Formale Systeme PS

Exercises, Week 4

Task 1. Prove that:

- (a) $P \Rightarrow Q$ is not equivalent to $Q \Rightarrow P$
- (b) $P \Rightarrow Q$ is not equivalent to $\neg P \Rightarrow \neg Q$
- (c) $P \Leftrightarrow Q \Leftrightarrow R$ is not equivalent to $(P \Leftrightarrow Q) \land (Q \Leftrightarrow R)$

Task 2. In a mathematics book we read

$$y = x^{2} + 2x + 2 \Rightarrow y = (x+1)^{2} + 1 \Rightarrow y \ge 1.$$

What is meant here? Are the arrows, implication arrows? [Read Section 5.2.]

Task 3. Check if \Rightarrow respectively \Leftrightarrow are idempotent.

Task 4. Give shorter propositions which are equivalent to:

- (a) $T \Leftrightarrow T$
- (b) $T \Leftrightarrow F$
- (c) $P \Leftrightarrow T$.
- (d) $P \Leftrightarrow F$.

Task 5. Show that

- (a) The \Rightarrow distributes over the \land .
- (b) The \Rightarrow distributes over the \lor .
- (c) The \lor distributes over the \Leftrightarrow .
- (d) The \wedge does not distribute over the \Leftrightarrow .

Task 6. Show that Contraposition also holds for \Leftrightarrow , that is:

$$P \Leftrightarrow Q \stackrel{val}{=} \neg Q \Leftrightarrow \neg P.$$

Task 7. Show that:

- (a) If $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{=} R$ and $R \stackrel{val}{=} S$, then $P \stackrel{val}{=} S$.
- (b) If $P \stackrel{val}{=} Q$ and $Q \stackrel{val}{\neq} R$, then $P \stackrel{val}{\neq} R$.
- (c) If $P \Leftrightarrow Q$ is a tautology and $Q \Leftrightarrow R$ is a tautology, then $P \Leftrightarrow R$ is a tautology.

Task 8. Show the following equivalences by calculating with propositions. Always state precisely: (1) which standard equivalence(s) you use, (2) whether you apply Substitution or Leibniz, or both, and (3) how you do this.

- (a) $P \Rightarrow Q \stackrel{val}{=} (P \land Q) \Leftrightarrow P$
- (b) $P \wedge (P \vee Q) \stackrel{val}{=} P$
- (c) $P \lor (P \land Q) \stackrel{val}{=} P$
- (d) $P \wedge (P \Rightarrow Q) \stackrel{val}{=} P \wedge Q$
- (e) $P \lor (\neg P \land Q) \stackrel{val}{=} P \lor Q$