## Finite Automata



#### Recall

 $\Sigma$  - alphabet (finite set)

 $\sum^n$  =  $\{a_1a_2..a_n \mid a_i \in \Sigma\}$  is the set of words of length n

 $\sum^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1a_2..a_n\} \text{ is the set of all words over } \sum$ 

 $\Sigma^0 = \{E\}$  contains only the

empty word

#### Recall

- $\Sigma$  alphabet (finite set)
- $\sum^n$  =  $\{a_1a_2..a_n \mid a_i \in \Sigma\}$  is the set of words of length n

 $\sum^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1a_2...a_n\} \text{ is the set of all words over } \sum$ 

 $\sum^{0} = \{ E \}$  contains only the

empty word

#### Recall

 $\Sigma$  - alphabet (finite set)

 $\sum^n$  =  $\{a_1a_2..a_n \mid a_i \in \Sigma\}$  is the set of words of length n

 $\sum^* = \{w \mid \exists n \in \mathbb{N}. \exists a_1, a_2, ..., a_n \in \sum w = a_1a_2..a_n\} \text{ is the set of all words over } \sum$ 

#### A language L over $\Sigma$ is a subset L $\subseteq \Sigma^*$

## Deterministic Automata (DFA)

Informal example

$$\Sigma = \{0, I\}$$

$$M_{I}: \qquad \downarrow \qquad 0 \qquad 0$$

$$q_{0} \qquad q_{1}$$

## Deterministic Automata (DFA)

alphabet

Informal example

$$\Sigma = \{0, I\}$$

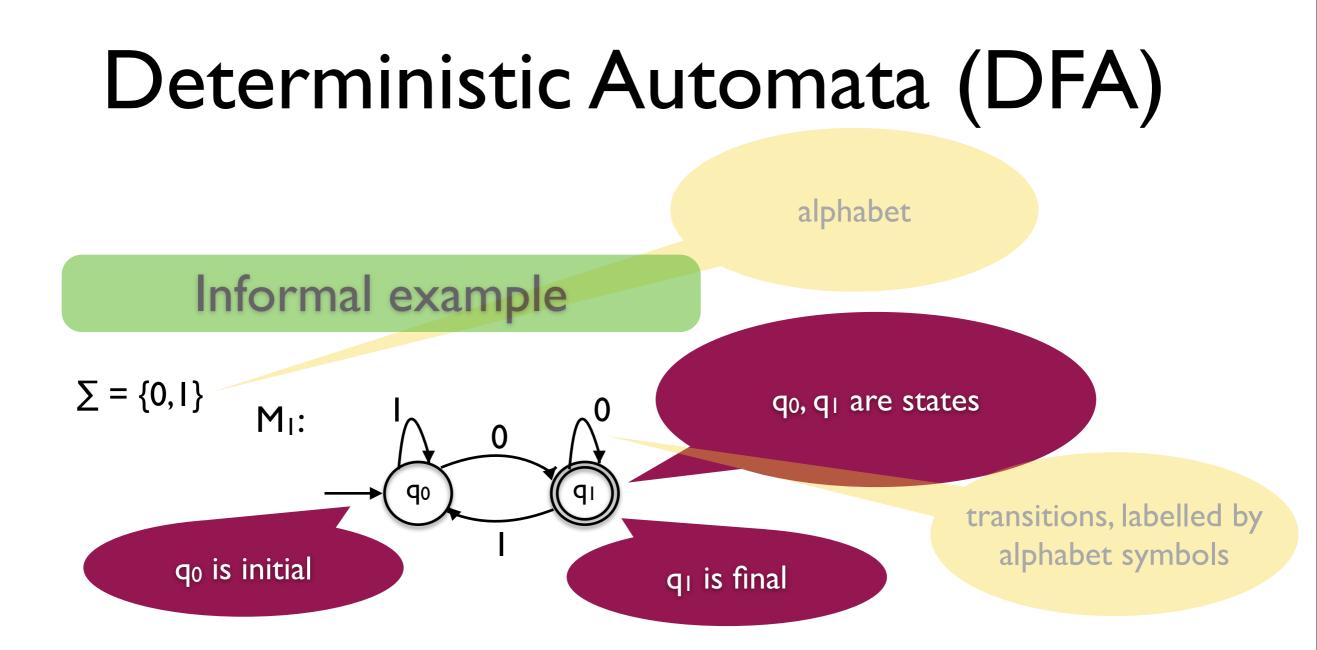
$$M_{I}: \qquad I \qquad 0 \qquad 0$$

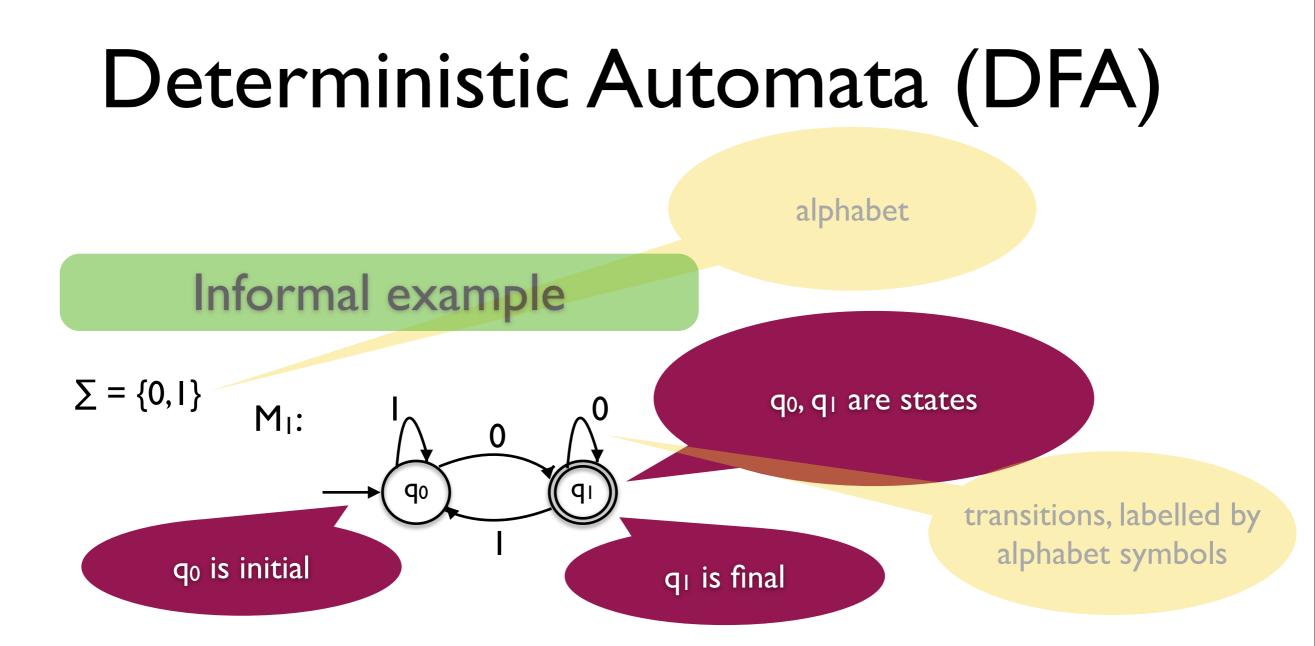
$$q_{0} \qquad q_{1}$$

#### Deterministic Automata (DFA) alphabet Informal example $\sum = \{0, I\}$ qo, q1 are states M<sub>I</sub>: 0 ٩ı **q**0

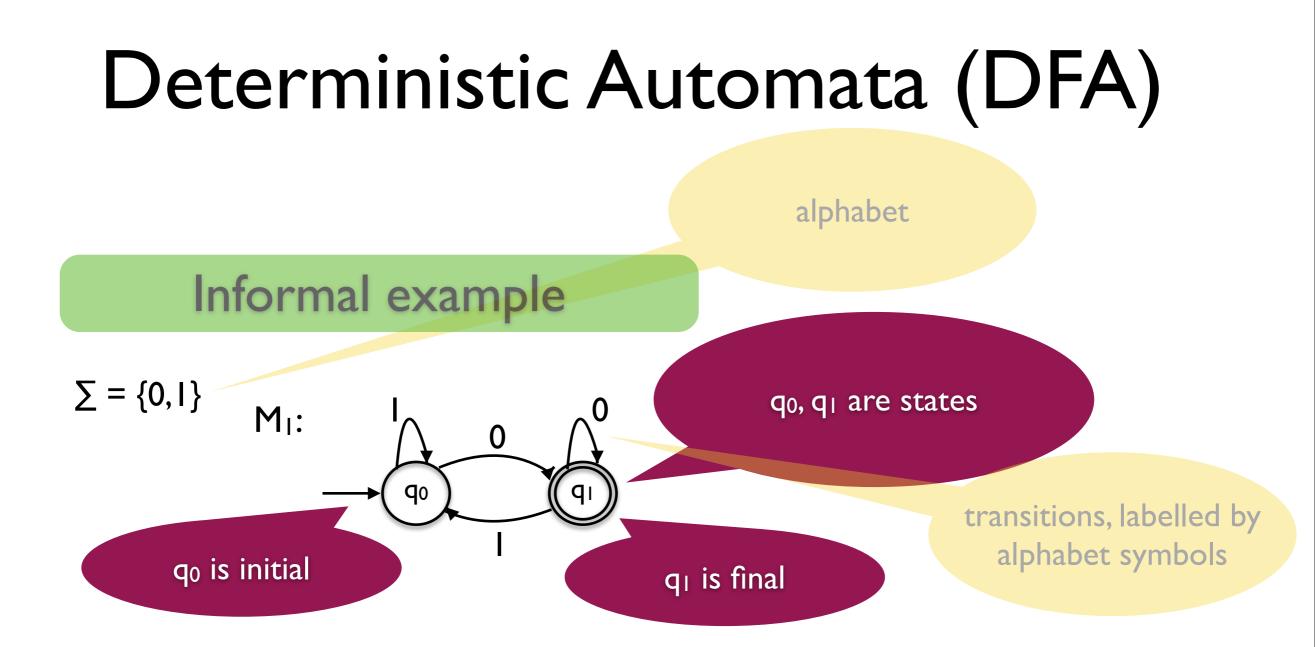
#### Deterministic Automata (DFA) alphabet Informal example $\sum = \{0, I\}$ qo, q1 are states M<sub>l</sub>: 0 ٩ı **q**0 $q_0$ is initial

#### Deterministic Automata (DFA) alphabet Informal example $\sum = \{0, I\}$ qo, q1 are states M<sub>l</sub>: 0 ٩ı **q**0 $q_0$ is initial q1 is final



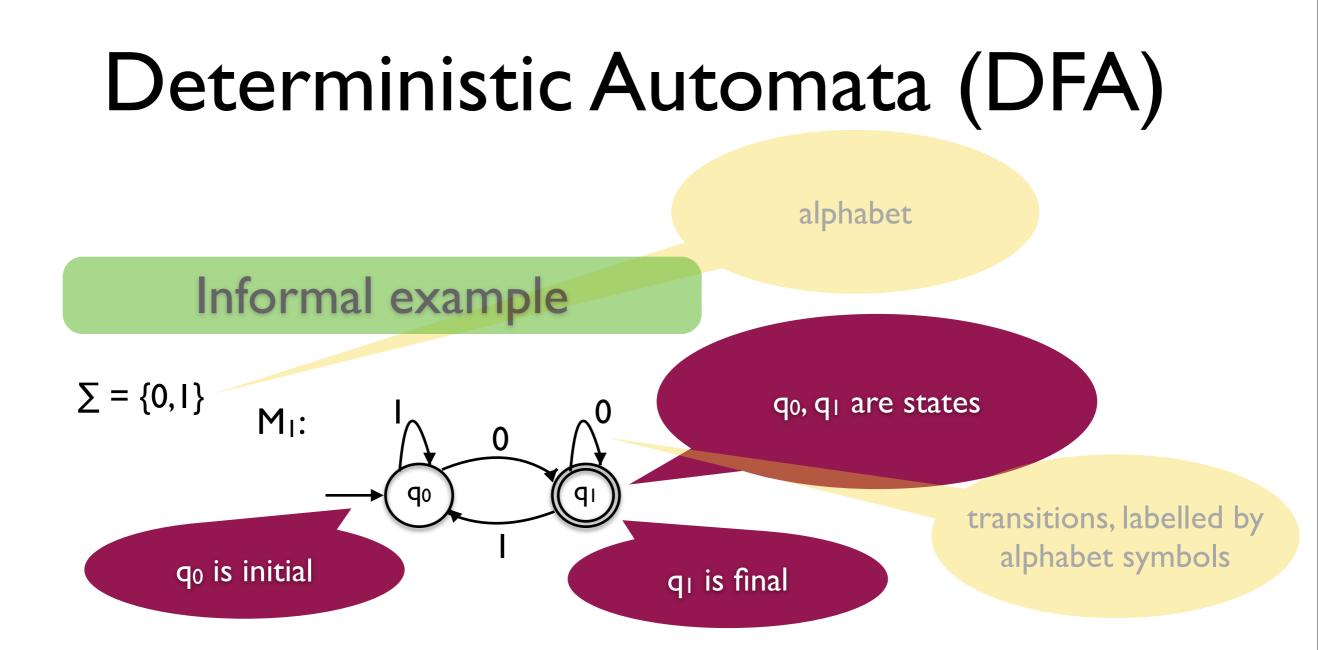


Accepts the language  $L(M_1) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$ 



Accepts the language  $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$ 

regular language



Accepts the language  $L(M_I) = \{w \in \Sigma^* \mid w \text{ ends with a } 0\} = \Sigma^* 0$ 

regular language

regular expression



A deterministic automaton M is a tuple M =  $(Q, \Sigma, \delta, q_0, F)$  where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 



A deterministic automaton M is a tuple M =  $(Q, \Sigma, \delta, q_0, F)$  where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

#### In the example M



A deterministic automaton M is a tuple M =  $(Q, \Sigma, \delta, q_0, F)$  where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

**In the example M**  $M_1 = (Q, \Sigma, \delta, q_0, F)$  for



A deterministic automaton M is a tuple M =  $(Q, \Sigma, \delta, q_0, F)$  where

 $\begin{array}{l} Q \text{ is a finite set of states} \\ \overline{\Sigma} \text{ is a finite alphabet} \\ \delta: Q \times \overline{\Sigma} \longrightarrow Q \text{ is the transition function} \\ q_0 \text{ is the initial state, } q_0 \in Q \\ F \text{ is a set of final states, } F \subseteq Q \end{array}$ 

**In the example M**  $M_1 = (Q, \Sigma, \delta, q_0, F)$  for

 $Q = \{q_0, q_1\}$ 



A deterministic automaton M is a tuple M = (Q,  $\sum$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

#### **In the example M** $M_1 = (Q, \Sigma, \delta, q_0, F)$ for

 $Q = \{q_0, q_1\}$ 

$$\sum = \{0, I\}$$



A deterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

**In the example M** 
$$M_1 = (Q, \Sigma, \delta, q_0, F)$$
 for

```
Q = \{q_0, q_1\} F = \{q_1\}

\sum = \{0, 1\}
```



A deterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\Sigma$  is a finite alphabet  $\delta: Q \times \Sigma \longrightarrow Q$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

| In the example M                                             | $M_1 = (Q, \Sigma, \delta, q_0, F) \text{ for }$ |
|--------------------------------------------------------------|--------------------------------------------------|
| Q = {q <sub>0</sub> , q <sub>1</sub> } F = {q <sub>1</sub> } | $\delta(q_0, 0) = q_1, \delta(q_0, 1) = q_0$     |
| $\sum = {0, 1}$                                              | δ(q_1, 0) = q_1, δ(q_1, 1) = q_0                 |

#### The extended transition function

#### The extended transition function

Given M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) we can extend  $\delta$ : Q x  $\Sigma$  $\longrightarrow$  Q to

 $\delta^*\!\!:\! Q \mathrel{\times} \Sigma^*\!\!\longrightarrow Q$ 

inductively, by:

 $\delta^*(q, \epsilon) = q$  and  $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$ 

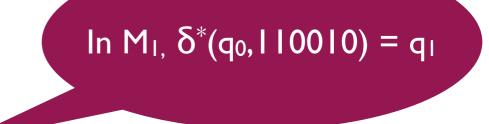
#### The extended transition function

Given M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) we can extend  $\delta$ : Q x  $\Sigma$  $\longrightarrow$  Q to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

 $\delta^*(q, \epsilon) = q$  and  $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$ 



#### The extended transition function

Given M =  $(Q, \Sigma, \delta, q_0, F)$  we can extend  $\delta: Q \times \Sigma \longrightarrow Q$  to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

 $\delta^*(q, \epsilon) = q$  and  $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$ 

#### Definition

The language recognised / accepted by a deterministic finite automaton M =  $(Q, \sum, \delta, q_0, F)$  is

 $L(M) = \{w \in \Sigma^* | \ \delta^*(q_0, w) \in F\}$ 

In M<sub>1</sub>,  $\delta^*(q_0, 110010) = q_1$ 

#### The extended transition function

Given M =  $(Q, \Sigma, \delta, q_0, F)$  we can extend  $\delta: Q \times \Sigma \longrightarrow Q$  to

$$\delta^*: Q \times \Sigma^* \longrightarrow Q$$

inductively, by:

 $\delta^*(q, \epsilon) = q$  and  $\delta^*(q, wa) = \delta(\delta^*(q, w), a)$ 

#### Definition

The language recognised / accepted by a deterministic finite automaton M =  $(Q, \Sigma, \delta, q_0, F)$  is

 $L(M) = \{w \in \Sigma^* | \ \delta^*(q_0, w) \in F\}$ 

$$L(M_1) = \{w0|w \in \{0,1\}^*\}$$

In M<sub>I</sub>,  $\delta^*(q_0, 110010) = q_1$ 



Let  $\Sigma$  be an alphabet. A language L over  $\Sigma$  (L  $\subseteq \Sigma^*$ ) is regular iff it is recognised by a DFA.

### $$\begin{split} L(M_I) &= \{w0 | w \in \{0, I\}^*\} \\ & \text{is regular} \end{split}$$



Let  $\Sigma$  be an alphabet. A language L over  $\Sigma$  (L  $\subseteq \Sigma^*$ ) is regular iff it is recognised by a DFA.

### $$\begin{split} L(M_I) &= \{w0 | w \in \{0,I\}^*\} \\ & \text{is regular} \end{split}$$



Let  $\Sigma$  be an alphabet. A language L over  $\Sigma$  (L  $\subseteq \Sigma^*$ ) is regular iff it is recognised by a DFA.

Regular operations

### $$\begin{split} L(M_I) &= \{w0 | w \in \{0, I\}^*\} \\ & \text{is regular} \end{split}$$

#### Definition

Let  $\Sigma$  be an alphabet. A language L over  $\Sigma$  (L  $\subseteq \Sigma^*$ ) is regular iff it is recognised by a DFA.

#### Regular operations

Let L, L<sub>1</sub>, L<sub>2</sub> be languages over  $\sum$ . Then L<sub>1</sub>  $\cup$  L<sub>2</sub>, L<sub>1</sub>  $\cdot$  L<sub>2</sub>, and L<sup>\*</sup> are languages, where

$$L_1 \cdot L_2 = \{w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2\}$$

 $L^* = \{w \mid \exists n \in \mathbb{N} . \exists w_1, w_2, ..., w_n \in L. w = w_1w_2...w_n\}$ 

### $$\begin{split} L(M_I) &= \{w0|w \in \{0,I\}^*\} \\ & \text{is regular} \end{split}$$

#### Definition

Let  $\Sigma$  be an alphabet. A language L over  $\Sigma$  (L  $\subseteq \Sigma^*$ ) is regular iff it is recognised by a DFA.

#### Regular operations

Let L, L<sub>1</sub>, L<sub>2</sub> be languages over  $\Sigma$ . Then L<sub>1</sub>  $\cup$  L<sub>2</sub>, L<sub>1</sub>  $\cdot$  L<sub>2</sub>, and L<sup>\*</sup> are languages, where

$$L_1 \cdot L_2 = \{ w_1 \cdot w_2 \mid w_1 \in L_1, w_2 \in L_2 \}$$

 $L^* = \{w \mid \exists n \in \mathbb{N} . \exists w_1, w_2, ..., w_n \in L. w = w_1w_2...w_n\}$ 

 $\mathcal{E} \in L^*$  always

Theorem CI

The class of regular languages is closed under union

also under intersection

Theorem CI

The class of regular languages is closed under union

also under intersection

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

also under intersection

#### Theorem CI

The class of regular languages is closed under union

#### Theorem C2

The class of regular languages is closed under complement

#### Theorem C3

The class of regular languages is closed under concatenation

# Closure under regular operations

also under intersection

#### Theorem CI

The class of regular languages is closed under union

#### Theorem C2

The class of regular languages is closed under complement

#### Theorem C3

The class of regular languages is closed under concatenation

#### Theorem C4

The class of regular languages is closed under Kleene star

# Closure under regular operations

also under intersection

#### Theorem CI

The class of regular languages is closed under union

We can already prove these!

#### Theorem C2

The class of regular languages is closed under complement

#### Theorem C3

The class of regular languages is closed under concatenation

#### Theorem C4

The class of regular languages is closed under Kleene star

# Closure under regular operations

also under intersection

#### Theorem CI

The class of regular languages is closed under union

We can already prove these!

#### Theorem C2

The class of regular languages is closed under complement

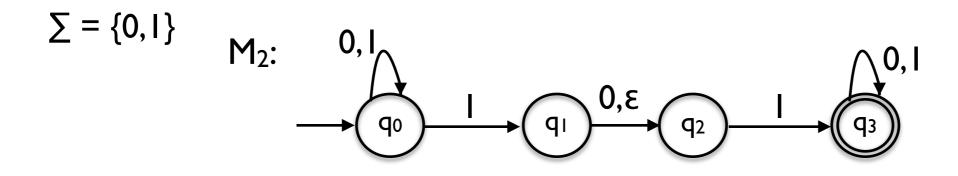
#### Theorem C3

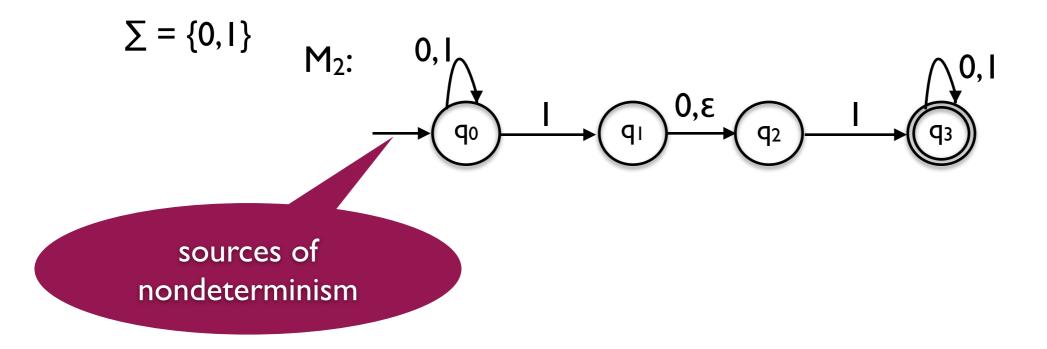
The class of regular languages is closed under concatenation

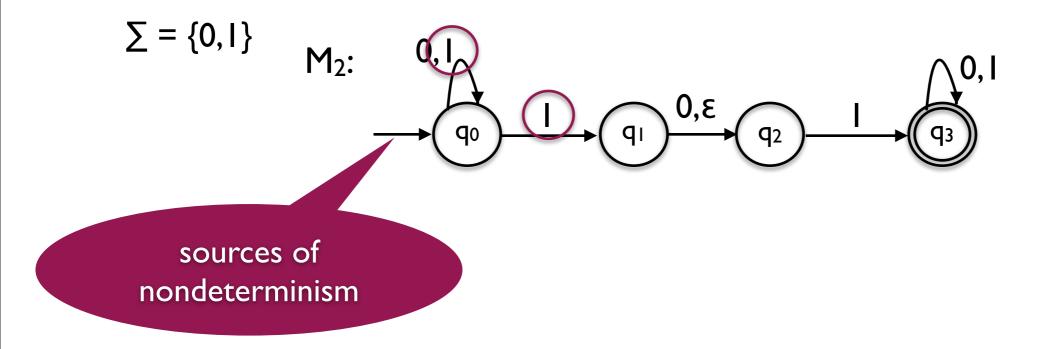
But not yet these two...

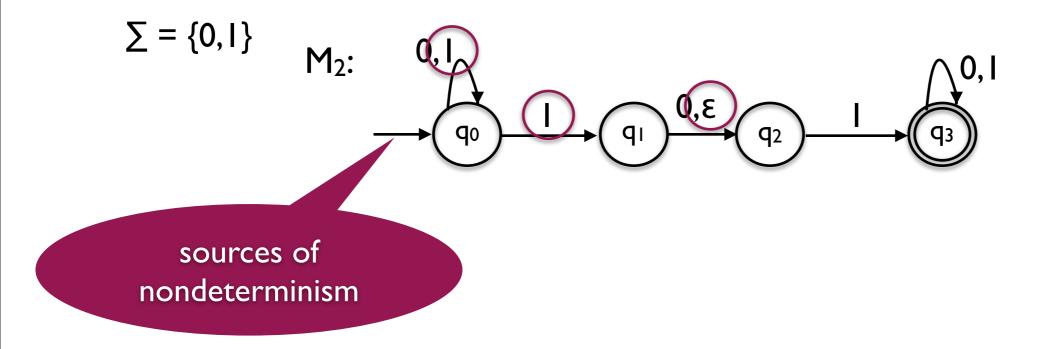
#### Theorem C4

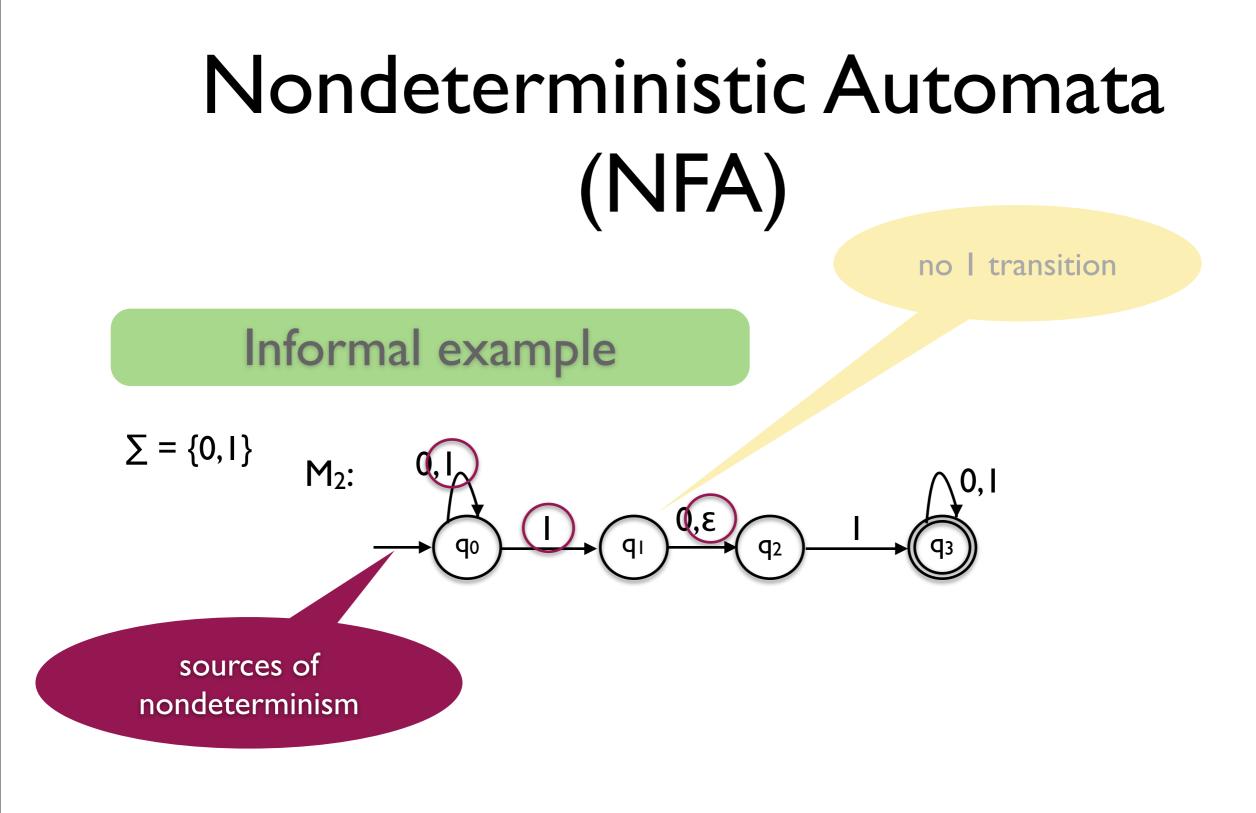
The class of regular languages is closed under Kleene star

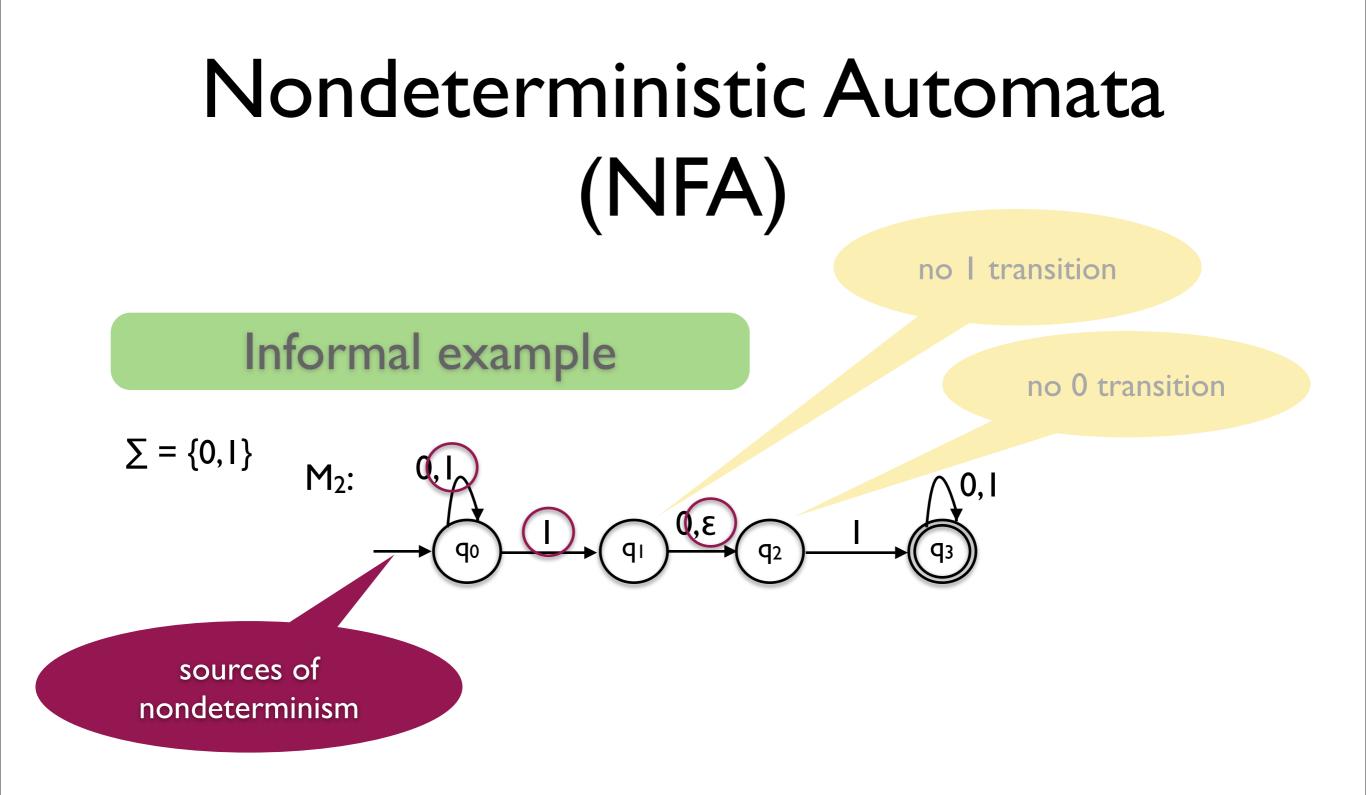


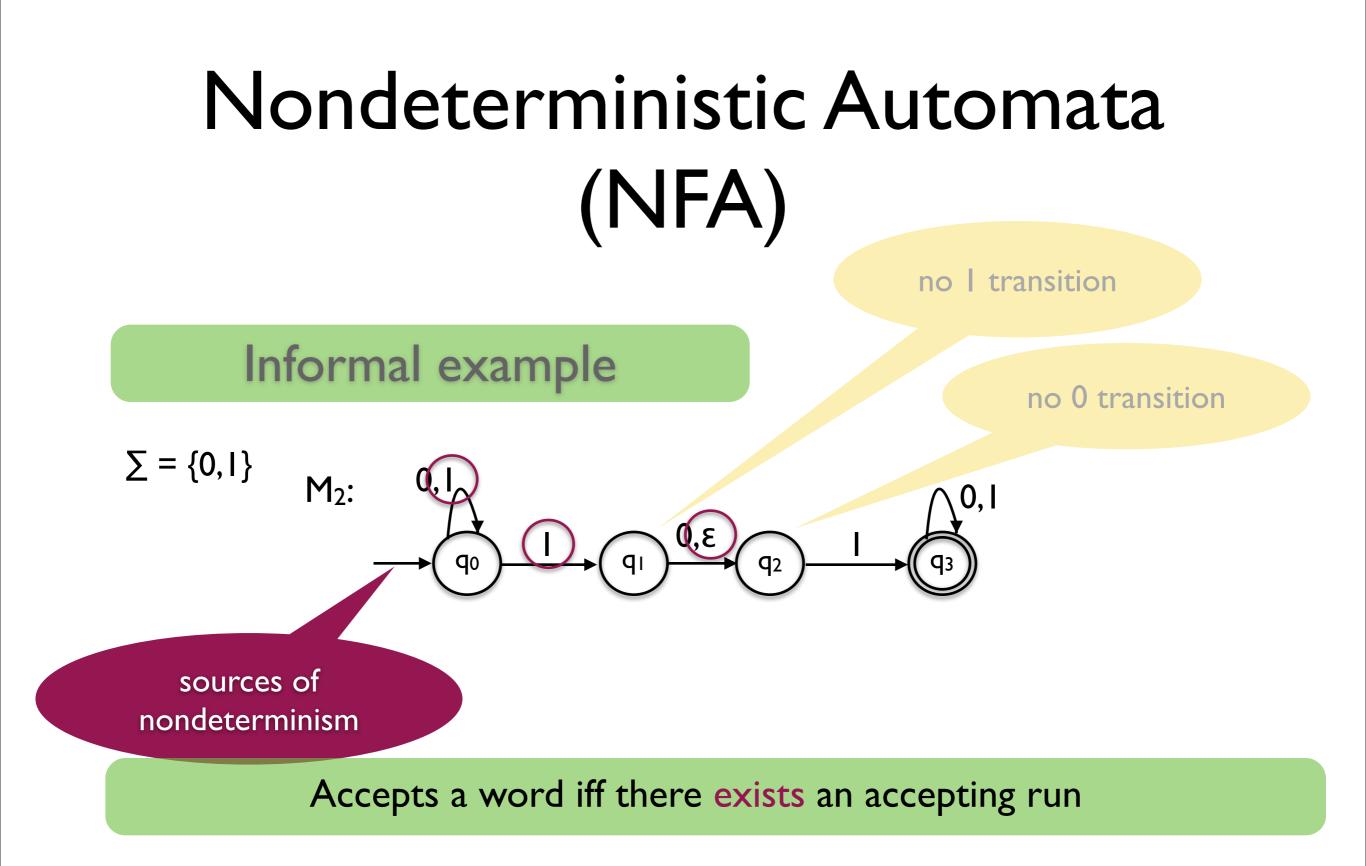














A nondeterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\sum$  is a finite alphabet  $\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ 

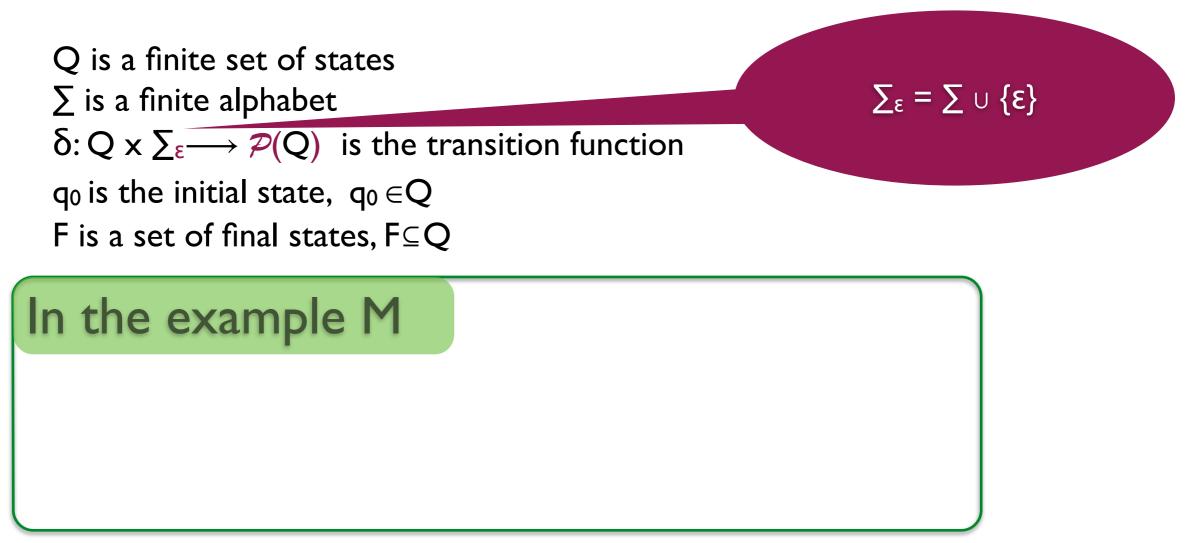


A nondeterministic automaton M is a tuple M =  $(Q, \Sigma, \delta, q_0, F)$  where



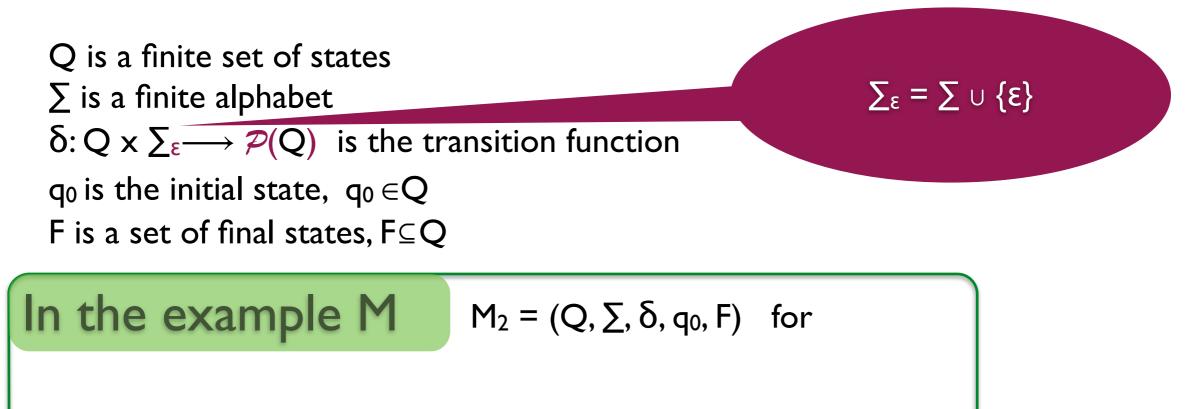
### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where



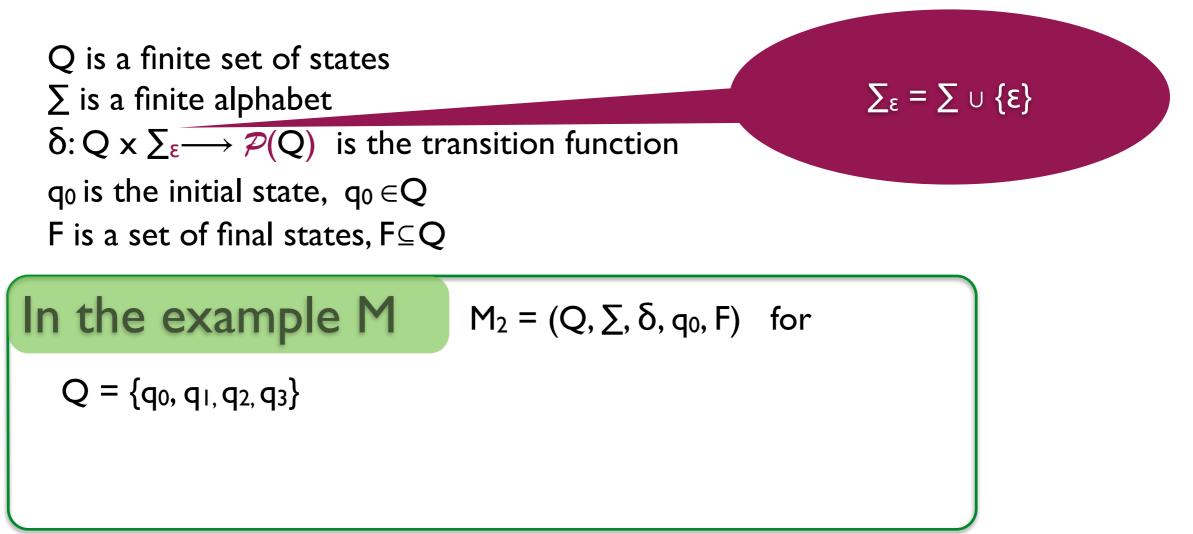
### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\sum$ ,  $\delta$ ,  $q_0$ , F) where



### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where



### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\sum$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\sum is a \text{ finite alphabet}$   $\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$  **In the example M**   $Q = \{q_0, q_1, q_2, q_3\}$  $\sum = \{0, 1\}$ 

### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\Sigma$ ,  $\delta$ ,  $q_0$ , F) where

Q is a finite set of states  $\Sigma$  is a finite alphabet  $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$  is the transition function  $q_0$  is the initial state,  $q_0 \in Q$ F is a set of final states,  $F \subseteq Q$ In the example M  $Q = \{q_0, q_1, q_2, q_3\}$   $\Sigma = \{0, 1\}$   $F = \{q_3\}$  $\Sigma = \{0, 1\}$   $F = \{q_3\}$ 

### Definition

A nondeterministic automaton M is a tuple M = (Q,  $\sum$ ,  $\delta$ , q<sub>0</sub>, F) where

| Q is a finite set of states<br>$\sum$ is a finite alphabet<br>$\delta: Q \times \sum_{\epsilon} \longrightarrow \mathcal{P}(Q)$ is the tr<br>$q_0$ is the initial state, $q_0 \in Q$<br>F is a set of final states, $F \subseteq Q$ |                                                               | $\sum_{\epsilon} = \sum \cup \{\epsilon\}$ |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------|
| In the example M                                                                                                                                                                                                                    | $M_2 = (Q, \Sigma, \delta, q_0, F) \text{ for }$              |                                            |
| $Q = \{q_0, q_1, q_2, q_3\}$                                                                                                                                                                                                        | $\delta(q_0, 0) = \{q_0\}$<br>$\delta(q_0, 1) = \{q_0, q_1\}$ |                                            |
| $\Sigma = \{0, I\}$ F = $\{q_3\}$                                                                                                                                                                                                   | $ δ(q_0, ε) = (q_0, q_1) $<br>$ δ(q_0, ε) = Ø $               |                                            |

#### The extended transition function

#### The extended transition function

Given an NFA M =  $(Q, \Sigma, \delta, q_0, F)$  we can extend  $\delta: Q \times \Sigma_{\epsilon} \longrightarrow \mathcal{P}(Q)$  to

 $\delta^*\!\!:\!Q \times \Sigma^*\!\!\longrightarrow \mathcal{P}(Q)$ 

inductively, by:

 $\delta^*(q, \epsilon) = E(q)$  and  $\delta^*(q, wa) = E(U_{q' \in \delta^*(q, w)} \delta(q', a))$ 

 $\mathsf{E}(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ \overline{(q_i, \epsilon)}, \ \text{for } i = 0, ..., n-1 \}$ 

**The excitate ended transition function** Given an NI  $M = (Q, \Sigma, \delta, q_0, F)$  we can extend  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  to  $\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$ inductively, by:  $\delta^*(q, \varepsilon) = E(q)$  and  $\delta^*(q, wa) = E(\bigcup_{q' \in \delta^*(q, w)} \delta(q', a))$  E-closure of q, all states reachable by E-transitions from q

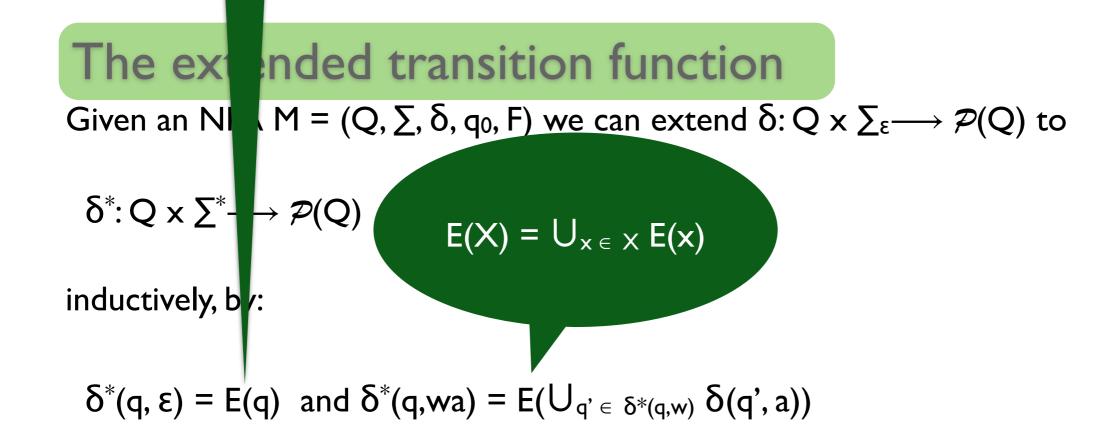
NFA

 $E(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1 \}$ 

**The excitated transition function** Given an NI  $M = (Q, \Sigma, \delta, q_0, F)$  we can extend  $\delta: Q \times \Sigma_{\varepsilon} \longrightarrow \mathcal{P}(Q)$  to  $\delta^*: Q \times \Sigma^* \longrightarrow \mathcal{P}(Q)$ inductively, by:  $\delta^*(q, \varepsilon) = E(q)$  and  $\delta^*(q, wa) = E(\bigcup_{q' \in \delta^*(q, w)} \delta(q', a))$  E-closure of q, all states reachable by E-transitions from q

NFA

 $\mathsf{E}(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q . q_0 = q, q_n = q', q_{i+1} \in \delta (q_i, \epsilon), \text{ for } i = 0, ..., n-1 \}$ 

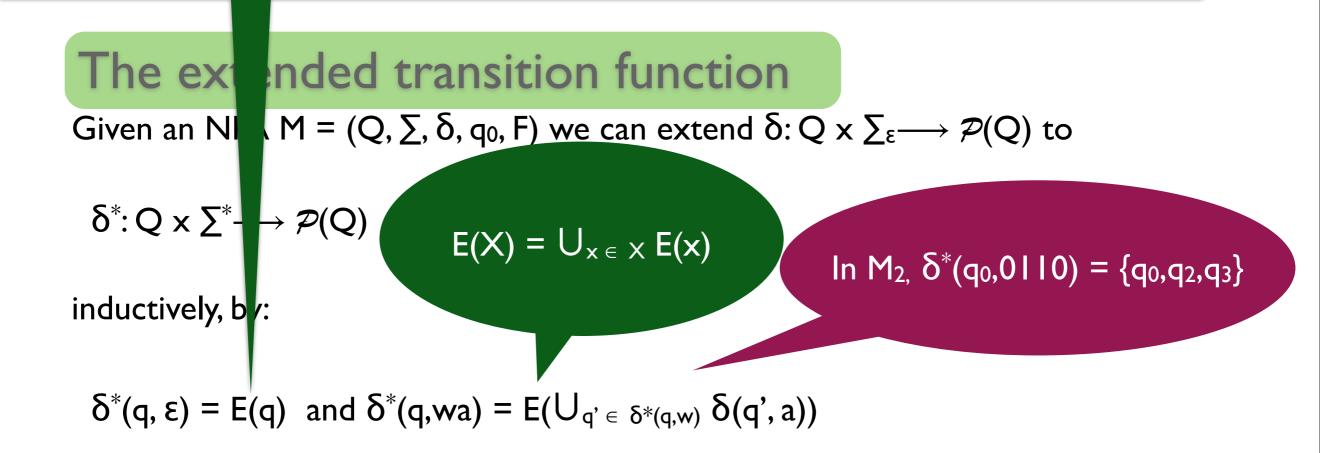


E-closure of q, all states reachable by

E-transitions from q

 $\mathsf{E}(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1 \}$ 

NFA

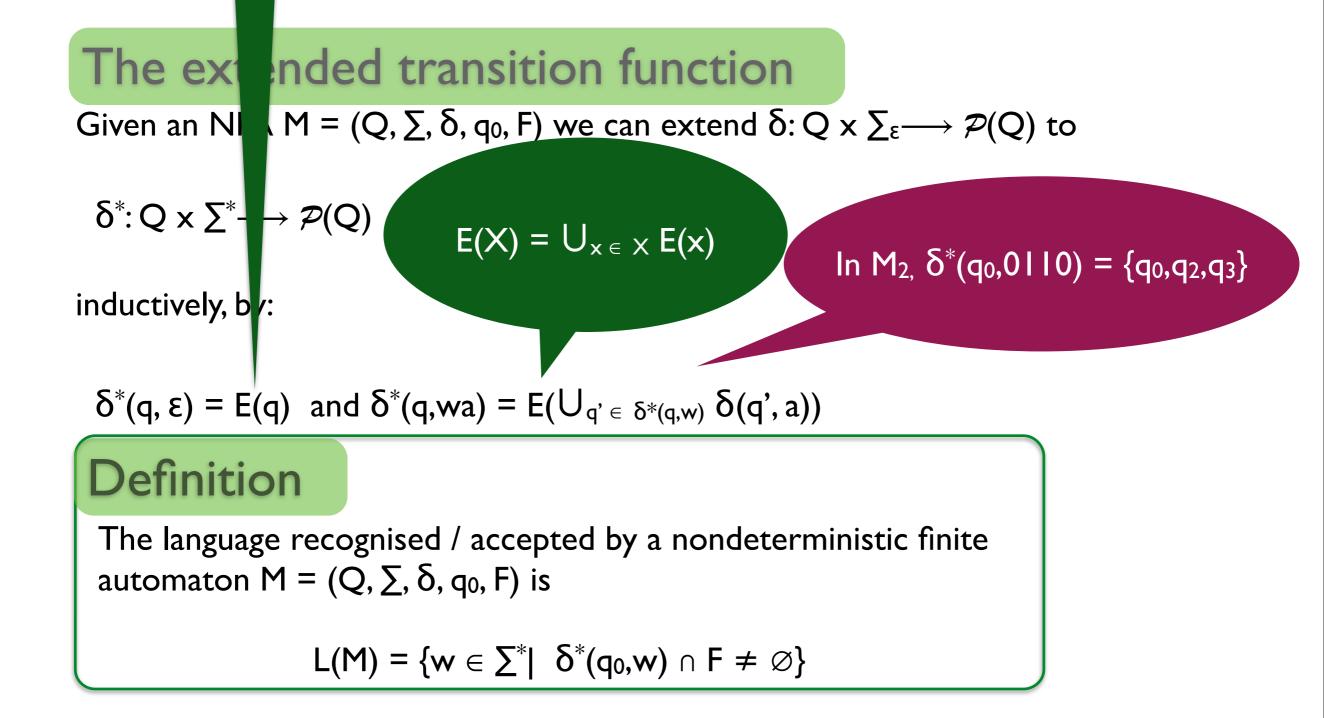


E-closure of q, all states reachable by

E-transitions from q

 $\mathsf{E}(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+. \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta \ (q_i, \epsilon), \ \text{for } i = 0, ..., n-1 \}$ 

NFA



E-closure of q, all states reachable by E-transitions from q

 $E(q) = \{q' \mid q' = q \lor \exists n \in \mathbb{N}^+ . \exists q_0, ..., q_n \in Q. q_0 = q, q_n = q', q_{i+1} \in \delta (q_i, \epsilon), \text{ for } i=0, ..., n-1 \}$ 

NFA

