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Other equivalences with 
quantifiers

Monotonicity of quantifiers

tautologies

Lemma E1:                 iff               is a tautology.
still hold (in 

predicate logic)Lemma W4:                 iff               is a tautology.

Lemma W5:     If                then                                  .
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if y is not free in P and Q

If x2 is even, then x is even (x ∊ Z).Theorem

Proof

Thanks to Bas Luttik

Let x∊ Z  
     Assume x2 is even. 	


          Assume that x is odd.	


!
                   Then x = 2y+1 for some y ∊ Z.	



                   Then x2 = (2y+1)2 = 4y2 + 4y + 1 =             	


                            2(2y2 + 2y) + 1 and 2y2 + 2y ∊ Z.	



!
                  So, x2  is odd	


!
              a contradiction.	


      So, x is even

!
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Two types of inference rules:	


   	


elimination rules 	


!
introduction rules

(particularly useful) 
instances of the single 

inference rule	



for drawing 
conclusions out of 

premises

for simplifying goals

and one new 
special rule!
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Implication introduction

How do we prove an implication?

⇒-introduction
           …	


         {Assume}	


(k)     P	


           	


          …	


!
(l-1)   Q	


         {⇒-intro on (k) and (l-1)}	



(l)   P⇒Q

flag   shows the validity of a 
hypothesis

time for an 
example!


