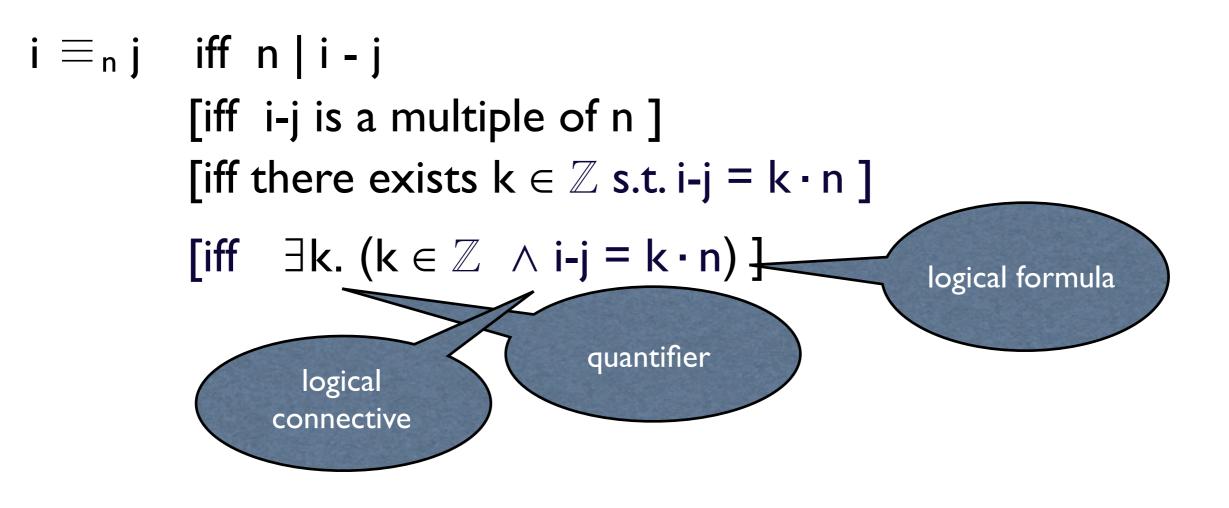
Def. For a natural number n, the relation \equiv_n is defined as

 $i \equiv_n j$ iff $n \mid i - j$

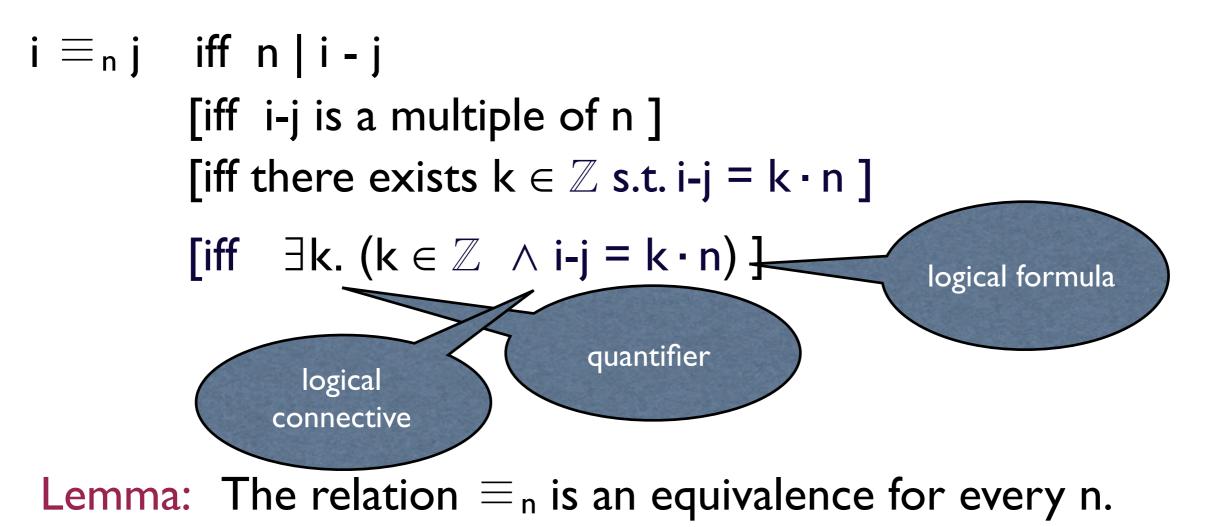
Def. For a natural number n, the relation \equiv_n is defined as

```
\begin{split} i &\equiv_n j \quad \text{iff } n \mid i - j \\ & [\text{iff } i\text{-}j \text{ is a multiple of } n ] \\ & [\text{iff there exists } k \in \mathbb{Z} \text{ s.t. } i\text{-}j = k \cdot n ] \\ & [\text{iff } \exists k. \ (k \in \mathbb{Z} \ \land i\text{-}j = k \cdot n) ] \end{split}
```

Def. For a natural number n, the relation \equiv_n is defined as



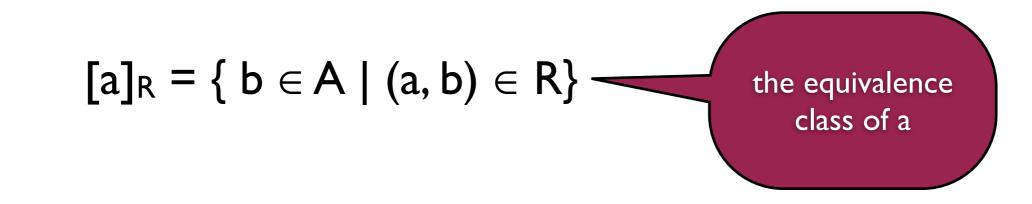
Def. For a natural number n, the relation \equiv_n is defined as



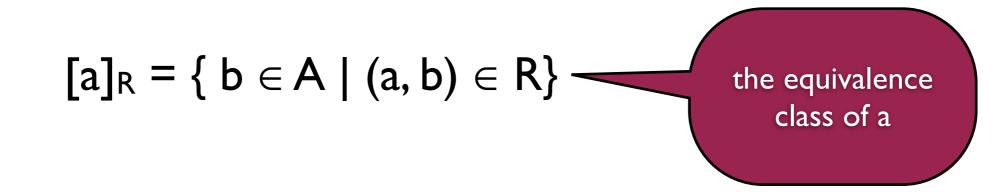
Definition: Let R be an equivalence over A and $a \in A$. Then

 $[a]_R = \{ b \in A \mid (a, b) \in R \}$

Definition: Let R be an equivalence over A and $a \in A$. Then

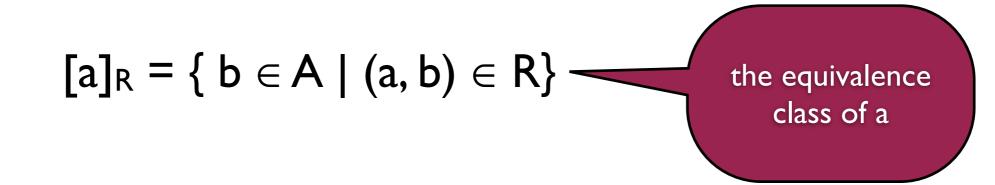


Definition: Let R be an equivalence over A and $a \in A$. Then



Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

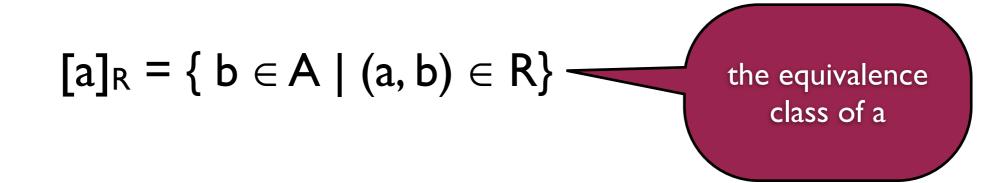
Definition: Let R be an equivalence over A and $a \in A$. Then



Lemma E1: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Notation A/R = $\{[a]_R \mid a \in A\}$ - the quotient set of A over R

Definition: Let R be an equivalence over A and $a \in A$. Then



Lemma EI: Let R be an equivalence over the set A. Then for all $a, b \in A$, $[a]_R = [b]_R$ or $[a]_R \cap [b]_R = \emptyset$

Notation A/R = $\{[a]_R \mid a \in A\}$ - the quotient set of A over R

Task:

Describe the equivalence classes of \equiv_n How many classes are there? Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ AυB В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ A $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ ΑυΒ В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ A A ∩ B В In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

 $A_1 \cup A_2 \cup \ldots \cup A_n = \bigcup_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for some } i \in \{1, \ldots n\}\}$

 $A_1 \cap A_2 \cap ... \cap A_n = \bigcap_{1 \le i \le n} A_i = \{x \mid x \in A_i \text{ for all } i \in \{1,..n\}\}$

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ AυB В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ A $A \cap B$ В

Unions and intersections of multiple sets Union (Vereinigung) $A \cup B = \{x \mid x \in A \text{ or } x \in B\}$ A U B В A Intersection (Durchschnitt) $A \cap B = \{x \mid x \in A \text{ and } x \in B\}$ A and B are disjoint if $A \cap B = \emptyset$ Α **A** ∩ **B** В In general, for a family of sets $(A_i | i \in I)$ $\bigcup_{i \in I} A_i = \{x \mid x \in A_i \text{ for some } i \in I\}$

 $\bigcap_{i \in I} A_i = \{ x \mid x \in A_i \text{ for all } i \in I \}$

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets.

Back to equivalence classes

Example: Let R be an equivalence over A and $a \in A$. Then

($[a]_R$, $a \in A$) is a family of sets. _____ all

all equivalence classes of R

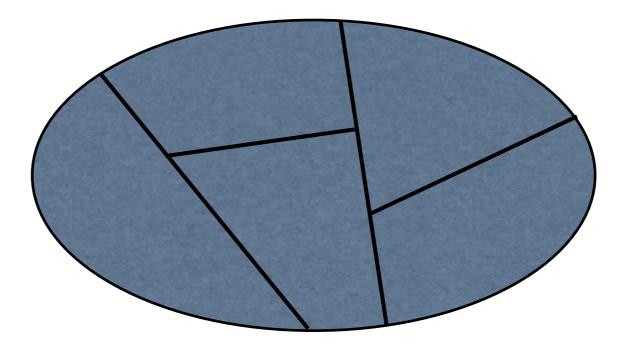
Back to equivalence classes

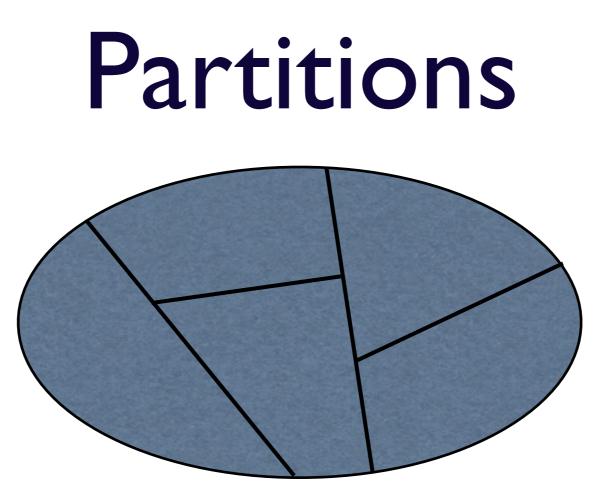
Example: Let R be an equivalence over A and $a \in A$. Then

([a]_R, $a \in A$) is a family of sets.

all equivalence classes of R

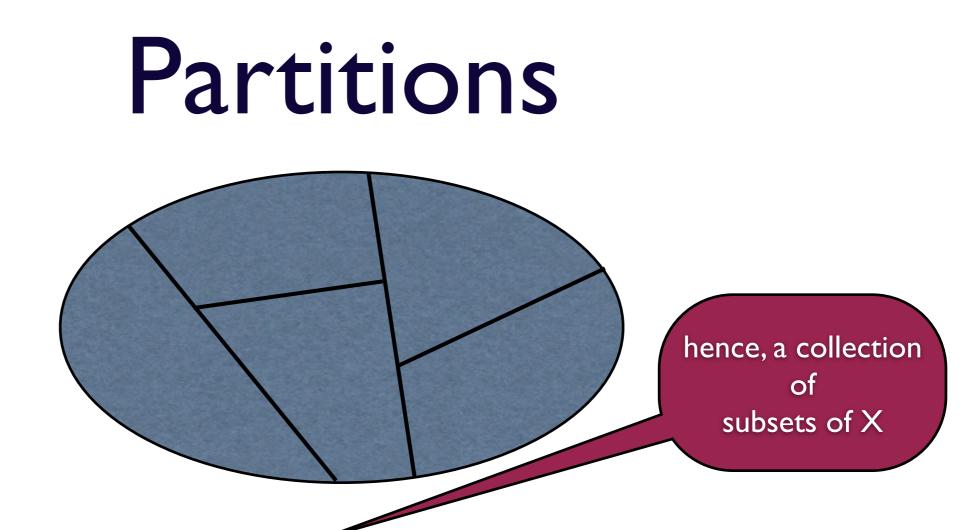
Lemma E2: $A = \bigcup_{a \in A} [a]_R$. The union is disjoint.





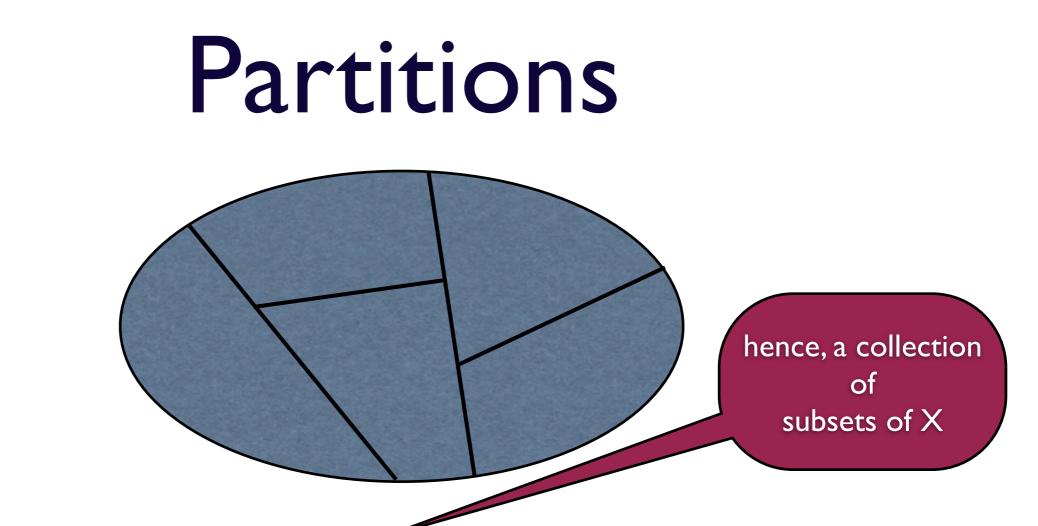
Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$



Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

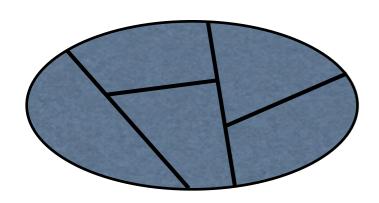
(1) For all $A \in P$, $A \neq \emptyset$ (2) For all $A, B \in P$, if $A \neq B$ then $A \cap B = \emptyset$ (3) $\bigcup_{A \in P} A = X$



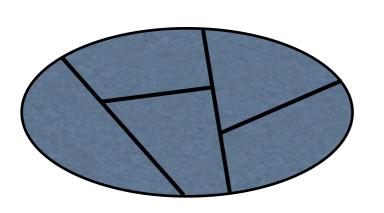
Х

Def. Let X be a set. A subset P of the powerset $\mathcal{P}(X)$ is a partition (Klasseneinteilung) of X if it satisfies:

(1) For all
$$A \in P$$
, $A \neq \emptyset$
(2) For all $A, B \in P$, if $A \neq B$
then $A \cap B = \emptyset$
(3) $\bigcup_{A \in P} A = X$



Partitions = Equivalences



Partitions = Equivalences

Theorem PE: Let X be a set.

(1) If R is an equivalence on X, then the set $P(R) = \{ [x]_R | x \in X \}$ is a partition of X.

(2) If P is a partition of X, then the relation $R(P) = \{(x,y) \in X \times X \mid \text{there is } A \in P \text{ such that } x, y \in A\}$ is an equivalence relation.

Moreover, the assignments $R \mapsto P(R)$ and $P \mapsto R(P)$ are inverse to eachother, i.e., R(P(R)) = R and P(R(P)) = P.