Propositional Logic
Standard Equivalences



Commutativity and
Associativity

o)

P/\QUQZQ/\P
PVQUélQVP
PesQ¥Qerp
. /




Commutativity and
Associativity

o)

P/\QUQZQ/\P

PVQUélQVP

PesQ¥Qerp
/

\_

val

P=Q0Q # Q=P

P|lQI||P=0Q| Q=P

0| 1 1 0




Commutativity and
Associativity

o)

P/\Qng/\P
PVQUélQVP

PesQ¥Qerp
\§ J

Associativity

(PAQ)ARY P A(QAR)
(PVQ)VR@ZPV(Q\/R)
k(P@Q)@RUgP@)(Q@R)

~N

J




Commutativity and
Associativity

o)

P/\Qng/\P
PVQUélQVP

PesQ¥Qerp
\§ J

Associativity

(PAQ)ARY P A(QAR)
(PVQ)VR@ZPV(Q\/R)
k(P@Q)@RUgP@)(Q@R)

~N

J

val

(P=Q)=R # P=(QQ=> R)



Commutativity and
Associativity

M Associativity
.

PAQ2 QAP (PAQ)AR™ P A(QAR)
PvQ2QvP (PVvQ)VR™ Pv(QvR)
kP@QUQZQ®P) \(P@Q)@RUQZP®(Q®R))

val

(P=Q)=R # P=(QQ=> R)

PIlQ|R| (P==Q)=R|P=(Q=R)




Commutativity and
Associativity

M Associativity
.

PAQ2 QAP (PAQ)AR™ P A(QAR)
PvQ2QvP (PVvQ)VR™ Pv(QvR)
kP@QUQZQ®P) \(P@Q)@RUQZP®(Q®R))

val

(P=Q)=R # P=(QQ=> R)

PIQ|R|(P=Q)=R|P=(Q=R)




Commutativity and
Associativity

o)

P/\QUQZQ/\P
PVQUélQVP

PesQ¥Qerp
\§ J

Associativity

(PAQ)ARY P A(QAR)
(PVQ)VR@ZPV(Q\/R)
k(P@Q)@RUgP@)(Q@R)

~N

J

val

(P=Q)=R # P=(QQ=> R)

R| (P=Q)=R| P=(Q=R)

0 0 1




ldempotence and Double

Negation
val
PAPYPp P=P#P

val

val
Pv P =P Pe P £ P

\- J




ldempotence and Double

Negation
val
PAPY P P=P # P
val val
PvpP =P PsP #£P

-

J

Double negation

——pp

)




—~F T

T andF



T andF

val
~L =L -P2 P F

—~F T




T andF

Negation

Contradiction

PA—-PYEp




T andF

Negation

Contradiction

PA—-PYEp

Excluded Middle

Pv-P%rT




T andF

Negation

Contradiction T/F - elimination

PA—-PYEp P A vl

P AF vaf
Excluded Middle Py T
pPvFY

Pv-P%rT




T andF

Negation

Contradiction T/F - elimination

P/\_'PvélF P/\Tvglp
PAFYFE

: val
Excluded Middle PvT =T
PyvFYp

Pv-P%rT




Distributivity, De Morgan




Distributivity, De Morgan

~(PAQ) ™ ~Pv-Q

. i SV —PA-Q




Implication and Contraposition

Implication

P=0Q"%-pPvQ
val
kaQ— —P =0 )




Implication and Contraposition

Implication

P=0Q"%-pPvQ
val
kaQ— —P = () )

Contraposition
P:Q?ﬁl ﬂQ:ﬁP]




Implication and Contraposition

Implication

P=0Q"%-pPvQ
val
\PVQ— —P = () )

Contraposition
val
P:QvﬁlﬂQ:ﬂP] P=Q # -P=—(
common
mistake!




Bi-implication and Self-
equivalence

Bi-implication
PeQ™(P=QnQ=P)]




Bi-implication and Self-
equivalence

Bi-implication
PeQ™(P=QnQ=P)]

Self-equivalence

P e p




Bi-implication and Self-
equivalence

Bi-implication
PeQ™(P=QnQ=P)]

Self-equivalence

PepXr




Calculating with equivalent
propositions
(the use of standard equivalences)



Recall...

Definition: Two abstract propositions P and Q are equivalent,
notation P = Q, iff they induce the same truth-function.

on any sequence containing their common variables

Val °

Property: The relation = is an equivalence on the set of all
abstract propositions.
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Definition: The abstract iroposition P is stronger than Q,

always when P is true, Q is weaker

Q is also true than P
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Properties

LemmaEl: P % Q iff P < () is a tautology.

val val

Lemma EWI: P2 Q iff P=Q and Q = P.

LemmaW2: Weakening is a reflexive relation on abstract
propositions.

LemmaVW3: Weakening is a transitive relation on abstract
propositions.

val

LemmaW4: P = Q iff P = () is a tautology.
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Calculating with weakenings
(the use of standard weakenings)
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