Propositional Logic Standard Equivalences

Commutativity and Associativity

$$
\begin{gathered}
\text { Commutativity } \\
P \wedge Q \stackrel{\text { val }}{=} Q \wedge P \\
P \vee Q \stackrel{\text { val }}{=} Q \vee P \\
P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P
\end{gathered}
$$

Commutativity and Associativity

$$
\begin{aligned}
& \text { Commutativity } \\
& P \wedge Q \stackrel{\text { val }}{=} Q \wedge P \\
& P \vee Q \stackrel{\text { val }}{=} Q \vee P \\
& P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P
\end{aligned}
$$

$$
P \Rightarrow Q \stackrel{v a l}{\neq} Q \Rightarrow P
$$

P	Q	$P \Rightarrow Q$	$Q \Rightarrow P$
0	1	1	0

Commutativity and Associativity

Commutativity
$P \wedge Q \stackrel{v a l}{=} Q \wedge P$
$P \vee Q \stackrel{\text { val }}{=} Q \vee P$
$P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P$

Associativity

$$
\begin{aligned}
& (P \wedge Q) \wedge R \stackrel{v a l}{=} P \wedge(Q \wedge R) \\
& (P \vee Q) \vee R \stackrel{v a l}{=} P \vee(Q \vee R) \\
& (P \Leftrightarrow Q) \Leftrightarrow R \stackrel{v a l}{=} P \Leftrightarrow(Q \Leftrightarrow R)
\end{aligned}
$$

Commutativity and Associativity

Commutativity
$P \wedge Q \stackrel{\text { val }}{=} Q \wedge P$
$P \vee Q \stackrel{\text { val }}{=} Q \vee P$
$P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P$

Associativity

$$
\begin{array}{r}
(P \wedge Q) \wedge R \stackrel{\text { val }}{=} P \wedge(Q \wedge R) \\
(P \vee Q) \vee R \stackrel{v a l}{=} P \vee(Q \vee R) \\
(P \Leftrightarrow Q) \Leftrightarrow R \stackrel{v a l}{=} P \Leftrightarrow(Q \Leftrightarrow R)
\end{array}
$$

$$
(P \Rightarrow Q) \Rightarrow R \stackrel{v a l}{\neq} P \Rightarrow(Q \Rightarrow R)
$$

Commutativity and Associativity

Commutativity
$P \wedge Q \stackrel{\text { val }}{=} Q \wedge P$
$P \vee Q \stackrel{\text { val }}{=} Q \vee P$
$P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P$

$$
\begin{aligned}
& \text { Associativity } \\
& (P \wedge Q) \wedge R \stackrel{v a l}{ } P \wedge(Q \wedge R) \\
& (P \vee Q) \vee R \xlongequal{v a l} P \vee(Q \vee R) \\
& (P \Leftrightarrow Q) \Leftrightarrow R \stackrel{v a l}{=} P \Leftrightarrow(Q \Leftrightarrow R)
\end{aligned}
$$

$$
(P \Rightarrow Q) \Rightarrow R^{v a l} \neq P \Rightarrow(Q \Rightarrow R)
$$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$

Commutativity and Associativity

Commutativity
$P \wedge Q \stackrel{\text { val }}{=} Q \wedge P$
$P \vee Q \stackrel{\text { val }}{=} Q \vee P$
$P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P$

$$
\begin{aligned}
& \text { Associativity } \\
& (P \wedge Q) \wedge R \stackrel{v a l}{ } P \wedge(Q \wedge R) \\
& (P \vee Q) \vee R \xlongequal{v a l} P \vee(Q \vee R) \\
& (P \Leftrightarrow Q) \Leftrightarrow R \stackrel{v a l}{=} P \Leftrightarrow(Q \Leftrightarrow R)
\end{aligned}
$$

$$
(P \Rightarrow Q) \Rightarrow R^{v a l} \neq P \Rightarrow(Q \Rightarrow R)
$$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$
0	1	0		

Commutativity and Associativity

Commutativity
$P \wedge Q \stackrel{\text { val }}{=} Q \wedge P$
$P \vee Q \stackrel{\text { val }}{=} Q \vee P$
$P \Leftrightarrow Q \stackrel{\text { val }}{=} Q \Leftrightarrow P$

$$
\begin{aligned}
& \text { Associativity } \\
& (P \wedge Q) \wedge R \stackrel{\text { val }}{ } P \wedge(Q \wedge R) \\
& (P \vee Q) \vee R \stackrel{v a l}{=} P \vee(Q \vee R) \\
& (P \Leftrightarrow Q) \Leftrightarrow R \stackrel{v a l}{=} P \Leftrightarrow(Q \Leftrightarrow R)
\end{aligned}
$$

$$
(P \Rightarrow Q) \Rightarrow R \stackrel{v a l}{\neq} P \Rightarrow(Q \Rightarrow R)
$$

P	Q	R	$(P \Rightarrow Q) \Rightarrow R$	$P \Rightarrow(Q \Rightarrow R)$
0	1	0	0	1

Idempotence and Double Negation

$$
\begin{aligned}
& \text { Idempotence } \\
& P \wedge P \stackrel{v a l}{=} P \\
& P \vee P \stackrel{v a l}{=} P
\end{aligned} \quad P \Rightarrow P \stackrel{v a l}{\neq} P
$$

Idempotence and Double Negation

$$
\left.\begin{array}{l}
\text { Idempotence } \\
P \wedge P \stackrel{v a l}{=} P \\
P \vee P \stackrel{v a l}{=} P
\end{array}\right\} \begin{aligned}
& P \Rightarrow P \stackrel{v a l}{\neq} P \\
& P \Leftrightarrow P \stackrel{v a l}{\neq} P
\end{aligned}
$$

Double negation

$$
\neg \neg P \stackrel{v a l}{=} P
$$

T and F

T and F

T and F

$$
\begin{aligned}
& \text { Inversion } \\
& \neg T \stackrel{\text { val }}{=} F \\
& \neg F \stackrel{\text { val }}{=} T
\end{aligned}
$$

> Contradiction
> $P \wedge \neg P \stackrel{\text { val }}{=} F$

T and F

$$
\begin{aligned}
& \text { Inversion } \\
& \neg T \stackrel{\text { val }}{=} F \\
& \neg F \stackrel{\text { val }}{=} T
\end{aligned}
$$

Contradiction
 $P \wedge \neg P \stackrel{v a l}{=} F$

Excluded Middle
 $P \vee \neg P \stackrel{v a l}{=} T$

T and F

Contradiction
$P \wedge \neg P \stackrel{v a l}{=} F$

Excluded Middle
$P \vee \neg P \stackrel{v a l}{=} T$

> T/F - elimination
> $P \wedge T \stackrel{v a l}{=}$
> $P \wedge F \stackrel{v a l}{=}$
> $P \vee T \stackrel{v a l}{=}$
> $P \vee F \stackrel{v a l}{=}$

T and F

Negation

$$
\neg P \stackrel{v a l}{=} P \Rightarrow F
$$

Contradiction
$P \wedge \neg P \stackrel{v a l}{=} F$

Excluded Middle

$P \vee \neg P \stackrel{v a l}{=} T$

T/F - elimination

$P \wedge T \stackrel{v a l}{=} P$
$P \wedge F \stackrel{v a l}{=} F$
$P \vee T \stackrel{v a l}{=} T$
$P \vee F \stackrel{v a l}{=} P$

Distributivity, De Morgan

Distributivity
 $P \wedge(Q \vee R) \stackrel{\text { val }}{=}(P \wedge Q) \vee(P \wedge R)$
 $P \vee(Q \wedge R) \stackrel{v a l}{=}(P \vee Q) \wedge(P \vee R)$

Distributivity, De Morgan

Distributivity
 $P \wedge(Q \vee R) \stackrel{v a l}{=}(P \wedge Q) \vee(P \wedge R)$
 $P \vee(Q \wedge R) \stackrel{v a l}{=}(P \vee Q) \wedge(P \vee R)$

De Morgan

$$
\begin{aligned}
& \neg(P \wedge Q) \stackrel{v a l}{=} \neg P \vee \neg Q \\
& \neg(P \vee Q) \stackrel{v a l}{=} \neg P \wedge \neg Q
\end{aligned}
$$

Implication and Contraposition

$$
\begin{aligned}
& \text { Implication } \\
& P \Rightarrow Q \stackrel{\text { val }}{=} \neg P \vee Q \\
& P \vee Q \stackrel{\text { val }}{=} \neg P \Rightarrow Q
\end{aligned}
$$

Implication and Contraposition

Implication

$$
\begin{aligned}
& P \Rightarrow Q \stackrel{v a l}{=} \neg P \vee Q \\
& P \vee Q \stackrel{v a l}{=} \neg P \Rightarrow Q
\end{aligned}
$$

Contraposition

$$
P \Rightarrow Q \stackrel{v a l}{=} \neg Q \Rightarrow \neg P
$$

Implication and Contraposition

Implication

$$
\begin{aligned}
& P \Rightarrow Q \stackrel{v a l}{=} \neg P \vee Q \\
& P \vee Q \stackrel{v a l}{=} \neg P \Rightarrow Q
\end{aligned}
$$

Contraposition

$$
P \Rightarrow Q \stackrel{v a l}{=} \neg Q \Rightarrow \neg P
$$

Bi-implication and Selfequivalence

Bi-implication
 $P \Leftrightarrow Q \stackrel{v a l}{=}(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

Bi-implication and Selfequivalence

Bi-implication
 $P \Leftrightarrow Q \stackrel{\text { val }}{=}(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

Self-equivalence
$P \Leftrightarrow P \stackrel{v a l}{=}$

Bi-implication and Selfequivalence

Bi-implication
 $P \Leftrightarrow Q \stackrel{\text { val }}{=}(P \Rightarrow Q) \wedge(Q \Rightarrow P)$

Self-equivalence
$P \Leftrightarrow P \stackrel{v a l}{=} T$

Calculating with equivalent propositions
 (the use of standard equivalences)

Recall...

Definition: Two abstract propositions P and Q are equivalent, notation $\mathrm{P} \stackrel{\text { vel }}{=} \mathrm{Q}$, iff they induce the same truth-function.
on any sequence containing their common variables

Property: The relation $\stackrel{\text { val }}{=}$ is an equivalence on the set of all abstract propositions.

Substitution

Simple

$$
\frac{\phi \stackrel{v a l}{=} \psi}{\phi[\xi / P] \stackrel{v a l}{=} \psi[\xi / P]}
$$

Substitution

Substitution

Substitution

Substitution

meta rule

The rule of Leibnitz

Strengthening and weakening

We had

Definition: Two abstract propositions P and Q are equivalent, notation $\mathrm{P} \stackrel{\text { val }}{=} \mathrm{Q}$, iff
(I) Always when P has truth value I, also Q has truth value I , and
(2) Always when Q has truth value I, also P has truth value I.

We had

Definition: Two abstract propositions P and Q are equivalent, notation $\mathrm{P} \stackrel{\text { nal }}{=} \mathrm{Q}$, iff
(I) Always when P has truth value I, also Q has truth value I, and
(2) Always when Q has truth value I, also 1 .
if we relax this,
we get
strengthening

Strengthening

Definition: The abstract proposition P is stronger than Q , notation P 尝 Q , iff (H)Always when P has truth value I , also Q has truth value I,and (2) Always when Q has truth value-1, atso- P has truth value-1.

Strengthening

Definition: The abstract proposition P is stronger than Q , notation $P \stackrel{\text { val }}{=} \mathrm{Q}$, iff $(+$ Always when P has truth value I, also Q has truth value 1 ,and(2) Always when Q has truth-value-1, also-Phas truth value-1.
Q is weaker than P

Strengthening

Definition: The abstract proposition P is stronger than Q , notation $P{ }^{\text {展 }} \mathrm{Q}$, iff always when P has truth value I , also Q has truth value I.

Strengthening

Definition: The abstract proposition P is stronger than Q , notation P 党 Q, iff always when P has truth value I , also Q has truth value I.

always when P is true,
 Q is also true

Strengthening

Definition: The abstract proposition P is stronger than Q , notation $P \stackrel{\text { 复 }}{ } \mathrm{Q}$, iff always when P has truth value I , also Q has truth value I.

> always when P is true,
> Q is also true

Q is weaker than P

Properties

Properties

Lemma EI: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.

Properties

Lemma EI: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.
Lemma EWI: $P \stackrel{v a l}{=} Q \quad$ iff $P \stackrel{v a l}{\models} Q$ and $Q \stackrel{v a l}{\models} P$.

Properties

Lemma EI: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.
Lemma EWI: $P \stackrel{v a l}{=} Q \quad$ iff $P \stackrel{v a l}{\models} Q$ and $Q \stackrel{v a l}{\models} P$.
Lemma W2: Weakening is a reflexive relation on abstract propositions.

Properties

Lemma EI: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.
Lemma EWI: $P \stackrel{v a l}{=} Q \quad$ iff $P \stackrel{v a l}{\models} Q$ and $Q \stackrel{v a l}{\models} P$.
Lemma W2: Weakening is a reflexive relation on abstract propositions.

Lemma W3: Weakening is a transitive relation on abstract propositions.

Properties

Lemma EI: $\quad P \stackrel{v a l}{=} Q$ iff $P \Leftrightarrow Q$ is a tautology.
Lemma EWI: $P \stackrel{v a l}{=} Q \quad$ iff $P \stackrel{v a l}{\models} Q$ and $Q \stackrel{v a l}{\models} P$.
Lemma W2: Weakening is a reflexive relation on abstract propositions.

Lemma W3: Weakening is a transitive relation on abstract propositions.
val

Lemma W4: $\quad P \models Q$ iff $P \Rightarrow Q$ is a tautology.

Standard Weakenings

Calculating with weakenings (the use of standard weakenings)

Substitution

Simultanious

$$
\frac{\stackrel{\text { val }}{\models} \psi}{\phi[\xi / P, \eta / Q] \stackrel{\text { val }}{\models} \psi[\xi / P, \eta / Q]}
$$

Substitution

just holds

Sequential

$$
\phi \quad \begin{gathered}
v a l \\
\phi=\psi
\end{gathered}
$$

Simultanious

$$
\frac{\phi \stackrel{\text { val }}{\models} \psi}{\phi[\xi / P, \eta / Q] \stackrel{\text { val }}{\models} \psi[\xi / P, \eta / Q]}
$$

Substitution

just holds

The rule of Leibnitz

does not hold for weakening!

The rule of Leibnitz

does not hold for weakening!

Monotonicity

$$
\frac{P \stackrel{v a l}{\models} Q}{P \wedge R \stackrel{v a l}{\models} Q \wedge R}
$$

$$
\frac{P \stackrel{v a l}{\models} Q}{P \vee R \stackrel{\text { val }}{\models} Q \vee R}
$$

