Infinite, countable and uncountable sets

|A| = [A]~

We write $_{0}$ for the cardinality of natural numbers. Hence $_{0}$ = $|\mathbb{N}|$.

Cardinals are unbounded

Theorem (Cantor)

For every set A we have $|A| < |\mathcal{P}(A)|$.

|A| = [A]~

cardinal numbers are ~ equivalence classes

Hence, for every cardinal there is a larger one.

Finite Automata

Alphabets and Languages

 $\sum^{0} = \{ E \}$ contains only the

empty word

Recall

 Σ - alphabet (finite set)

 \sum^n = $\{a_1a_2..a_n \mid a_i \in \Sigma\}$ is the set of words of length n

 $\sum^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1a_2..a_n\} \text{ is the set of all words over } \sum$

A language L over Σ is a subset $L \subseteq \Sigma^*$

Accepts the language $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$

regular language

regular expression

DFA

A deterministic automaton M is a tuple M = (Q, Σ , δ , q_0 , F) where

Q is a finite set of states \sum is a finite alphabet $\delta: Q \times \sum \longrightarrow Q$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$

 In the example M
 $M_1 = (Q, \Sigma, \delta, q_0, F)$ for

 $Q = \{q_0, q_1\}$ $F = \{q_1\}$
 $\Sigma = \{0, 1\}$ $\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$

DFA

The extended transition function

Given M = $(Q, \Sigma, \delta, q_0, F)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

 $\delta^*(q, \epsilon) = q$ and $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$

Definition

The language recognised / accepted by a deterministic finite automaton M = $(Q, \Sigma, \delta, q_0, F)$ is

 $L(M) = \{w \in \Sigma^* | \ \delta^*(q_0, w) \in F\}$

 $\ln M_{1,} \, \delta^*(q_0, 110010) = q_1$

 $L(M_1) = \{w0|w \in \{0,1\}^*\}$