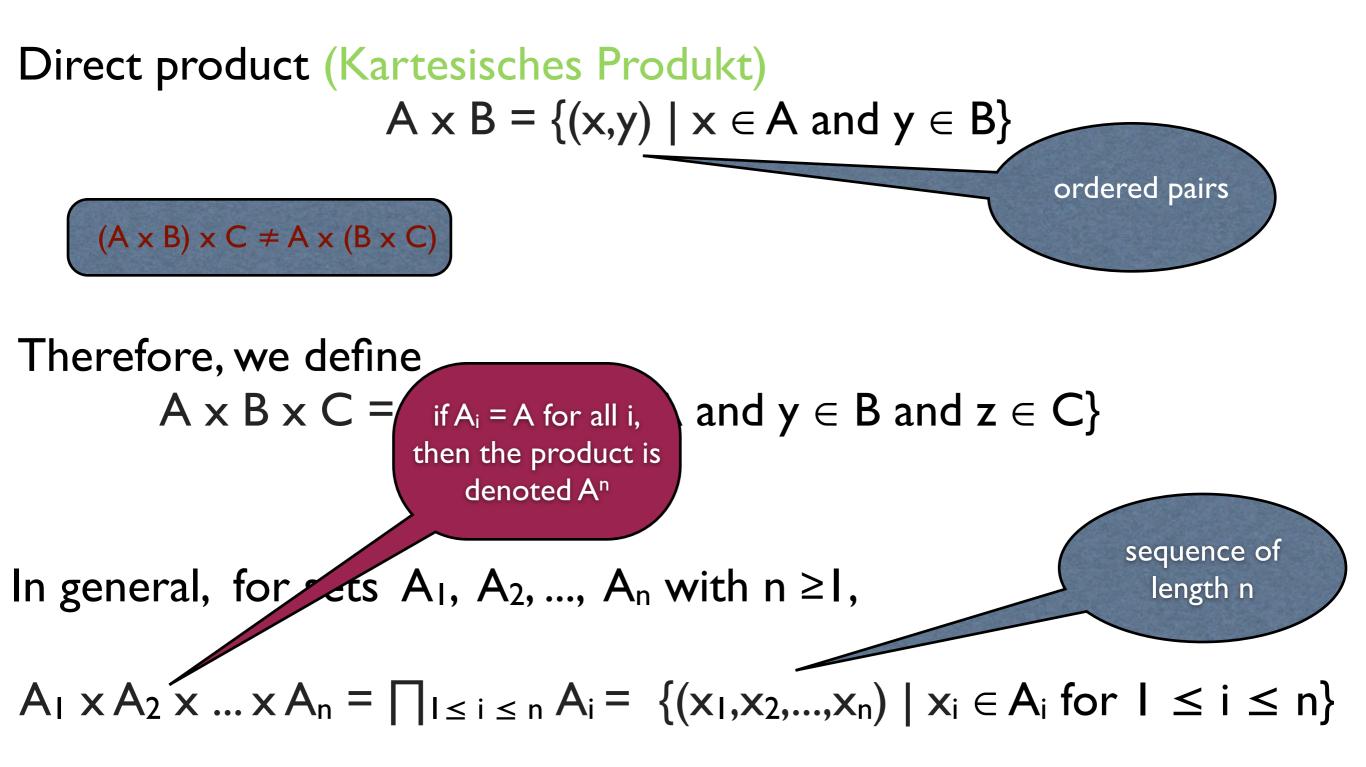


Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

sequence of length n

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$



Finite sequences, words

Finite sequences, words

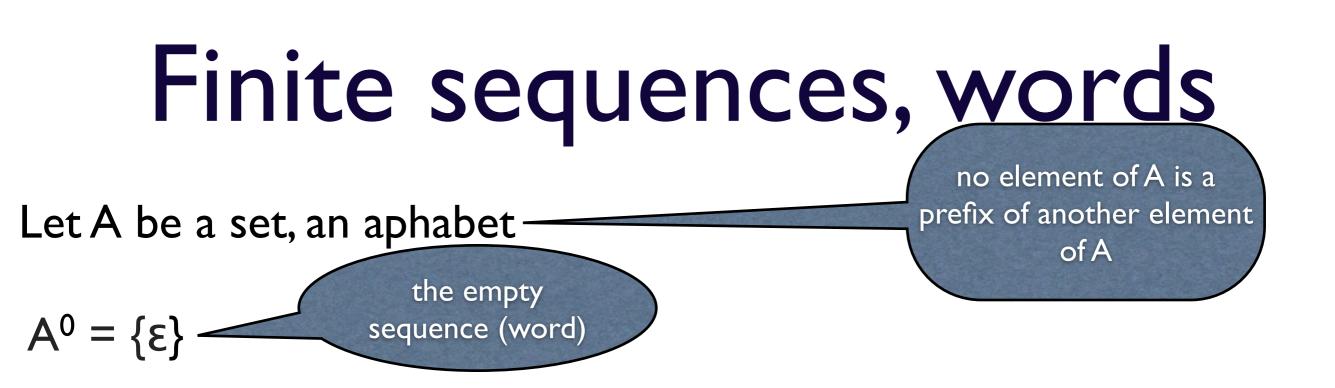
Let A be a set, an aphabet

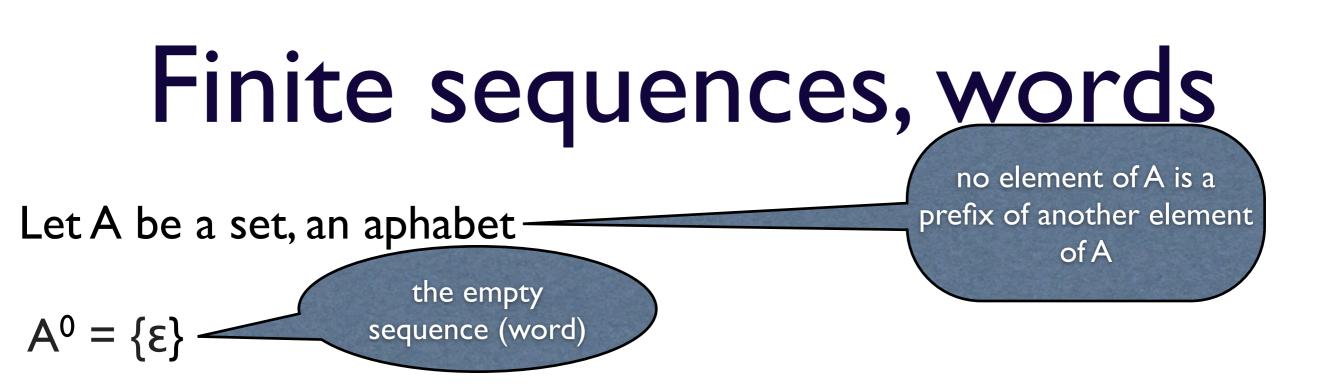
 $A^0 = \{\epsilon\}$

Let A be a set, an aphabet -

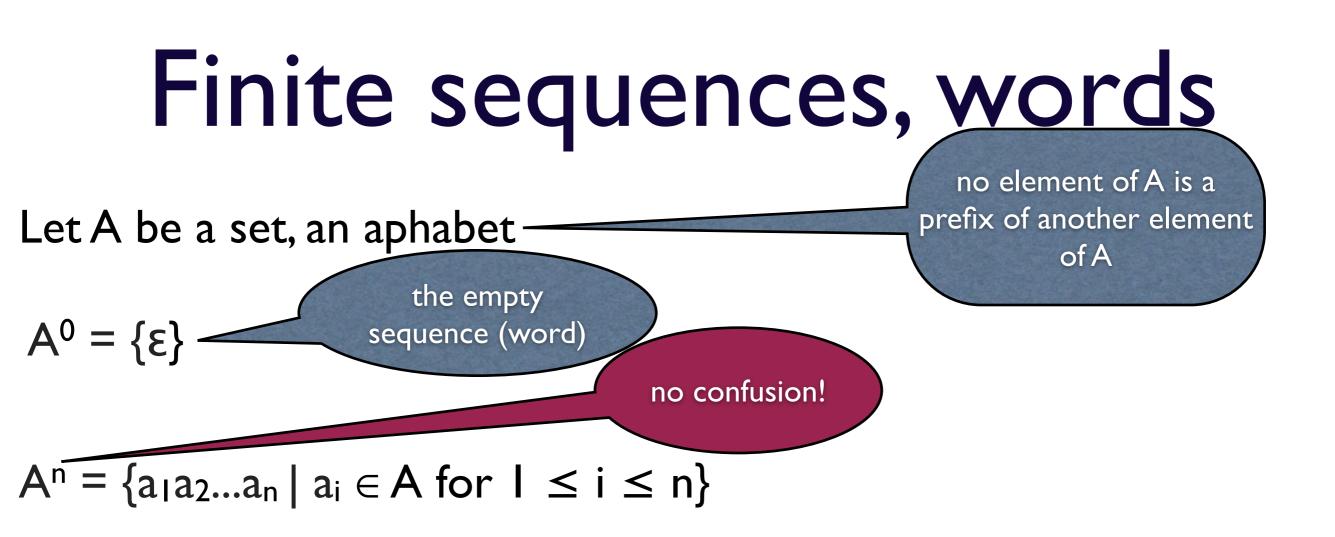
no element of A is a prefix of another element of A

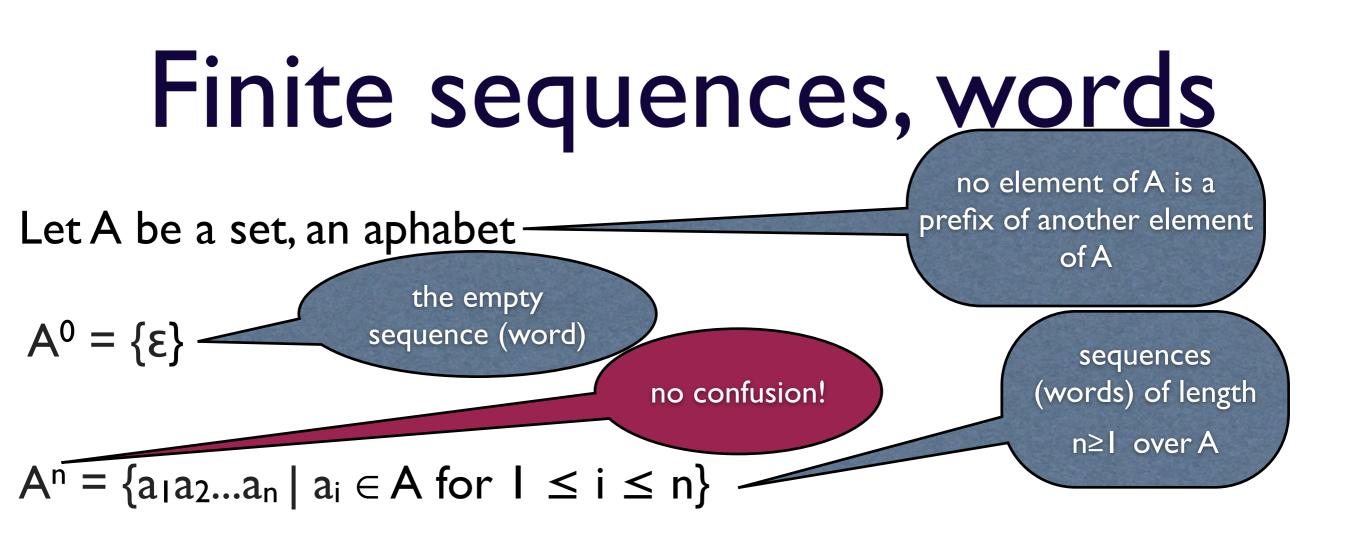
 $A^0 = \{ \epsilon \}$

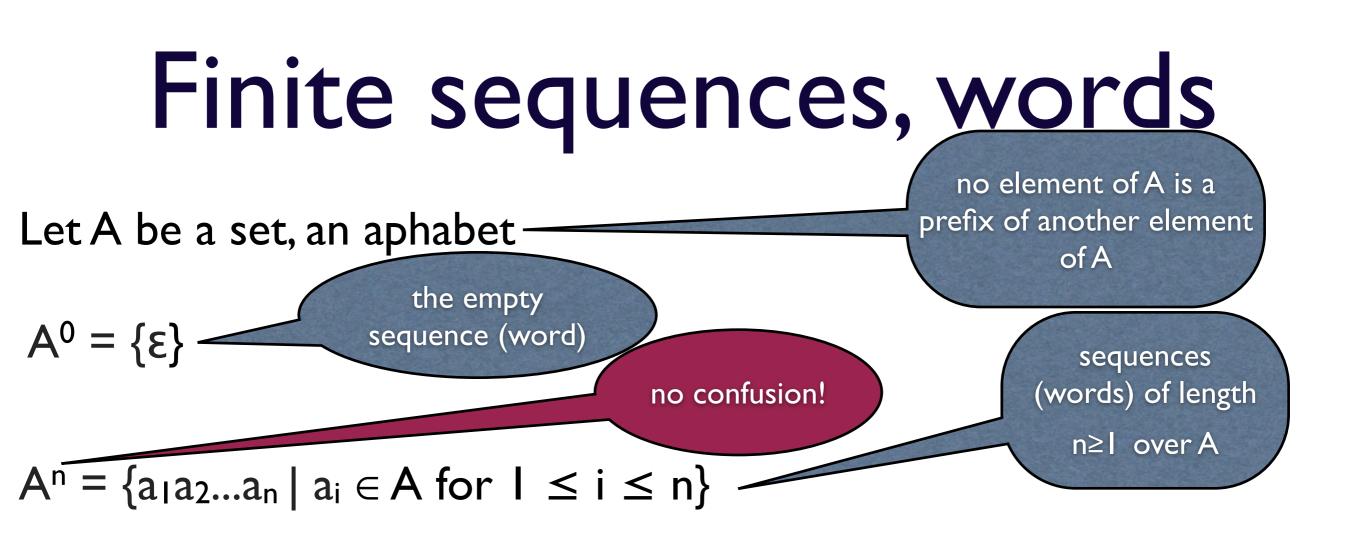




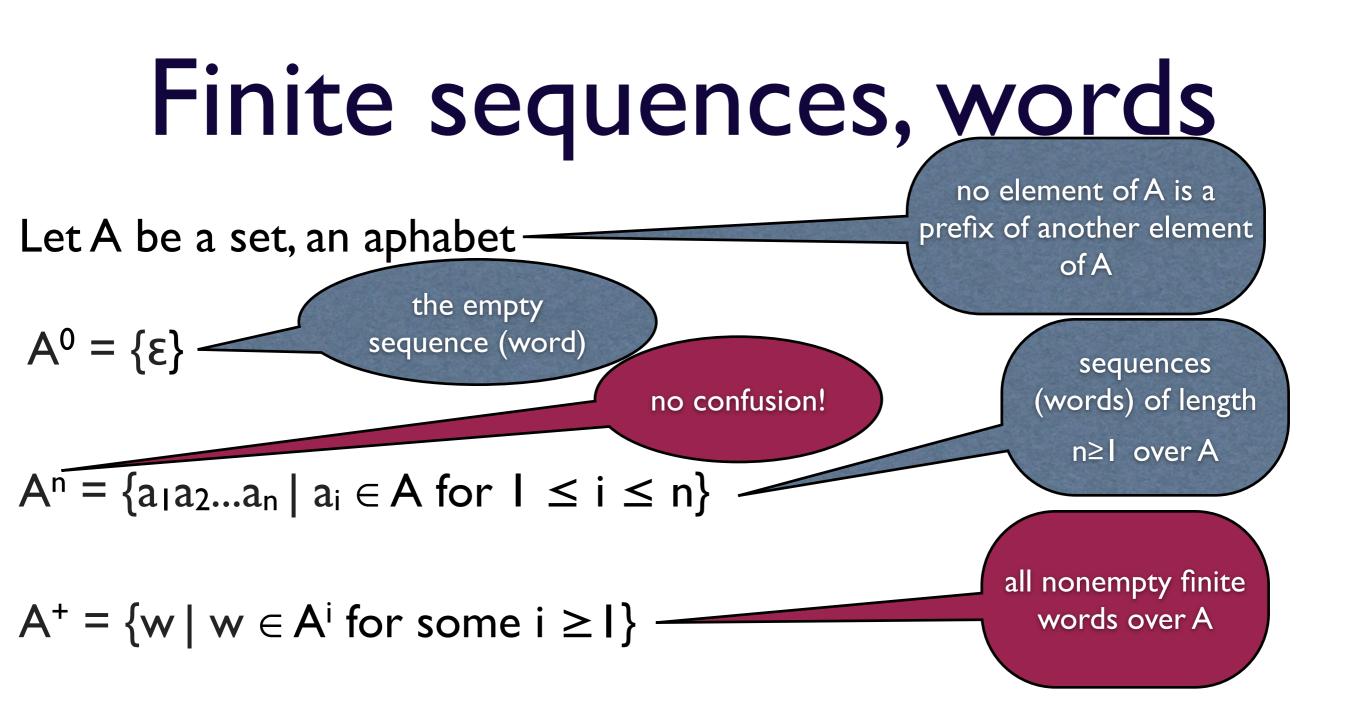
$A^n = \{a_1a_2...a_n \mid a_i \in A \text{ for } I \leq i \leq n\}$

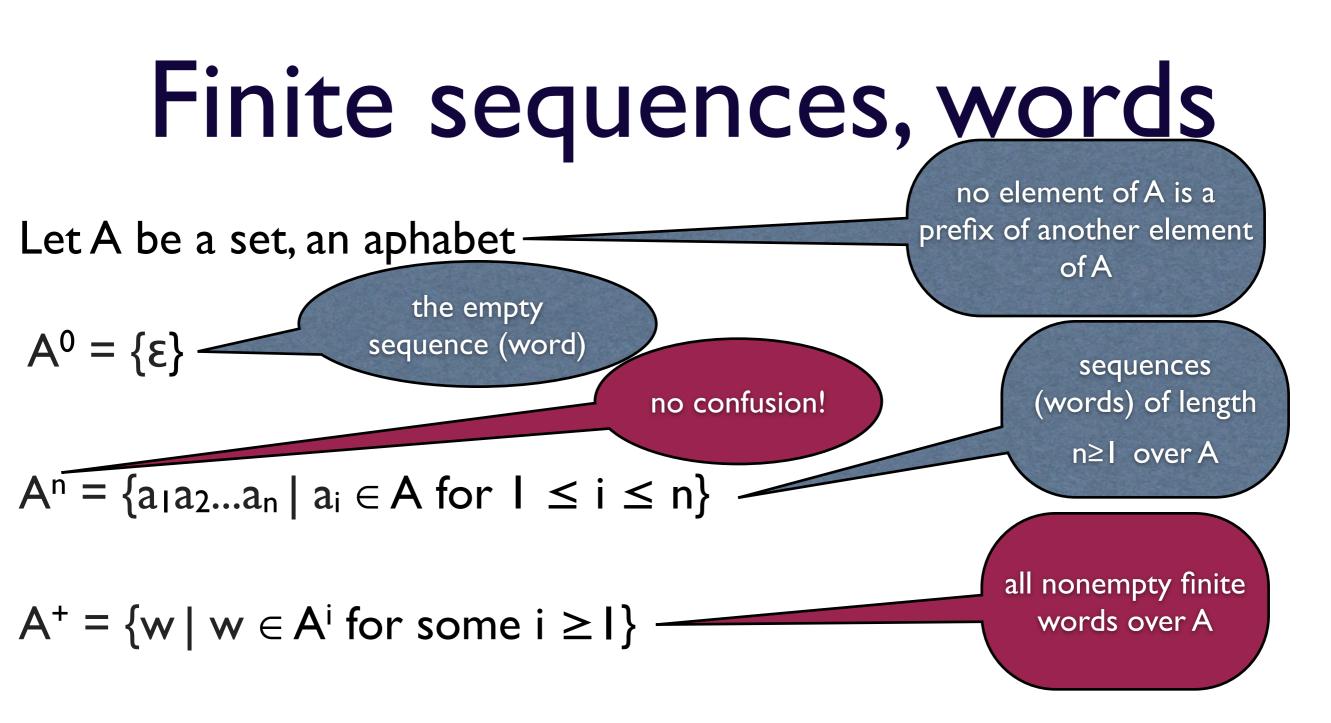




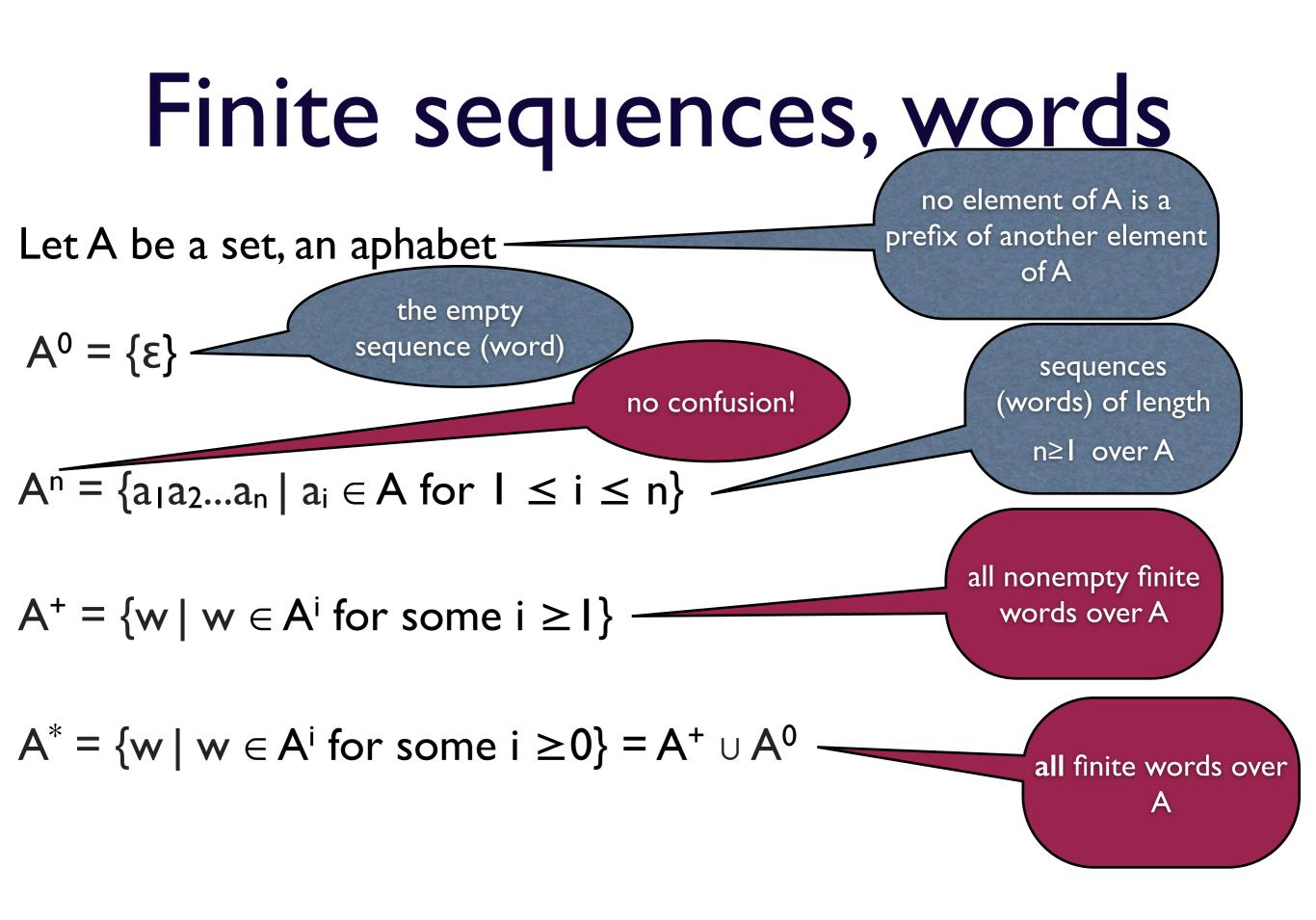


$$A^+ = \{w \mid w \in A^i \text{ for some } i \ge I\}$$





 $A^* = \{w \mid w \in A^i \text{ for some } i \ge 0\} = A^+ \cup A^0$



Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

Def. R is a relation on A if $R \subseteq A \times A$

some relations are special

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A^{\vee}$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \in R
transitive	iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\notin R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
transitive	iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\not\in R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \not\in R$
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

(infix) notation aRb for $(a,b) \in R$