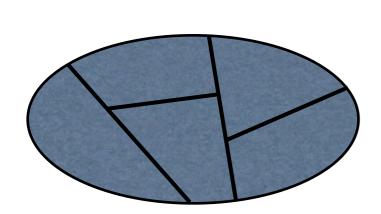


Partitions = Equivalences



Partitions = Equivalences

Theorem PE: Let X be a set.

- (I) If R is an equivalence on X, then the set $P(R) = \{ [x]_R \mid x \in X \}$ is a partition of X.
- (2) If P is a partition of X, then the relation $R(P) = \{(x,y) \in X \times X \mid \text{there is } A \in P \text{ such that } x,y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to each other, i.e., R(P(R)) = R and P(R(P)) = P.

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^* , is the relation

$$\mathbf{R}^* = \bigcup_{\mathbf{n} \in \mathbb{N}} \mathbf{R}^{\mathbf{n}}$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R^* , is the relation

$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Let R be a relation on a set X. The transitive closure (transitive Hülle) of R, notation R^+ , is the relation

$$R^+ = \bigcup_{n \in \mathbb{N}, n \neq 0} R^n$$

The reflexive and transitive closure (reflexive und transitive Hülle) of R, notation R*, is the relation

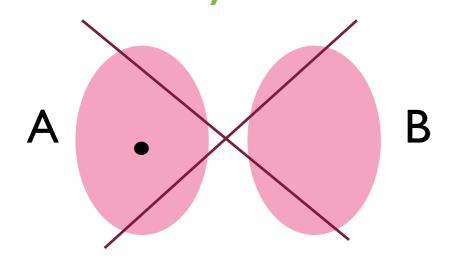
$$R^* = \bigcup_{n \in \mathbb{N}} R^n$$

Proposition TC: Let R be a relation on X. The transitive closure of R is the smallest transitive relation that contains R. The reflexive and transitive closure of R is the smallest reflexive and transitive relation that contains R.

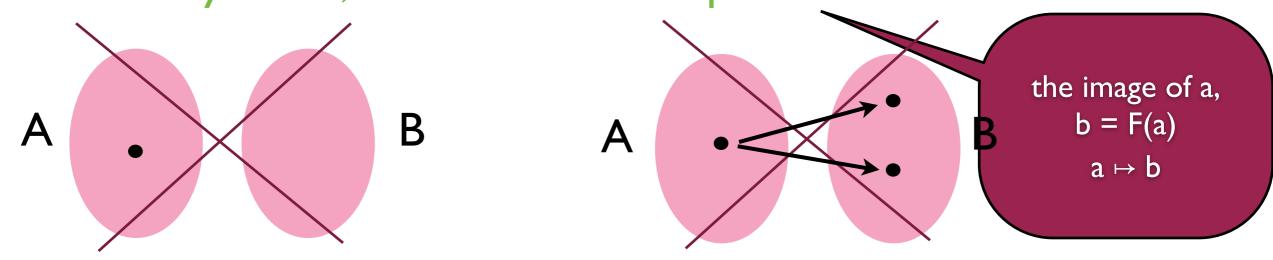
Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation $F: A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb.

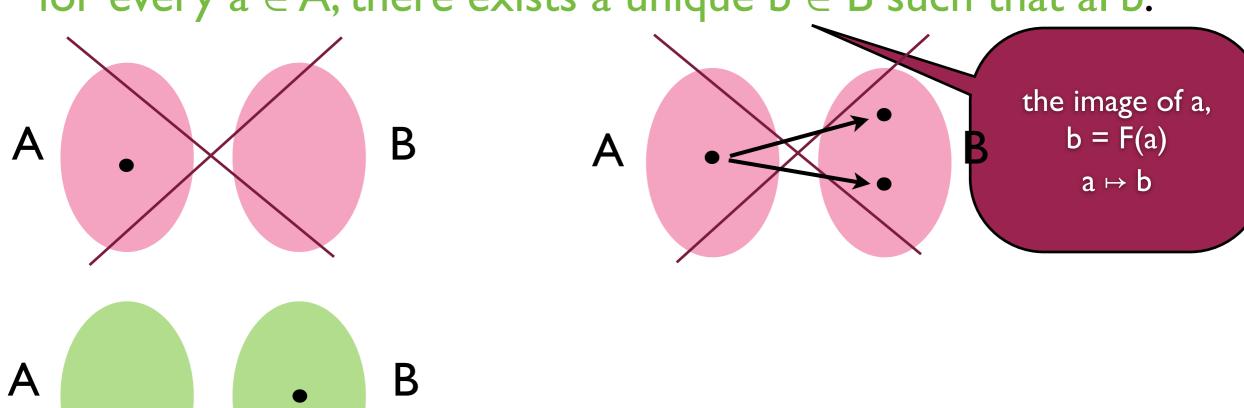
the image of a, b = F(a) $a \mapsto b$

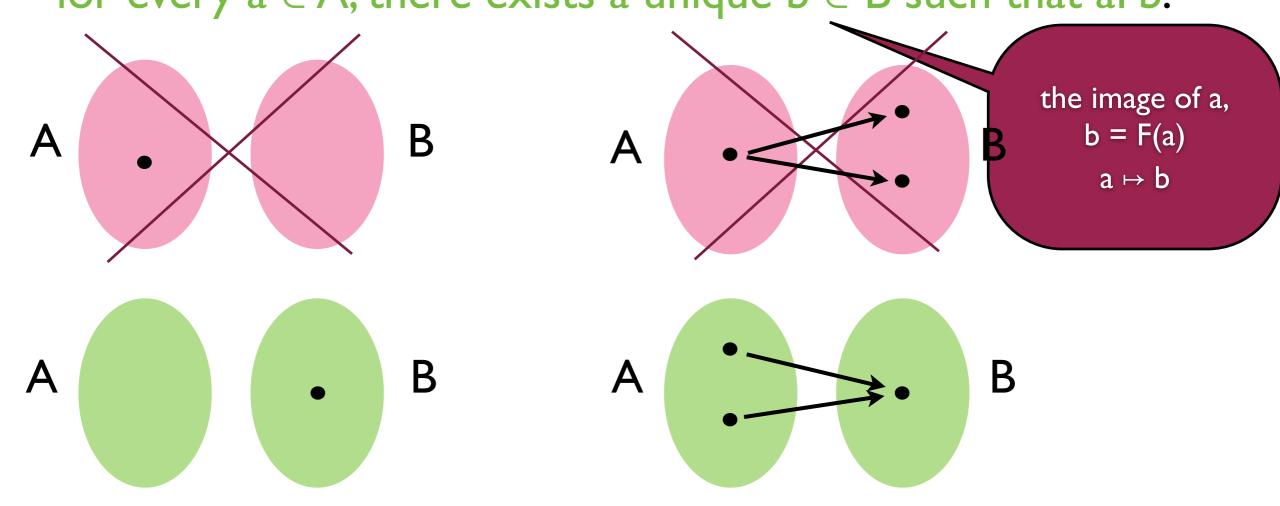
Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation $F: A \longrightarrow B$ iff for every $a \in A$, there exists a unique $b \in B$ such that aFb.



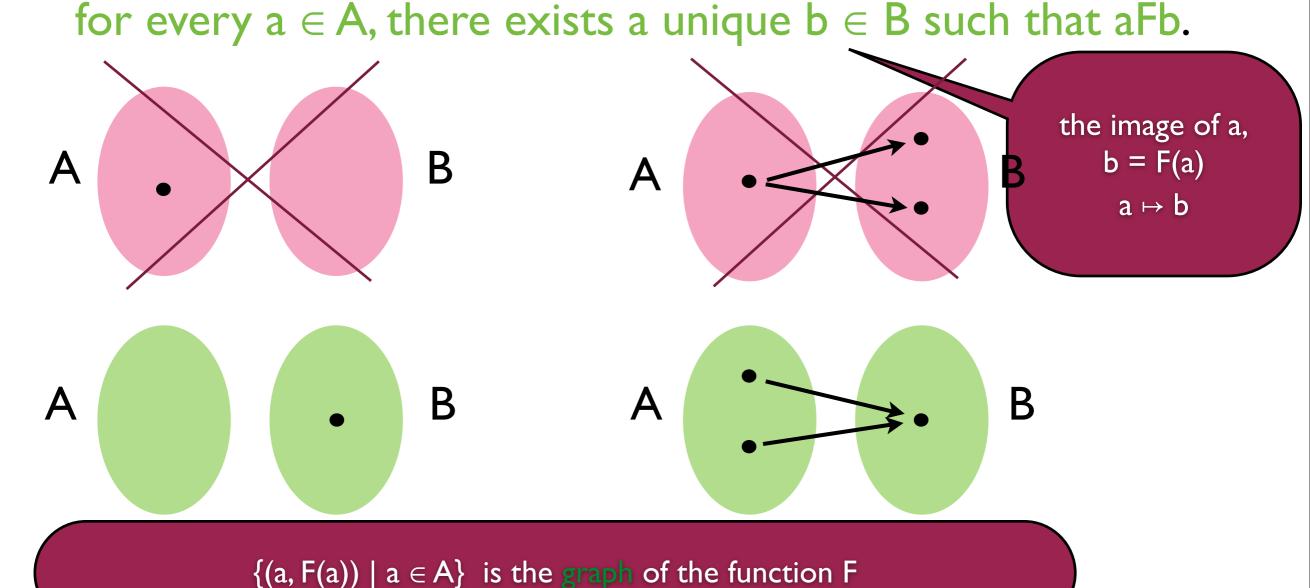
the image of a, b = F(a) a → b







Def. If A and B are sets, then a relation $F \subseteq A \times B$ "is" a function (mapping, Abbildung) from A to B, notation $F: A \longrightarrow B$ iff



When f: A \longrightarrow B then dom f = A and cod f = B

When f: A \longrightarrow B then dom f = A and cod f = B

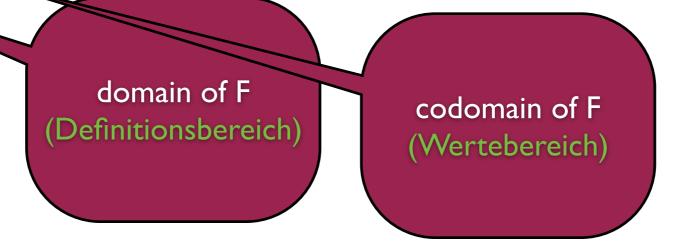
domain of F (Definitionsbereich)

When f: $A \longrightarrow B$ then dom f = A and cod f = B

domain of F
(Definitionsbereich)

codomain of F (Wertebereich)

When f: A \longrightarrow B then dom f = A and cod f = B



Let $f: A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

When f: A \longrightarrow B then dom f = A and cod f = B

domain of F
(Definitionsbereich)

codomain of F
(Wertebereich)

Let $f: A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

if $a \in A$ ', then $f(a) \in f(A')$

When f: A \longrightarrow B then dom f = A and cod f = B

domain of F (Definitionsbereich)

codomain of F (Wertebereich)

Let $f: A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A)$

When f: A \longrightarrow B then dom f = A and cod f = B

domain of F
(Definitionsbereich)

codomain of F
(Wertebereich)

Let $f: A \longrightarrow B$ and $A' \subseteq A$.

The image (Bild) of A' is the set $f(A') = \{f(a) \mid a \in A'\} \subseteq B$.

 $f(A') = \{b \in B \mid \text{there is an } a \in A' \text{ with } b = f(a)\}$

if $a \in A$ ', then $f(a) \in f(A')$

So f extends to a function f: $\mathcal{P}(A) \longrightarrow \mathcal{P}(B)$, the image-function.

```
Let f: A \longrightarrow B and B' \subseteq B.
The inverse image (Urbild) of B' is the set f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.
```

```
Let f: A \longrightarrow B and B' \subseteq B.
```

The inverse image (Urbild) of B' is the set $f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$

 $a \in f^{-1}(B')$ iff $f(a) \in B'$

Let $f: A \longrightarrow B$ and $B' \subseteq B$.

The inverse image (Urbild) of B' is the set $f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$ $a \in f^{-1}(B') \text{ iff } f(a) \in B'$

Again the inverse image induces a function f^{-1} : $\mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

Let $f: A \longrightarrow B$ and $B' \subseteq B$.

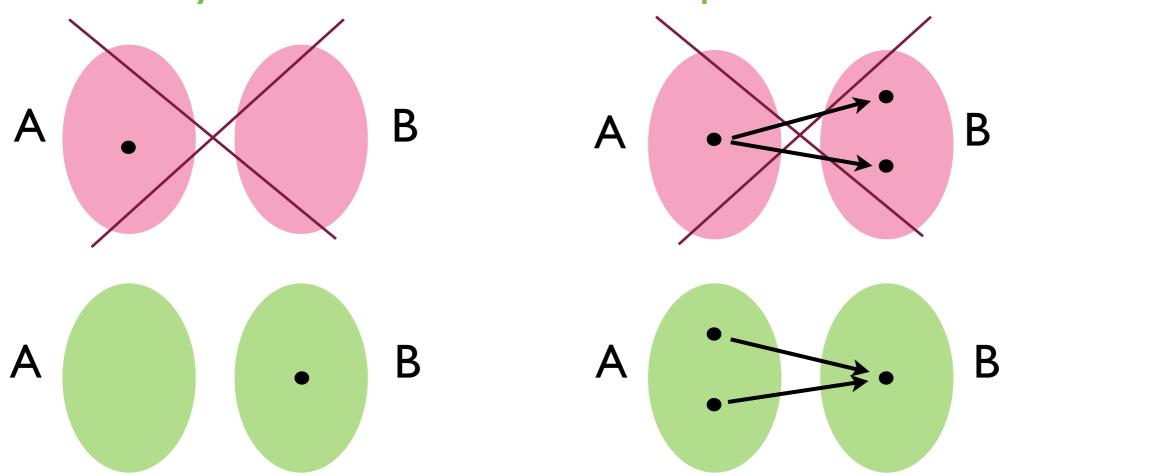
The inverse image (Urbild) of B' is the set
$$f^{-1}(B') = \{a \mid f(a) \in B'\} \subseteq A.$$

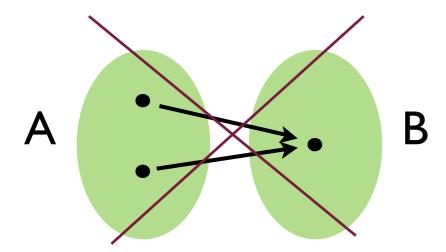
 $a \in f^{-1}(B')$ iff $f(a) \in B'$

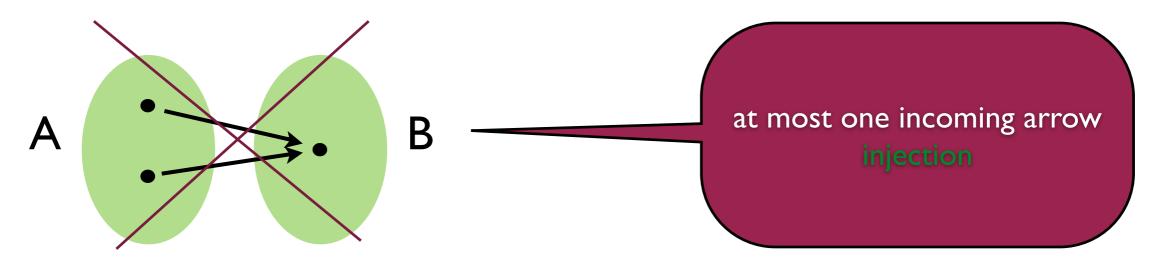
Again the inverse image induces a function f^{-1} : $\mathcal{P}(B) \longrightarrow \mathcal{P}(A)$, the inverse-image-function.

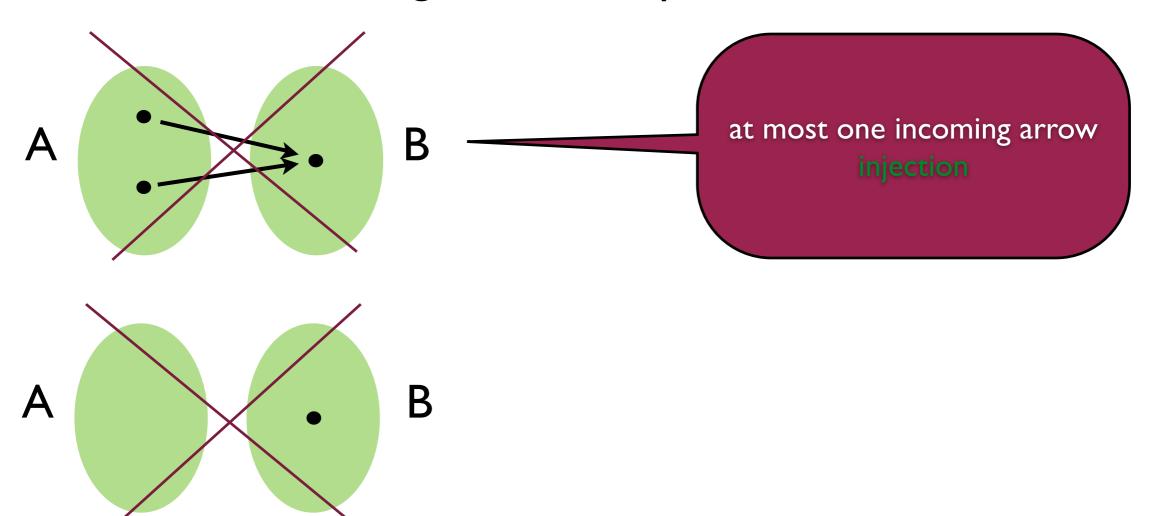
Lemma FI: Let $f: A \longrightarrow B$, $A' \subseteq A$, and $B' \subseteq B$. Then $A' \subseteq f^{-1}(f(A'))$ and $f(f^{-1}(B')) \subseteq B'$ (in general no more than this holds)

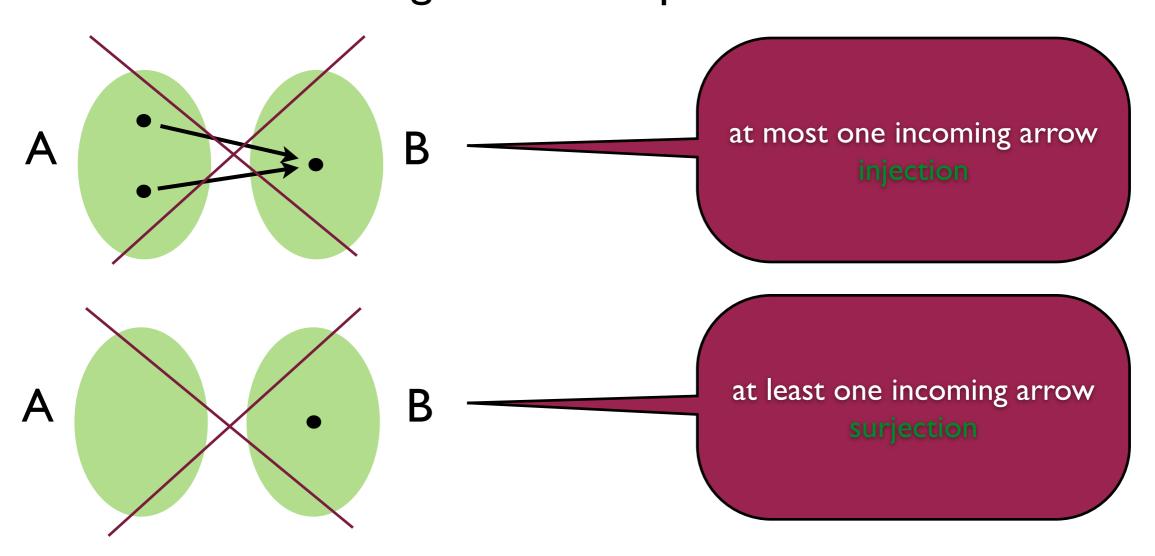
Recall...

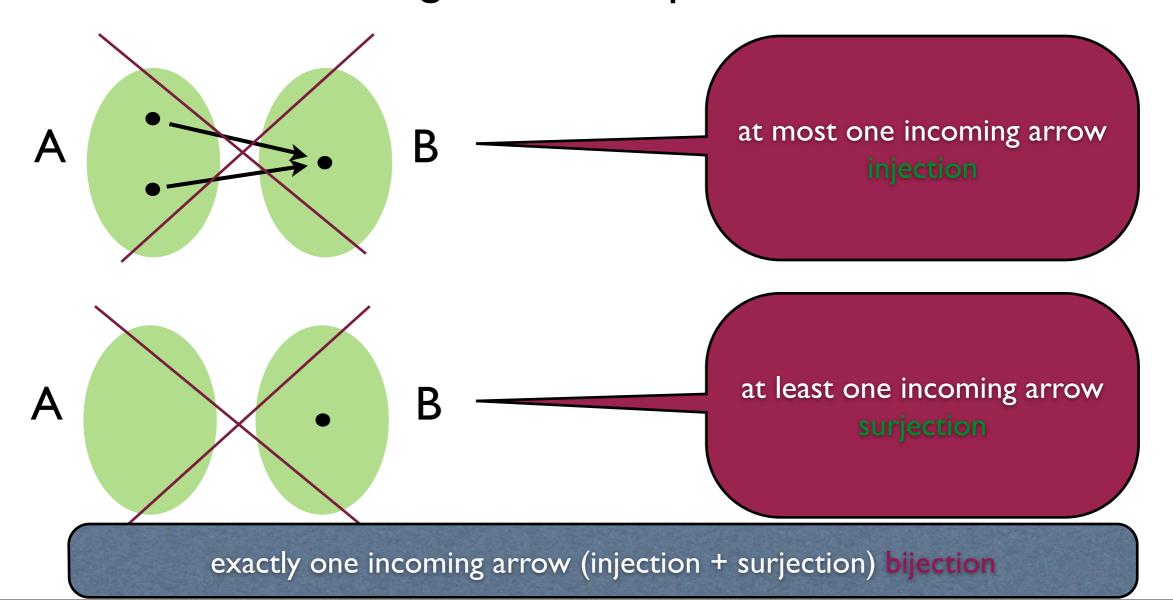




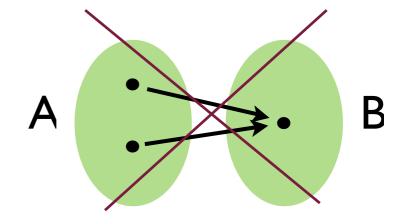




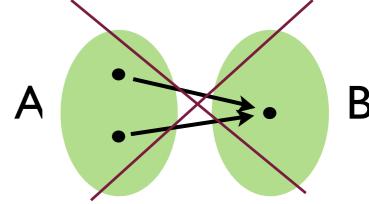




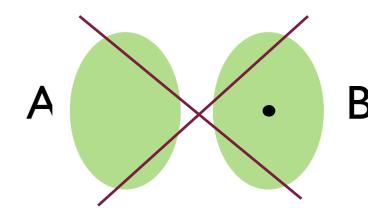
Def. A function $f:A \longrightarrow B$ is injective iff for all $a, b \in A$, if f(a) = f(b) then a = b.



Def. A function $f:A \longrightarrow B$ is injective iff for all $a, b \in A$, if f(a) = f(b) then a = b.

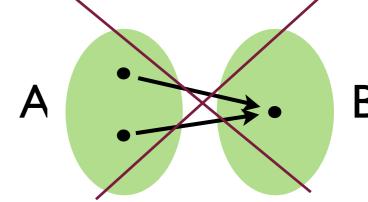


Def. A function $f: A \longrightarrow B$ is surjective iff for all $b \in B$, there exists $a \in A$ such that f(a) = b.



Special functions

Def. A function $f:A \longrightarrow B$ is injective iff for all $a, b \in A$, if f(a) = f(b) then a = b.



Def. A function $f: A \longrightarrow B$ is surjective iff for all $b \in B$, there exists $a \in A$ such that f(a) = b.

Def. A function $f:A \longrightarrow B$ is bijective iff for all $b \in B$, there exists unique $a \in A$ with f(a) = b.

```
Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, |f^{-1}(\{b\})| \le 1.
```

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma S1: A function f:A \longrightarrow B is surjective iff $|f^{-1}(\{b\})| \ge 1$ for all $b \in B$ iff f(A) = B.

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma SI: A function f:A → B is surjective iff

 $|f^{-1}(\{b\})| \ge 1$ for all $b \in B$ iff f(A) = B.

at least one incoming arrow surjection

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma SI: A function f:A → B is surjective iff

$$|f^{-1}(\{b\})| \ge 1$$
 for all $b \in B$ iff $f(A) = B$.

at least one incoming arrow surjection

Lemma B1: A function f:A \longrightarrow B is bijective iff $|f^{-1}(\{b\})| = 1$ for all $b \in B$ iff f is both injective and surjective.

Lemma II: A function f:A \longrightarrow B is injective iff for all b \in B, $|f^{-1}(\{b\})| \le 1$.

at most one incoming arrow injection

Lemma SI: A function f:A → B is surjective iff

$$|f^{-1}(\{b\})| \ge 1$$
 for all $b \in B$ iff $f(A) = B$.

at least one incoming arrow surjection

Lemma BI: A function f:A → B is bijective iff

$$|f^{-1}(\{b\})| = 1$$
 for all $b \in B$ iff f is both injective and surjective.

exactly one incoming arrow bijection

Lemma I2: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f(x) \in f(A')$ iff $x \in A'$.

Lemma 12: Let $f:A \longrightarrow B$ be injective and let A' $\subseteq A$. Then

 $f(x) \in f(A') \text{ iff } x \in A'.$

if holds always!

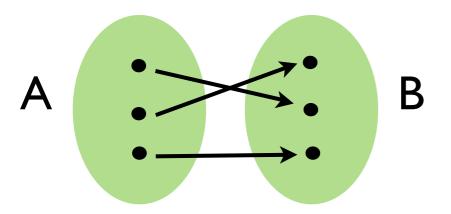
Lemma I2: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f(x) \in f(A') \text{ iff } x \in A'.$ if holds always!

Prop. I3: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f^{-1}(f(A')) = A'$.

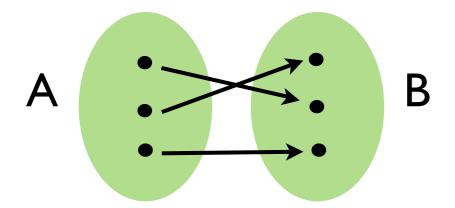
- Lemma I2: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f(x) \in f(A') \text{ iff } x \in A'.$
- Prop. I3: Let $f:A \longrightarrow B$ be injective and let $A' \subseteq A$. Then $f^{-1}(f(A')) = A'$.
- Prop. S2: Let $f:A \longrightarrow B$ be surjective and let $B' \subseteq B$. Then $f(f^{-1}(B')) = B'$.

Let $f:A \longrightarrow B$ be a bijection

Let $f:A \longrightarrow B$ be a bijection

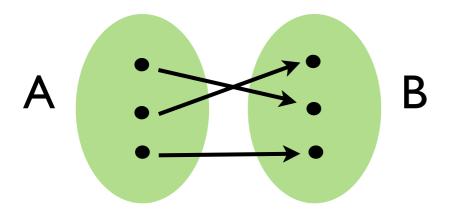


Let $f:A \longrightarrow B$ be a bijection



Def. The inverse function f^{-1} : $B \longrightarrow A$ is defined as $f^{-1}(b) = a$ iff f(a) = b, $b \in B$.

Let $f:A \longrightarrow B$ be a bijection



well defined only if f is bijective!

Def. The inverse function f^{-1} : $B \longrightarrow A$ is defined as $f^{-1}(b) = a$ iff f(a) = b, $b \in B$.

Let $f:A \longrightarrow B$ be a bijection

A B

well defined only if f is bijective!

Def. The inverse function f^{-1} : $B \longrightarrow A$ is defined as $f^{-1}(b) = a$ iff f(a) = b, $b \in B$.

Lemma B2: The inverse function f⁻¹ for a bijection f is bijective.

Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$

Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$

Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f$ (a) = g(f(a)), for $a \in A$.

Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$

"after" $g \circ f : A \longrightarrow B \longrightarrow C$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f$ (a) = g(f(a)), for $a \in A$.

Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$

"after" $g \circ f : A \longrightarrow B \longrightarrow C$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f$ (a) = g(f(a)), for $a \in A$.

Lemma I4: Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$ be injective. Then $g \circ f$ is injective.

Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$

"after" $g \circ f : A \longrightarrow B \longrightarrow C$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f$ (a) = g(f(a)), for $a \in A$.

Lemma I4: Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$ be injective. Then $g \circ f$ is injective.

Lemma S3: Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$ be surjective. Then $g \circ f$ is surjective.

Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$

"after" $g \circ f : A \longrightarrow B \longrightarrow C$

Def. The composition $g \circ f$ is a function $g \circ f : A \longrightarrow C$ given by $g \circ f$ (a) = g(f(a)), for $a \in A$.

Lemma I4: Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$ be injective. Then $g \circ f$ is injective.

Lemma S3: Let $f:A \longrightarrow B$ and $g:B \longrightarrow C$ be surjective. Then $g \circ f$ is surjective.

Corollary B2: Let $f: A \longrightarrow B$ and $g: B \longrightarrow C$ be bijective. Then so is $g \circ f$.

A characterization of bijections

A characterization of bijections

```
Theorem B3: A function f:A \longrightarrow B is bijective iff there exists a function g:B \longrightarrow A with g \circ f = id_A and f \circ g = id_B.
```

A characterization of bijections

Theorem B3: A function $f:A \longrightarrow B$ is bijective iff there exists a function $g:B \longrightarrow A$ with $g \circ f = id_A$ and $f \circ g = id_B$. $id_A: A \longrightarrow A,$ $id_A(a) = a, \text{ for all } a \in A$

Let $f:A \longrightarrow B$ and $g:C \longrightarrow D$

Let $f:A \longrightarrow B$ and $g:C \longrightarrow D$

Def. The functions $f:A \longrightarrow B$ and $g:C \longrightarrow D$ are equal iff

- (I) A = C
- (2) B = D
- (3) for all $a \in A$, f(a) = g(a).

Let $f:A \longrightarrow B$ and $g:C \longrightarrow D$

Def. The functions $f:A \longrightarrow B$ and $g:C \longrightarrow D$ are equal iff

- (I) A = C
- (2) B = D
- (3) for all $a \in A$, f(a) = g(a).

dom f = dom g

Let $f:A \longrightarrow B$ and $g:C \longrightarrow D$

Def. The functions $f:A \longrightarrow B$ and $g:C \longrightarrow D$ are equal iff

```
(I) A = C
```

dom f = dom g

(2)
$$B = D$$

(3) for all
$$a \in A$$
, $f(a) = g(a)$.

cod f = cod g