Equivalences with quantifiers



Renaming bound variables

Bound variables
<

V. [P:Q] "2 Y, [Ply/x]:Q[y/x]]
1.[P:Q] "2 3, [Ply/x):Q[y/x]]

if y does not occur in

P or Q (not even in Vy, Jy)



Domain splitting

Examples:
i Velt<1lva=5:2°—6x+5=0]
Wy, fe<1: 2?2 —62+52 0] AVy[z>5: 22 —6x+5 > 0]

-




Domain splitting

Examples:
i Velt<1lva=5:2°—6x+5=0] )
\”élvx[x<1:m2—6az+5/()]/\v [z >5:2° — 6+ 5> 0] )
4 )
3k[0 < k < n:k? < 10]
W0<k<n—1vk=n:k*<10]
2 0<k<n—1:k2<10] v Ig[k = n: k% < 10]




Domain splitting

J

Examples:
i Velt<1lva=5:2°—6x+5=0]
\f‘ﬁlvx[gjgl 332—6$—|—5>O]/\V;,;[$>5:£132—6£U—|—5>O]
e )
3k[0 < k < n:k? < 10]
W0<k<n—1vk=n:k*<10]
W0 <k<n—1:k%<10]v 3k =n:k* < 10]

\_

Domain splitting

V.[PvQ:Rl %V,
3,[PvQ:R] Y 3,

P:R
P:R

AV,

v d,

Q:R
Q:R




Equivalences with quantifiers

One-element domain
<

Volz = n: Q] ™2 Q[n/x
Io[z =n: Q"% Q[n/z.

- J
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Equivalences with quantifiers

One-element domain
<

Volz = n: Q)™ Q[n/x
I.[z =n: Q] ™= Q[n/x

Example:

Vel =3:2-2 > 1] “o.3>1 Empty domain
V. [F:Q] ' T
3. [F:Q) 2 F

- J




Equivalences with quantifiers

One-element domain

z=n: Q" Qn/z
z=n: Q" Qn/x

Vo

“All Marsians are green” =
\_

F:Q

F:Q

val
=T
vél Ia




Domain weakening

Intuition: The following are equivalent

V.[reD:Alx)

1.|re D:A(x)

and V.[reD= A(z)]
and di|lre D A A(x)]

The same can be done to parts of the domain
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De Morgan with quantifiers

Vo [P:Q] " 3,[P: —Q
-3, :P : Q val V. :P: ﬂQ




De Morgan with quantifiers

val -
= d,.|P:

val -
= V| P

-V,

—d.,

P:Q

P:Q

not for all = at least for one not

not exists = for all not



\_

De Morgan with quantifiers

—d.,

P:Q

P:Q

N
vél 3., P - ﬂQ_ not for all = at least for one not
vgl V. P : —'Q not exists = for all not
J
and —d = V-

Hence: —V = J—



De Morgan with quantifiers

-V, P Q Ugl = P —|Q_ not for all = at least for one not
- S val <. :
—d, P : Q = V. P : _'Q_ not exists = for all not

- J

Hence: =V =d4—= and —d =V—

It holds further that:




Substitution m

6"y

olE/P] ™= v

&/ P]

\

Sequential

6"y

8[¢/P)[n/Q] "2 [¢/P][n/Q]

\

J

\_
Simultaneous

6y

EVERY occurrence of

P is substituted!

-

8¢/ P,n/Q] 2 v[¢/P,n/Q]




holds also for . .
quantified formulas! S u bStItUtI O n m

6"y

olE/P] ™= v

&/ P]

\

Sequential

6"y

8[¢/P)[n/Q] "2 [¢/P][n/Q]

\

J

\_
Simultaneous

6y

EVERY occurrence of

P is substituted!

-

8¢/ P,n/Q] 2 v[¢/P,n/Q]




The rule of Leibnitz

\m

6"y
Cl¢] ™ Clv]

formula that has single occurrence is

replaced!

@ as a sub formula



holds also for

quantified formulas! Th e ru Ie Of Lei b n itZ

formula that has single occurrence is
replaced!

@ as a sub formula



Other equivalences with
quantifiers

Exchange trick

V. [P:Q] & ¥, [~Q:—P]
1.[P:Q] "2 3,[Q:P]

- J

~




Other equivalences with

quantifiers
N No wonder as
V. [P:Q] Y V,[~Q:—P] Vo[ P:Q] 2 V. [P = Q]
1.[P:Q] "2 3,[Q:P] 3L[P:Q) = %P A Q)

\- Y,




Other equivalences with
quantifiers

Exchange trick

V. [P:Q] & ¥, [~Q:—P]
1.[P:Q] "2 3,[Q:P]

No wonder as

~

V. [P:Q] & V[P = Q]

3,[P:Q] "2 3,[P A Q]

Term splitting

\_

Va
e

P:Q AR

P:Qv R

val
— ‘v’m

val
= Elx

P:Q.
P:Q




Other equivalences with
quantifiers

Monotonicity of quantifiers
P:Q
P:Q

V.|P:Q = R| = (V,
V.[P:Q = R| = (3,

P:R
P:R
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Other equivalences with
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Monotonicity of quantifiers
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Other equivalences with
quantifiers

Monotonicity of quantifiers
P:Q
P:Q

V.|P:Q = R| = (V,
V.[P:Q = R| = (3,

= V.,

= 4.

P:R

P:R

- J
tautologies

LemmaEl: P2 Qiff P < Q is a tautology.

val

still hold (in

LemmaW4: P = Q iff P = () is a tautology. [N




Other equivalences with
quantifiers

Monotonicity of quantifiers

V.[P:Q = R] = (V,[P:Q] = V,[P:R]) Y T
V.|P:Q = R| = (3.|P:Q| = 3.|P:R]) vt

- J
tautologies

LemmaEl: P2 Qiff P < Q is a tautology.
val still hold (in

LemmaW4: P = Q iff P = () is a tautology. [N

val val

LemmaW5: If Q = R then V,|P:Q| = V.|P:R].




Derivations / Reasoning



Limitations of proofs by
calculation

Proofs by calculation are formal and well-structured, but
often undirected and not particularly intuitive.

P A (PvQ) = (PvF) A(PVQ)
= Pv(F AQ)
=PvF
= p
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Limitations of proofs by
calculation

Proofs by calculation are formal and well-structured, but
often undirected and not particularly intuitive.

g )
P A (PVQ) = (PVF) A(PVQ)

val

= Pv(F AQ)

=PvF more intuitively by

va .
=P reasoning
N y

we can prove this

Conclusions

[ PA(PVQ)ZP PA(PVQ) & PET J




An example of a mathematical
proof

Proof Let xe Z be such that x2 is even.

If x2 is even, then x is even (x € Z).

We need to prove that x is even too.
Assume that X is odd, towards a contradiction.

If x is odd than x = 2y+| for some y € Z.

Then x? = (2y+1)2 =4y2 + 4y + | = 2(2y? + 2y) + |
and 2y? + 2y ¢ Z.

So, x? is odd too, and we have a contradiction.
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An example of a mathematical
proof

If x2 is even, then x is even (x € Z). (sub)goal

Proof Let xe 7 be such that x? is even. generating hypothesis

We need to prove that x is even too.
pure hypothesis

Assume that X is odd, towards a contradiction.
conclusion

If x is odd than x = 2y+| for some y € Z.

Then x? = 2y+1)2 = 4y2 + 4y + | = 2(2y? + 2y) + |
and 2y* + 2y € Z.

So, x? is odd too, and we have a contradiction.



An example of a mathematical
proof

S —
If x is odd than

The

and 2y y € Z.

So,- and we have a-




Exposing logical structure

Proof Let xe 7

If x2 is even, then x is even (x € Z).

2

Assume X“ is even.

Assume that x is odd.

Then x = 2y+| for some y ¢ Z.

Then x? = 2y+1)2 =4y + 4y + | =
2(2y? + 2y) + | and 2y% + 2y € Z.

So, x% is odd

a contradiction.
So, X is even

Thanks to Bas Luttik



Single inference rule

Q is a correct conclusion from n premises Py, .., P,
iff

(PiA P2 A...A Py) = Q



Single inference rule
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iff |
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val

If n=0,then Py AP A... AP,=T



Single inference rule

Q is a correct conclusion from n premises Py, .., P,

iff |
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val
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val

Note that T = Q means that Q =T



Single inference rule

Q is a correct conclusion from n premises Py, .., P,

iff |
(PiA P2 A...A Py) =Q

val

If n=0,then Py AP A... AP,=T

val

Note thatT = Q means that Q =T Q holds

unconditionally




Derivation

Q is a correct conclusion from n premises Py, .., P,

iff |
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Derivation

a formal system

based on the single
Q is a correct conclusion from n premises Py, .., P, inference rule

iff

for proofs that closely
(PiA P2 A.A Pr) EQ follow our

val
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Implication elimination
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Implication elimination
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