
Solutions to selected exercises of Chapters 1–6

Bas Luttik

November 17, 2011

This document contains solutions to the following exercises in the book [1]:

2.4(c),(d), 2.6, 2.8, 3.1, 4.4(e), (f), 5.5 (c), (d), 6.5(b) and 6.6(c).

We strongly advise you to first try all these exercises by yourself, before looking
at all at the solutions below. There is not a lot of variation possible in the way
solutions to exercises should be written down. So if your solution in one way or
another deviates from a solution below, then consider discussing the differences with
your instructor.

2.4 (c) We show how ((¬(¬a))⇒((¬a)∧b)) is built according to Definition 2.3.1:

(i) a and b are propositional variables, so according to Basis they are
abstract propositions;

(ii) since a is an abstract proposition, by Step (case1) so is (¬a);

(iii) since (¬a) is an abstract proposition, by Step (case 1) so is (¬(¬a));

(iv) since (¬a) and b are abstract propositions, by Step (case 2) so is
((¬a) ∧ b);

(v) since (¬(¬a)) and ((¬a)∧b) are abstract propositions, so is ((¬(¬a))⇒
((¬a) ∧ b)).

Alternatively, the reasoning above may be written a bit more concisely in
the form of a proof tree (we use B to abbreviate Basis, S1 to abbreviate
Step (case 1), and S2 to abbreviate Step (case 2)):

B a
S1

(¬a)
S1

(¬(¬a))

B a
S1

(¬a)
B

b
S2

((¬a) ∧ b)
S2

((¬(¬a))⇒ ((¬a) ∧ b))

(d) We show how (a⇒ ((b ∧ a) ∨ c)) is built according to Definition 2.3.1:

(i) a, b and c are propositional variables, so according to Basis they are
abstract propositions;

(ii) since b and a are abstract propositions, by Step (case 2) so is (b∧a);

(iii) since (b ∧ a) and c are abstract propositions, by Step (case 2) so is
((b ∧ a) ∨ c);

(iv) since a and ((b ∧ a) ∨ c) are abstract propositions, by Step (case 2)
so is (a⇒ ((b ∧ a) ∨ c).

Again, we may alternatively write the above reasoning in the form of a
proof tree (using the same abbreviations B, S1 and S2):

1



B a

B
b B a

S2
(b ∧ a) B c

S2
((b ∧ a) ∨ c)

S2
(a⇒ ((b ∧ a) ∨ c))

2.6 [only for (c) and (d) of Exercise 2.4]

(a) The tree for the abstract proposition of Exercise 2.4(c) is:

⇒

¬

¬

a

∧

¬

a

b

The tree for the abstract proposition of Exercise 2.4(d) is:

⇒

a ∨

∧

b a

c

(b) The main symbol of the abstract proposition of Exercise 2.4(c) is ⇒.

The main symbol of the abstract proposition of Exercise 2.4(d) is ⇒.

2.8 [only for (c) and (d) of Exercise 2.4]

First, consider the abstract proposition

((¬(¬a))⇒ ((¬a) ∧ b)) .

of Exercise 2.4(c). We may always drop the outermost parentheses:

(¬(¬a))⇒ ((¬a) ∧ b) .

Since ¬ has higher priority than ⇒ and ∧ according to the priority scheme
on p. 13 of the book [1], we may drop the parentheses around (¬(¬a)) in
(¬(¬a))⇒ ((¬a) ∧ b) and around (¬a) in ((¬a) ∧ b). We get

¬(¬a)⇒ (¬a ∧ b) .

Since ∧ has a higher priority than ⇒ according to the priority scheme on p.
13 of the book [1], we may drop the parentheses around (¬a ∧ b) in ¬(¬a)⇒
(¬a ∧ b):

¬(¬a)⇒¬a ∧ b .

Finally, note that no ambiguity is introduced if we omit the parentheses
around the negation (¬a) in ¬(¬a), so it is safe to omit them:

¬¬a⇒¬a ∧ b .

NB: Strictly speaking, the book [1] does not give a rule for this last step.
Note, however, that, since ¬ is unary, writing ¬¬P for ¬(¬P ) will never cause
ambiguity.

2



Next, consider the abstract proposition

(a⇒ ((b ∧ a) ∨ c)) .

of Exercise 2.4(d). We may, as always, omit the outermost parentheses, to
get:

a⇒ ((b ∧ a) ∨ c) .

Then, since ∨ has a higher priority than⇒, we may also omit the parentheses
around ((b ∧ a) ∨ c in a⇒ ((b ∧ a) ∨ c) to get

a⇒ (b ∧ a) ∨ c .

NB: We do not agree with the suggestion in the exercise to use the left-
associativity rule, because it goes against Convention 2.5.2 on p. 14 of the
book [1], where it is stated explicitly that the rule for left-associativity is not
going to be used. (If we would have applied the left-associativity for ∧ and
∨, as the exercise suggests, then we could also have omitted the last pair of
parentheses in the above abstract proposition.)

3.1 [only for (c) and (d) of Exercise 2.4]

The truth table of the abstract proposition of Exercise 2.4(c) is:

a b ¬a ¬¬a ¬a ∧ b ¬¬a⇒¬a ∧ b
0 0 1 0 0 1
0 1 1 0 1 1
1 0 0 1 0 0
1 1 0 1 0 0

The truth table of the abstract proposition of Exercise 2.4(d) is:

a b c b ∧ a (b ∧ a) ∨ c a⇒ (b ∧ a) ∨ c
0 0 0 0 0 1
0 0 1 0 1 1
0 1 0 0 0 1
0 1 1 0 1 1
1 0 0 0 0 0
1 0 1 0 1 1
1 1 0 1 1 1
1 1 1 1 1 1

4.4 (e) To show that a⇒ (b⇒ a) and a⇒ a are equivalent, we first construct a
combined truth table for these two abstract propositions:

a b b⇒ a a⇒ (b⇒ a) a⇒ a
0 0 1 1 1
0 1 0 1 1
1 0 1 1 1
1 1 1 1 1

Now, since the columns for a⇒ (b⇒ a) and a⇒ a in the combined truth
table are identical, it follows that a ⇒ (b ⇒ a) and a ⇒ a are indeed
equivalent.

3



(f) To show that (a ∧ b) ∨ b and (b ∧ c) ∨ (b ∧ ¬c) are equivalent, we first
construct a combined truth table for these two abstract propositions:

a b c a ∧ b (a ∧ b) ∨ b b ∧ c ¬c b ∧ ¬c (b ∧ c) ∨ (b ∧ ¬c)
0 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0
0 1 0 0 1 0 1 1 1
0 1 1 0 1 1 0 0 1
1 0 0 0 0 0 1 0 0
1 0 1 0 0 0 0 0 0
1 1 0 1 1 0 1 1 1
1 1 1 1 1 1 0 0 1

Now, since the columns for (a∧b)∨b and (b∧c)∨(b∧¬c) in the combined
truth table are identical, it follows that a⇒ (b⇒a) and a⇒a are indeed
equivalent.

5.5 (c) To show that disjunction (∨) distributes over bi-implication (⇔) we need
prove the following equivalence:

P ∨ (Q⇔R)
val
== (P ∨Q)⇔ (P ∨R) .

To this end, we construct a combined truth table for both sides of the
equivalence:

P Q R Q⇔R P ∨ (Q⇔R) P ∨Q P ∨R (P ∨Q)⇔ (P ∨R)
0 0 0 1 1 0 0 1
0 0 1 0 0 0 1 0
0 1 0 0 0 1 0 0
0 1 1 1 1 1 1 1
1 0 0 1 1 1 1 1
1 0 1 0 1 1 1 1
1 1 0 0 1 1 1 1
1 1 1 1 1 1 1 1

Since the columns for P ∨(Q⇔R) and (P ∨Q)⇔(P ∨R) in the combined
truth table are identical, it follows that they are equivalent.

(d) To prove that the equivalence

P ∧ (Q⇔R)
val
== (P ∧Q)⇔ (P ∧R)

does not hold, it suffices to give a counterexample: Take P = 0, Q = 0
and R = 0. Then the left-hand side of the equivalence evaluates to 0,
while the right-hand side of the equivalence evaluates to 1. Hence, the
equivalence does not hold.

6.5 (b) To prove that ((Q⇒ P )⇒¬Q)⇔ (¬P ∨ ¬Q) is a tautology, by Lemma
6.1.3 it suffices to establish the equivalence

(Q⇒ P )⇒¬Q val
== ¬P ∨ ¬Q .

4



We establish the equivalence with the following calculation:

(Q⇒ P )⇒¬Q
val
== { Implication }
¬(Q⇒ P ) ∨ ¬Q

val
== { Implication }
¬(¬Q ∨ P ) ∨ ¬Q

val
== { De Morgan }

(¬¬Q ∧ ¬P ) ∨ ¬Q
val
== { Double Negation }

(Q ∧ ¬P ) ∨ ¬Q
val
== { Distributivity }

(Q ∨ ¬Q) ∧ (¬P ∨ ¬Q)

val
== { Excluded Middle }

True ∧ (¬P ∨ ¬Q)

val
== { True/False-elimination }
¬P ∨ ¬Q

6.6 (c) To prove that ((P ∧ ¬R) ∨ (¬P ∧ R))⇔ (P ⇔ ¬R) is a tautology, by
Lemma 6.1.3 it suffices to establish the equivalence

(P ∧ ¬R) ∨ (¬P ∧R)
val
== P ⇔¬R

We establish the equivalence with the following calculation1:

P ⇔¬R
val
== { Bi-implication }

(P ⇒¬R) ∧ (¬R⇒ P )

val
== { Implication (2×) }

(¬P ∨ ¬R) ∧ (¬¬R ∨ P )

val
== { Double Negation }

(¬P ∨ ¬R) ∧ (R ∨ P )

val
== { Distributivity }

(¬P ∧ (R ∨ P )) ∨ (¬R ∧ (R ∨ P ))

val
== { Distributivity (2×) }

((¬P ∧R) ∨ (¬P ∧ P )) ∨ ((¬R ∧R) ∨ (¬R ∧ P ))

val
== { Contradiction (2×) }

((¬P ∧R) ∨ False) ∨ (False ∨ (¬R ∧ P ))

val
== { True/False-elimination }

(P ∧ ¬R) ∨ (¬P ∧R)

1We find it, in this case, convenient to start with the right-hand side of the equation; note that
this is allowed by Lemma 6.1.1(2).

5



References

[1] Rob Nederpelt and Fairouz Kamareddine. Logical Reasoning: A First Course,
volume 3 of Texts in Computing. King’s College Publications, second revised
edition edition, 2011.

6


