Properties of sets

- $I. \quad \varnothing \subseteq X$
- 2. If $A \subseteq B$ and $B \subseteq C$, then $A \subseteq C$
- 3. $X \cap Y \subseteq X, X \cap Y \subseteq Y$
- 4. $X \subseteq X \cup Y, Y \subseteq X \cup Y$
- 5. If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$, then $X_1 \cap X_2 \subseteq Y_1 \cap Y_2$
- 6. If $X_1 \subseteq Y_1$ and $X_2 \subseteq Y_2$, then $X_1 \cup X_2 \subseteq Y_1 \cup Y_2$
- 7. $X \cap Y = X$ iff $X \subseteq Y$
- 8. $X \cap X = X$ (idempotence)
- 9. $X \cup X = X$ (idempotence)

 $10. X \cap \emptyset = \emptyset$

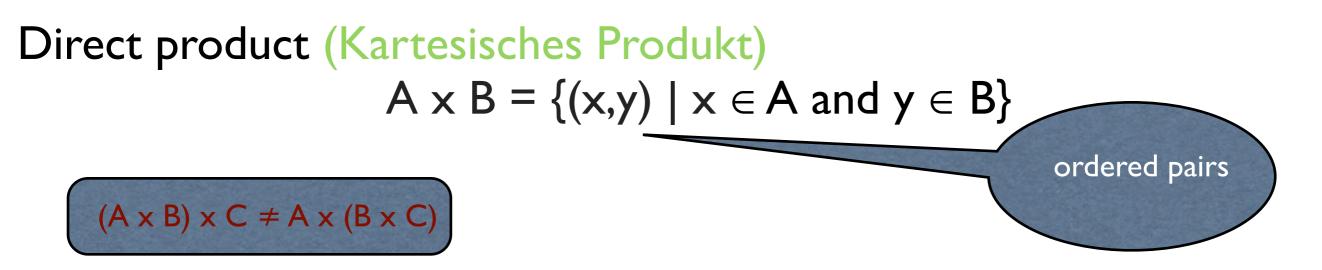
Properties of sets

11.
$$X \cup \emptyset = X$$
12. $X \cap Y = Y \cap X$ (commutativity)13. $X \cup Y = Y \cup X$ (commutativity)14. $X \cap (Y \cap Z) = (X \cap Y) \cap Z$ (associativity)15. $X \cup (Y \cup Z) = (X \cup Y) \cup Z$ (associativity)16. $X \cap (X \cup Y) = X$ (absorption)17. $X \cup (X \cap Y) = X$ (absorption)18. $X \cap (Y \cup Z) = (X \cap Y) \cup (X \cap Z)$ (distributivity)19. $X \cup (Y \cap Z) = (X \cup Y) \cap (X \cup Z)$ (distributivity)20. $X \setminus Y \subseteq X$

Properties of sets

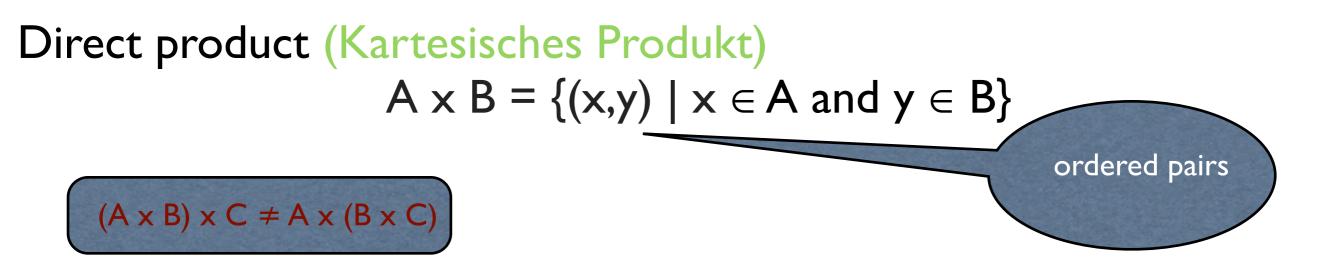
21.	$(X \setminus Y) \cap Y = \emptyset$
	$X \cup Y = X \cup (Y \setminus X)$
23.	$X \setminus X = \emptyset$
24.	$X \setminus \emptyset = X$
25.	$\emptyset \setminus X = \emptyset$
26.	If $X \subseteq Y$, then $X \setminus Y = \emptyset$
27.	$(X^c)^c = X$
28.	$(X \cap Y)^c = X^c \cup Y^c$ (De Morgan)
29.	$(X \cup Y)^c = X^c \cap Y^c$ (De Morgan)
30.	$X \times \emptyset = \emptyset$
31.	$\varnothing \mathbf{X} \mathbf{X} = \varnothing$
32.	If $X \subseteq Y$, then $\mathcal{P}(X) \subseteq \mathcal{P}(Y)$

Direct product (Kartesisches Produkt) $A \times B = \{(x,y) \mid x \in A \text{ and } y \in B\}$ ordered pairs (A × B) × C ≠ A × (B × C)



Therefore, we define

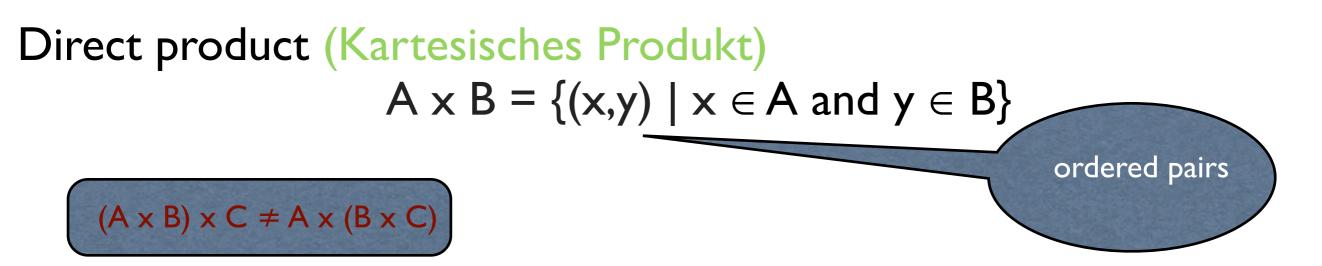
 $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$



Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge I$,

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$

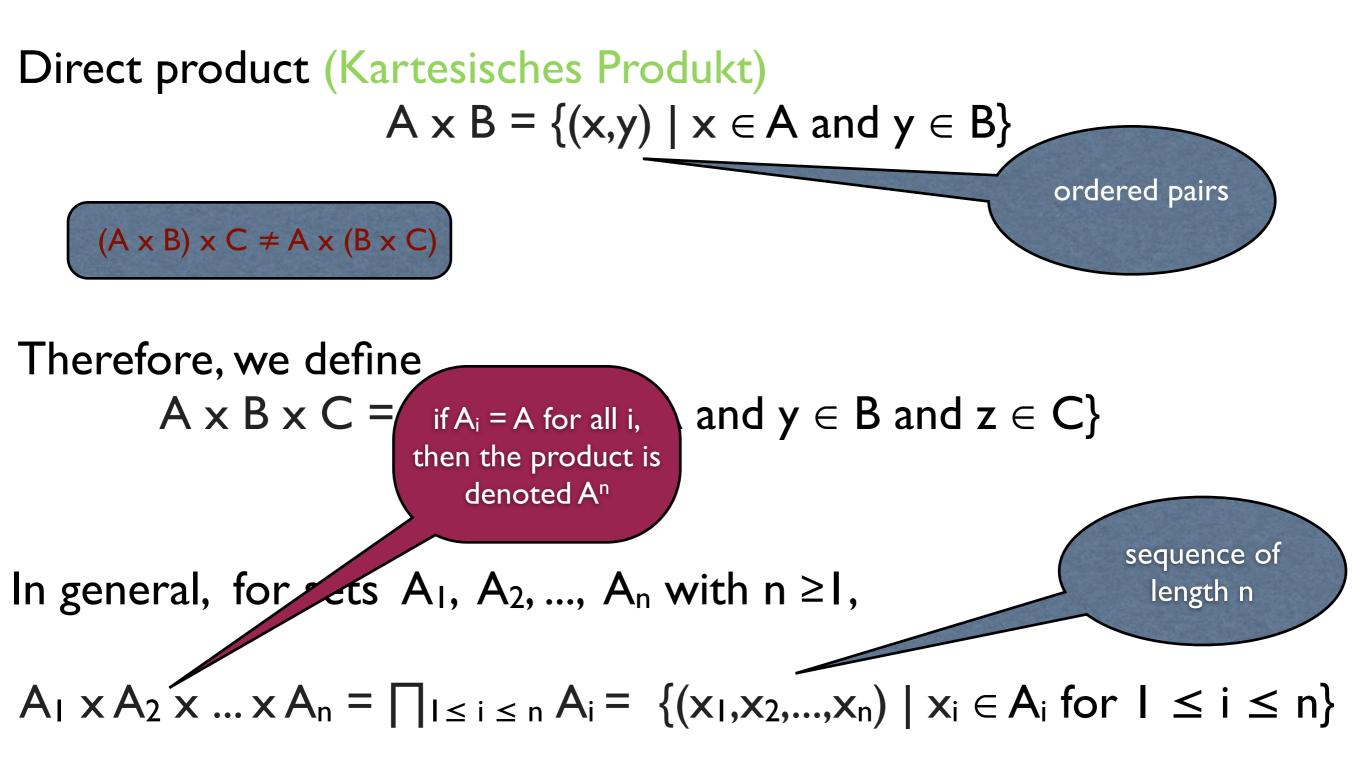


Therefore, we define $A \times B \times C = \{(x,y,z) \mid x \in A \text{ and } y \in B \text{ and } z \in C\}$

In general, for sets A_1 , A_2 , ..., A_n with $n \ge 1$,

sequence of length n

 $A_{I} \times A_{2} \times ... \times A_{n} = \prod_{1 \leq i \leq n} A_{i} = \{(x_{1}, x_{2}, ..., x_{n}) \mid x_{i} \in A_{i} \text{ for } I \leq i \leq n\}$



Finite sequences, words

Finite sequences, words

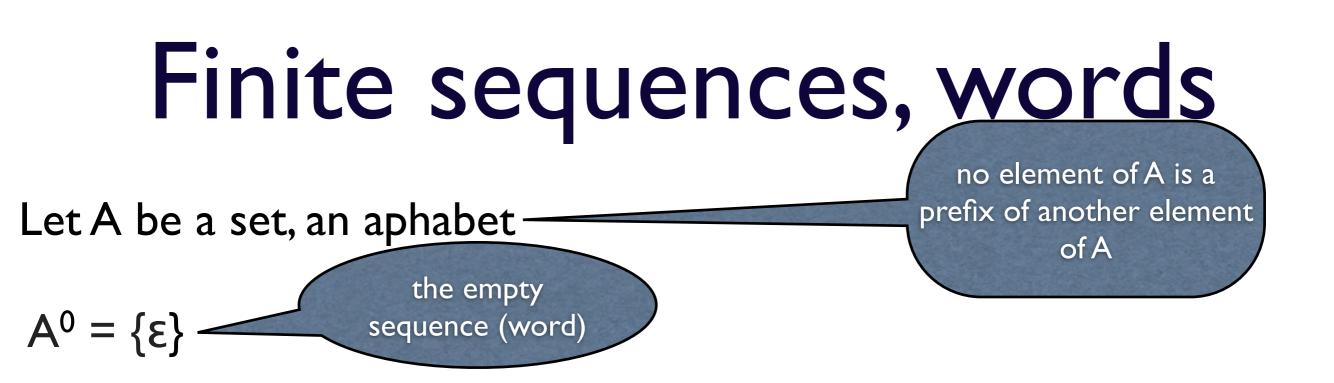
Let A be a set, an aphabet

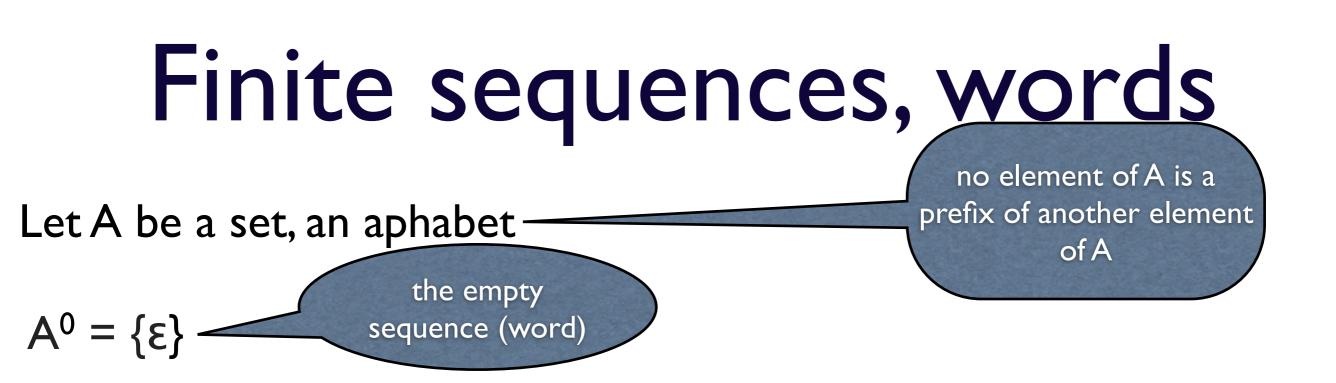
 $A^0 = \{\epsilon\}$

Let A be a set, an aphabet

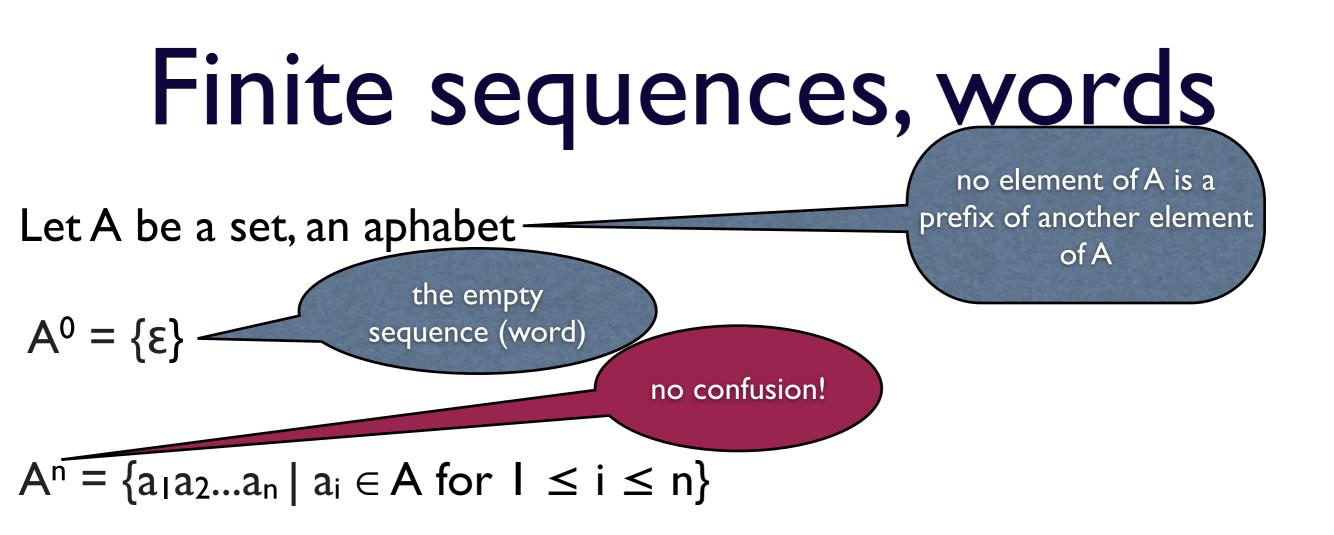
no element of A is a prefix of another element of A

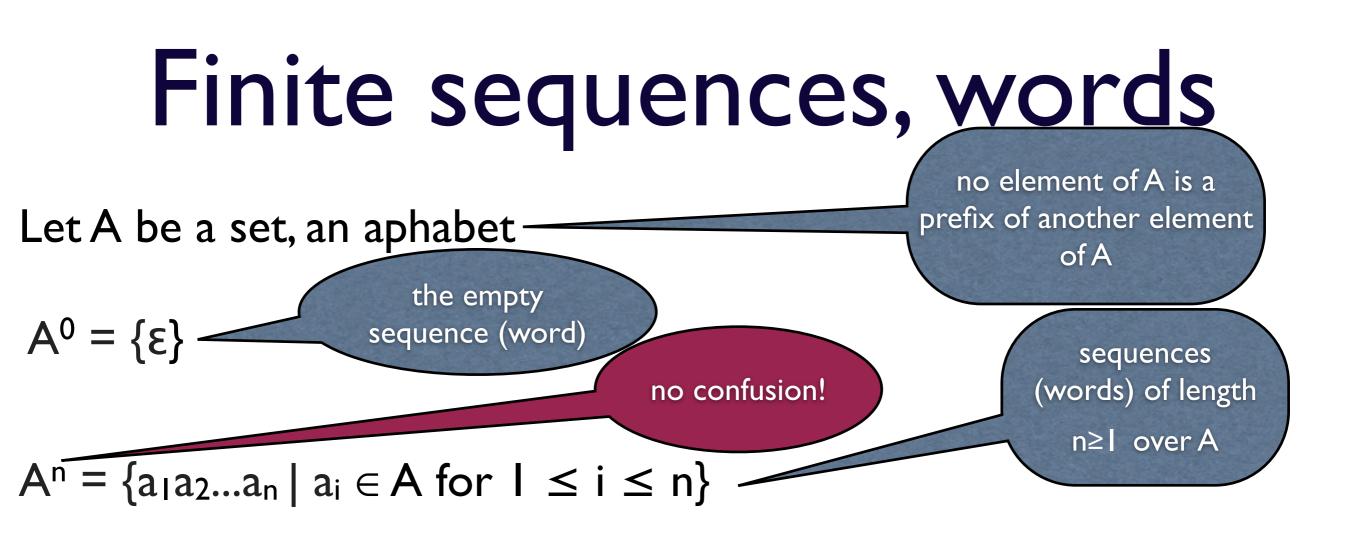
 $A^0 = \{\epsilon\}$

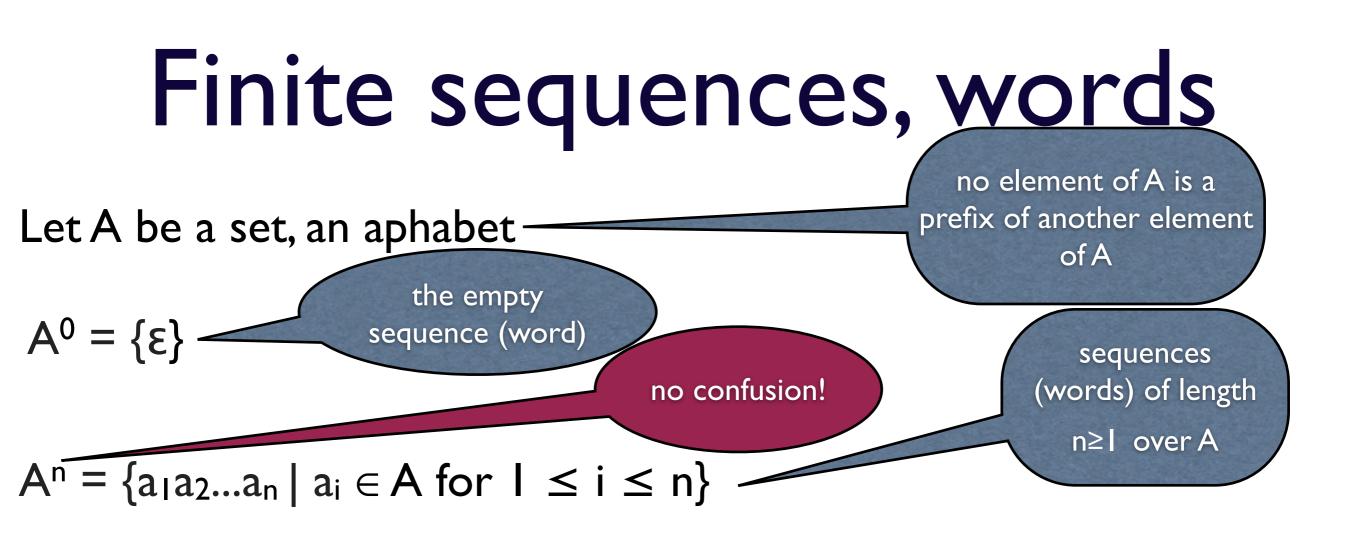




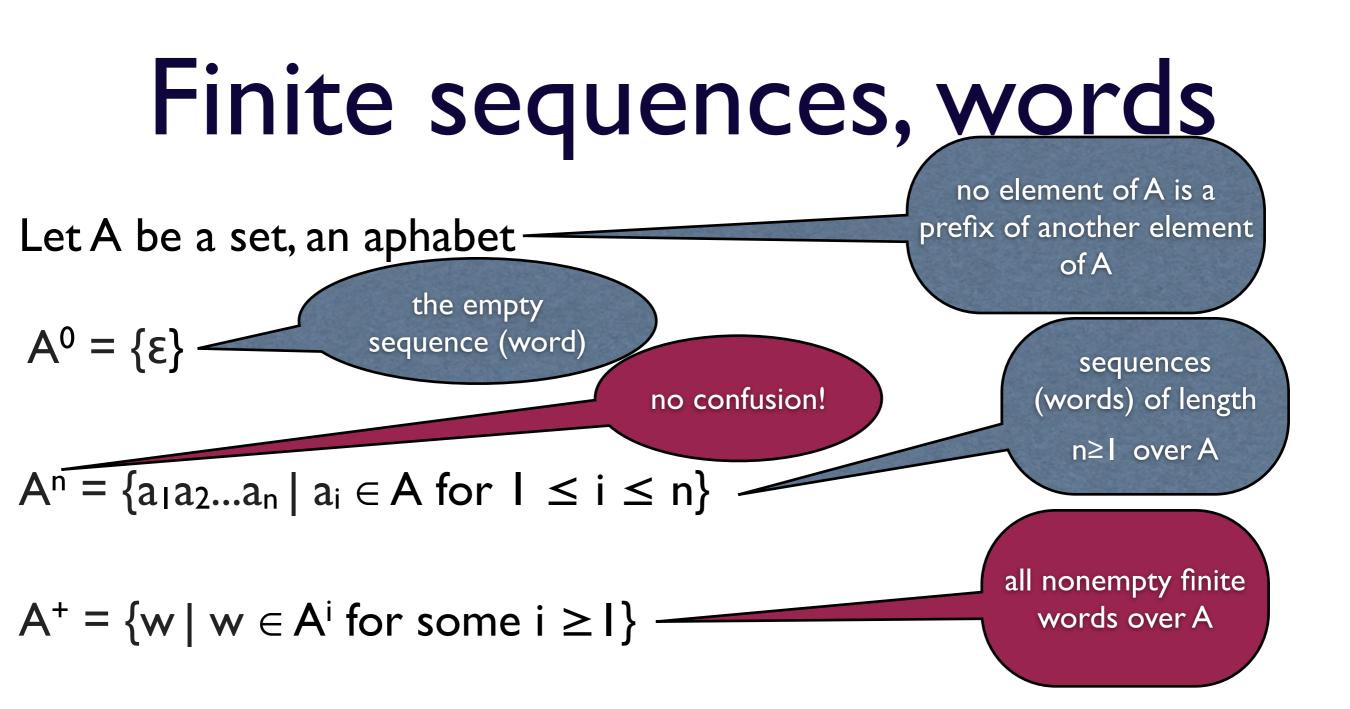
$A^n = \{a_1a_2...a_n \mid a_i \in A \text{ for } I \leq i \leq n\}$

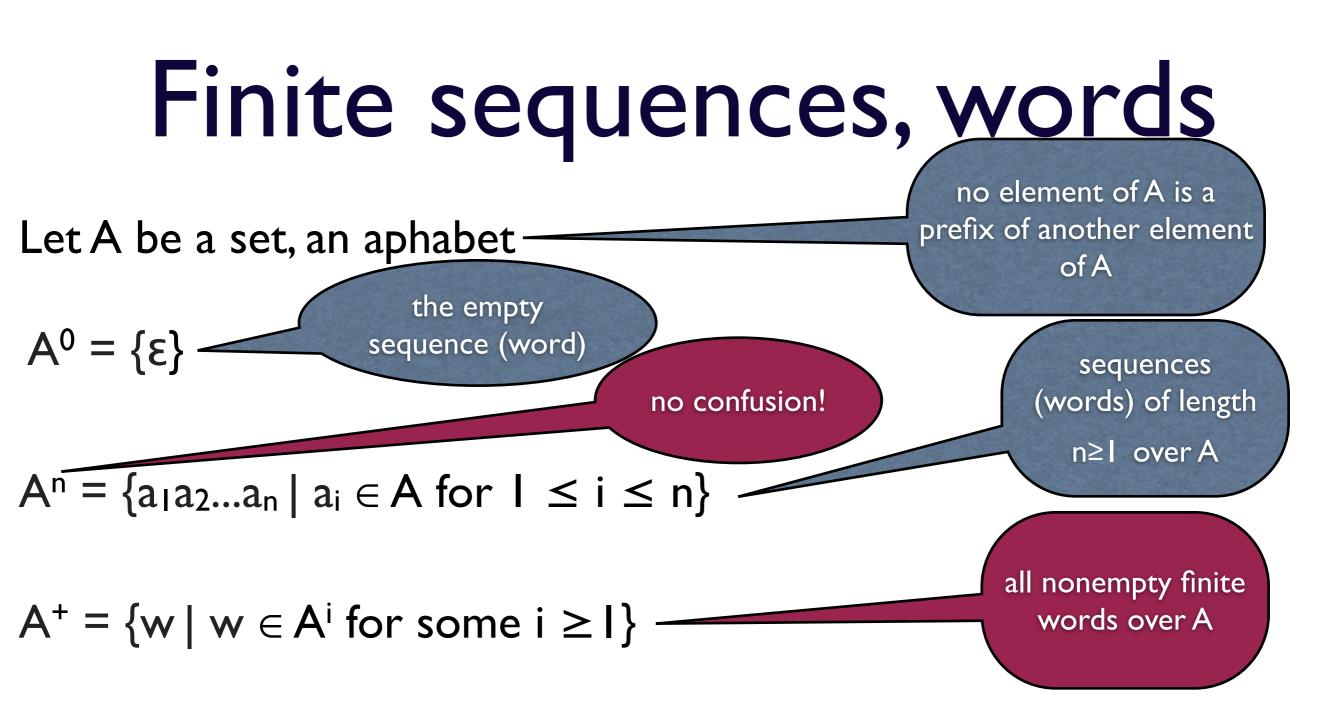




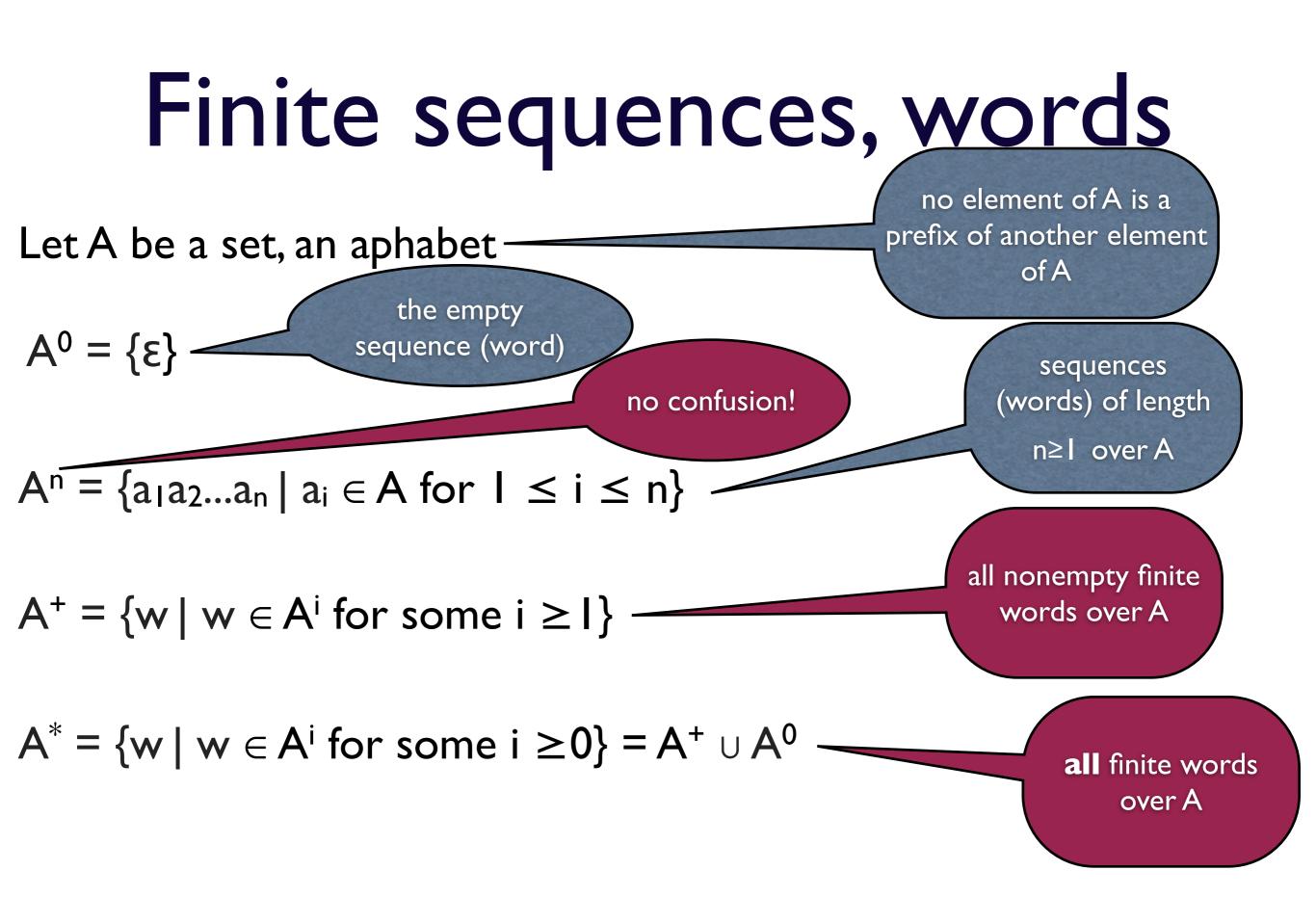


$$A^+ = \{w \mid w \in A^i \text{ for some } i \ge I\}$$





 $A^* = \{w \mid w \in A^i \text{ for some } i \ge 0\} = A^+ \cup A^0$



Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

Def. R is a relation on A if $R \subseteq A \times A$

some relations are special

Relations

Def. If A and B are sets, then any subset $R \subseteq A \times B$ is a (binary) relation between A and B

similarly, unary relation (subset), n-ary relation...

Def. R is a relation on A if $R \subseteq A \times A^{\vee}$

some relations are special

Special relations

A relation $R \subseteq A \times A$ is:

reflexive	iff	for all $a \in A$, (a,a) $\in R$
symmetric	iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
transitive	iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
		then $(a,c) \in R$
irreflexive	iff	for all $a \in A$, (a,a) $\not\in R$
antisymmetric	iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
		then a = b
asymmetric	iff	for all a,b \in A, if (a,b) \in R, then (b,a) \notin R
total	iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$

Special relations

A relation $R \subseteq A \times A$ is:

iff	for all $a \in A$, (a,a) $\in R$
iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \in R$
iff	for all a,b,c \in A, if (a,b) \in R and (b,c) \in R,
	then $(a,c) \in R$
iff	for all $a \in A$, (a,a) $\not\in R$
iff	for all $a, b \in A$, if $(a, b) \in R$ and $(b, a) \in R$
	then a = b
iff	for all $a, b \in A$, if $(a, b) \in R$, then $(b, a) \not\in R$
iff	for all $a, b \in A$, $(a, b) \in R$ or $(b, a) \in R$
	ff ff ff

(infix) notation aRb for $(a,b) \in R$

Special relations

A relation R on A, i.e., $R \subseteq A \times A$ is:

- equivalence iff R is reflexive, symmetric, and transitive
- partial order iff R is reflexive, antisymmetric, and transitive
- strict order iff R is irreflexive and transitive
- preorder iff R is reflexive and transitive

total (linear) order

iff R is a total partial order

Obvious properties

- I. Every partial order is a preorder.
- 2. Every total order is a partial order.
- 3. Every total order is a preorder.
- 4. If $R \subseteq A \times A$ is a relation that contains cycles, i.e. there are $a, b \in A$ such that a = b, $(a,b) \in R$ and $(b,a) \in R$, then R is not a preorder, nor a partial order, nor a total order.

Let $R \subseteq A \ge B$ and $S \subseteq B \ge C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

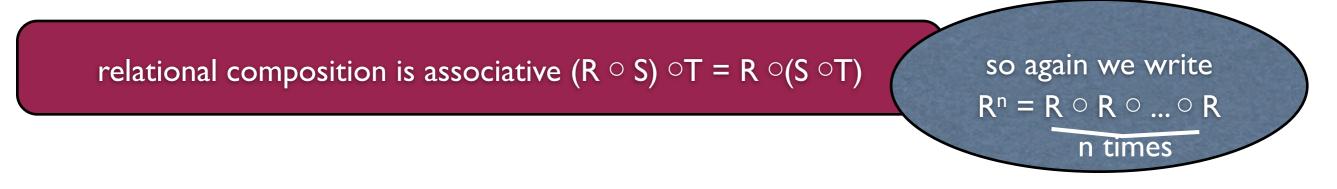
Let $R \subseteq A \times B$ and $S \subseteq B \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$



Let $R \subseteq A \times \underline{B}$ and $S \subseteq \underline{B} \times C$ be two relations. Their composition is the relation

 $R \circ S = \{(a,c) \in A \times C \mid \text{there is } b \in B \text{ s.t. } (a,b) \in R \text{ and } (b,c) \in S\}$

relational composition is associative $(R \circ S) \circ T = R \circ (S \circ T)$

so again we write $R^n = R \circ R \circ ... \circ R$ n times

Let $R \subseteq A \ge B$ be a relation. The inverse relation of R is the relation

$$\mathsf{R}^{\mathsf{-I}} = \{(\mathsf{b},\mathsf{a}) \in \mathsf{B} \times \mathsf{A} \mid (\mathsf{a},\mathsf{b}) \in \mathsf{R}\}$$

Characterizations

Lemma: Let R be a relation over the set A. Then

- I. R is reflexive iff $\Delta_A \subseteq R$
- 2. R is symmetric iff $R \subseteq R^{-1}$
- 3. R is transitive iff $R^2 \subseteq R$

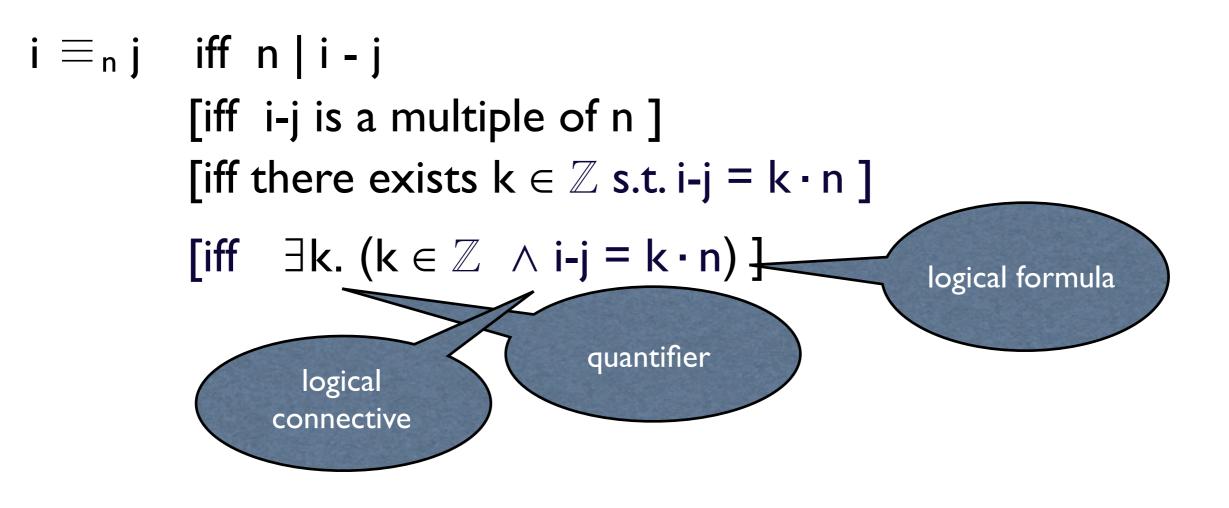
Def. For a natural number n, the relation \equiv_n is defined as

 $i \equiv_n j$ iff $n \mid i - j$

Def. For a natural number n, the relation \equiv_n is defined as

```
\begin{split} i &\equiv_n j \quad \text{iff } n \mid i - j \\ & [\text{iff } i\text{-}j \text{ is a multiple of } n ] \\ & [\text{iff there exists } k \in \mathbb{Z} \text{ s.t. } i\text{-}j = k \cdot n ] \\ & [\text{iff } \exists k. \ (k \in \mathbb{Z} \ \land i\text{-}j = k \cdot n) ] \end{split}
```

Def. For a natural number n, the relation \equiv_n is defined as



Def. For a natural number n, the relation \equiv_n is defined as

