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Important equivalence
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Def. For a natural number n, the relation =, is defined as

i =nj iff n|i-j
[iff i-j is a multiple of n ]
[iff there exists k € Z s.t.i-j = k-n ]

[iff dk.(keZ Ai-j=k- n)

Lemma: The relation =, is an equivalence for every n.

. quantifier
logical

connective
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Equivalence classes

Definition: Let R be an equivalence over A and a € A. Then

[a]R — { beA ‘ (a, b) € R} the equivalence

class of a

Lemma El: Let R be an equivalence over the set A. Then
foralla,b € A, [a]Jr = [b]Jr or [a]r n [b]Jr= T

Notation A/R = {[a]r | a € A} - the quotient set of A over R

Describe the equivalence classes of =,
How many classes are there!?
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Unions and intersections
of multiple sets

Union AuB={x|xeAorxe B}
A AuB B
Intersection AnB={x|xeAandx e B}

A and B are if AnB=9 A  AnB B

In general, for a family of sets (Ai|i € |)
Uiel Ai= {X ‘ x € Aj for some i |}

ﬂie|Ai= {X‘XEAifOI‘a||i€|}
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Back to equivalence
classes

Example: Let R be an equivalence over A and a € A. Then

([a]r,a € A) is a family of sets. all equivalence

classes of R

Lemma E2: A= U, ca[a]r. The union is disjoint.
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Partitions

hence, a collection
of
subsets of X

Def. Let X be a set. A subset P of the powerset 2(X) is
a partition (Klasseneinteilung) of X if it satisfies:

that are non-empty,

(l) FOI" aII A € P, AFD pairwise disjoint,
(2) ForallA,Be P, ifA+B and their union equals X
thenAnB =9

(3) UaerA =X




Partitions =
Equivalences




Partitions =
Equivalences

Theorem PE: Let X be a set.

(1) If R is an equivalence on X, then the set
PR) = { [XIr| x € X}
is a partition of X.

(2) If P is a partition of X, then the relation
R(P) = {(x,y) € X x X | there is A € P such that x,y € A}

is an equivalence relation.

Moreover, the assignments R —» P(R) and P —» R(P) are inverse
to eachother, i.e,, R(P(R)) = R and P(R(P)) =P.



