
Linearizability via Order 
Extension Theorems



Linearizability via Order 
Extension Theorems

foundational results 
for  

verifying linearizability



Linearizability via Order 
Extension Theorems

foundational results 
for  

verifying linearizability

a glimpse into 
unpublished results and 

some open problems



Inspiration (queue)

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

MOVEP 18.7.18



Inspiration (queue)

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue linearizable  
                          iff 
1. h is pool linearizable, and 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

MOVEP 18.7.18



Inspiration (queue)

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue linearizable  
                          iff 
1. h is pool linearizable, and 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

precedence order

MOVEP 18.7.18



Inspiration (queue)

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue sequence  
                          iff 
1. s is a legal pool sequence, and 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue linearizable  
                          iff 
1. h is pool linearizable, and 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

Henzinger, Sezgin, Vafeiadis CONCUR13

precedence order

As well as 
Reducing Linearizability to  

State Reachability 
[Bouajjani, Emmi, Enea, Hamza] 

ICALP15 + …

MOVEP 18.7.18



Problems (stack)

Ana Sokolova 

s is a legal stack sequence  
                          iff 
1. s is a legal pool sequence, and 
2. push(x) <s push(y) <s pop(x)     ⇒     pop(y) ∈ s  ⋀   pop(y) <s  pop(x)

Stack sequential specification (axiomatic)

MOVEP 18.7.18



Stack linearizability (axiomatic)

h is stack linearizable  
                          iff 
1. h is pool linearizable, and 
2. push(x) <h push(y) <h pop(x)     ⇒     pop(y) ∈ h  ⋀   pop(x) ≮h  pop(y)

Problems (stack)

Ana Sokolova 

s is a legal stack sequence  
                          iff 
1. s is a legal pool sequence, and 
2. push(x) <s push(y) <s pop(x)     ⇒     pop(y) ∈ s  ⋀   pop(y) <s  pop(x)

Stack sequential specification (axiomatic)

MOVEP 18.7.18



Stack linearizability (axiomatic)

h is stack linearizable  
                          iff 
1. h is pool linearizable, and 
2. push(x) <h push(y) <h pop(x)     ⇒     pop(y) ∈ h  ⋀   pop(x) ≮h  pop(y)

Problems (stack)

Ana Sokolova 

s is a legal stack sequence  
                          iff 
1. s is a legal pool sequence, and 
2. push(x) <s push(y) <s pop(x)     ⇒     pop(y) ∈ s  ⋀   pop(y) <s  pop(x)

Stack sequential specification (axiomatic)

MOVEP 18.7.18

???



Stack linearizability (axiomatic)

h is stack linearizable  
                          iff 
1. h is pool linearizable, and 
2. push(x) <h push(y) <h pop(x)     ⇒     pop(y) ∈ h  ⋀   pop(x) ≮h  pop(y)

Problems (stack)

Ana Sokolova 

s is a legal stack sequence  
                          iff 
1. s is a legal pool sequence, and 
2. push(x) <s push(y) <s pop(x)     ⇒     pop(y) ∈ s  ⋀   pop(y) <s  pop(x)

Stack sequential specification (axiomatic)

MOVEP 18.7.18



Stack linearizability (axiomatic)

h is stack linearizable  
                          iff 
1. h is pool linearizable, and 
2. push(x) <h push(y) <h pop(x)     ⇒     pop(y) ∈ h  ⋀   pop(x) ≮h  pop(y)

Problems (stack)

Ana Sokolova MOVEP 18.7.18

t1: push(1) pop(1)

push(2) pop(2)t2:

push(3) pop(3)t3:



Stack linearizability (axiomatic)

h is stack linearizable  
                          iff 
1. h is pool linearizable, and 
2. push(x) <h push(y) <h pop(x)     ⇒     pop(y) ∈ h  ⋀   pop(x) ≮h  pop(y)

Problems (stack)

Ana Sokolova MOVEP 18.7.18

t1: push(1) pop(1)

push(2) pop(2)t2:

push(3) pop(3)t3:

not stack 
linearizable



Linearizability verification

Ana Sokolova MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

concurrent history

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

concurrent history
legal sequence

MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

concurrent history

it is easy to find a large CV,  
but difficult to find a small representative

legal sequence
MOVEP 18.7.18



Linearizability verification

Ana Sokolova 

Sequential specification via violations

Extract a set of violations V, relations on Σ, such that s ∈ S iff s has no violations

P(s) ∩ V =  ∅

Data structure
• signature Σ - set of method calls including data values 
• sequential specification S ⊆ Σ*, prefix closed

identify 
sequences with 

total orders

Find a set of violations CV such that: every interval order with no CV violations  
extends to a total order with no V violations.

Linearizability verification  

concurrent history

it is easy to find a large CV,  
but difficult to find a small representative

we build 
CV iteratively 

from V
legal sequence

MOVEP 18.7.18



Pool without empty removals

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x)

MOVEP 18.7.18



Pool without empty removals

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x)

V violations 
rem(x) <s ins(x)

MOVEP 18.7.18



Pool without empty removals

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x)

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x)

V violations 
rem(x) <s ins(x)

MOVEP 18.7.18



Pool without empty removals

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (without empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x)

Pool linearizability (axiomatic)

h is pool (without empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x)

V violations 
rem(x) <s ins(x)

CV violations 
= V violations

MOVEP 18.7.18



Queue without empty 
removals

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

MOVEP 18.7.18



Queue without empty 
removals

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

V violations 
deq(x) <s enq(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

MOVEP 18.7.18



Queue without empty 
removals

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x) 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

V violations 
deq(x) <s enq(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

MOVEP 18.7.18



Queue without empty 
removals

Ana Sokolova 

Queue sequential specification (axiomatic)

s is a legal queue (without empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)

h is queue (without empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x) 
2. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

V violations 
deq(x) <s enq(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

CV violations 
= V violations

MOVEP 18.7.18



Pool

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (with empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x) 
2. rem(⊥) <s  rem(x) ⇒ rem(⊥) <s  ins(x)   ⋀   ins(x) <s  rem(⊥) ⇒ rem(x) <s  rem(⊥)

infinite 
inductive 
violations

MOVEP 18.7.18



Pool

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (with empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x) 
2. rem(⊥) <s  rem(x) ⇒ rem(⊥) <s  ins(x)   ⋀   ins(x) <s  rem(⊥) ⇒ rem(x) <s  rem(⊥)

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x)

MOVEP 18.7.18



Pool

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (with empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x) 
2. rem(⊥) <s  rem(x) ⇒ rem(⊥) <s  ins(x)   ⋀   ins(x) <s  rem(⊥) ⇒ rem(x) <s  rem(⊥)

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x) 
2. … …

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x)

MOVEP 18.7.18



Pool

Ana Sokolova 

Pool sequential specification (axiomatic)

s is a legal pool (with empty removals) sequence  
                          iff 
1. rem(x) ∈ s     ⇒     ins(x) ∈ s  ⋀   ins(x) <s  rem(x) 
2. rem(⊥) <s  rem(x) ⇒ rem(⊥) <s  ins(x)   ⋀   ins(x) <s  rem(⊥) ⇒ rem(x) <s  rem(⊥)

Pool linearizability (axiomatic)

h is pool (with empty removals) linearizable  
                          iff 
1. rem(x) ∈ h     ⇒     ins(x) ∈ h  ⋀   rem(x) ≮h  ins(x) 
2. … …

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x)

infinitely many CV violations 
ins(x1) <h rem(⊥) ⋀ ins(x2) <h rem(x1) ⋀ … ⋀ ins(xn+1) <h rem(xn) ⋀ rem(⊥) <h rem(xn+1)

MOVEP 18.7.18



Queue

Ana Sokolova 

Queue sequential specification (axiomatic)
s is a legal queue (with empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. deq(⊥) <s  deq(x) ⇒ deq(⊥) <s  enq(x)   ⋀   enq(x) <s  deq(⊥) ⇒ deq(x) <s  deq(⊥) 
3.  enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

infinite 
inductive 
violations

MOVEP 18.7.18



Queue

Ana Sokolova 

Queue sequential specification (axiomatic)
s is a legal queue (with empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. deq(⊥) <s  deq(x) ⇒ deq(⊥) <s  enq(x)   ⋀   enq(x) <s  deq(⊥) ⇒ deq(x) <s  deq(⊥) 
3.  enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

MOVEP 18.7.18



Queue

Ana Sokolova 

Queue sequential specification (axiomatic)
s is a legal queue (with empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. deq(⊥) <s  deq(x) ⇒ deq(⊥) <s  enq(x)   ⋀   enq(x) <s  deq(⊥) ⇒ deq(x) <s  deq(⊥) 
3.  enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)
h is queue (with empty removals) linearizable  
                          iff 
1. deq(x) ∈ h     ⇒     enq(x) ∈ h  ⋀   deq(x) ≮h  enq(x) 

2. … … 

3. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

MOVEP 18.7.18



Queue

Ana Sokolova 

Queue sequential specification (axiomatic)
s is a legal queue (with empty removals) sequence  
                          iff 
1. deq(x) ∈ s     ⇒     enq(x) ∈ s  ⋀   enq(x) <s  deq(x) 
2. deq(⊥) <s  deq(x) ⇒ deq(⊥) <s  enq(x)   ⋀   enq(x) <s  deq(⊥) ⇒ deq(x) <s  deq(⊥) 
3.  enq(x) <s enq(y)  ⋀   deq(y) ∈ s     ⇒     deq(x) ∈ s  ⋀   deq(x) <s  deq(y)

Queue linearizability (axiomatic)
h is queue (with empty removals) linearizable  
                          iff 
1. deq(x) ∈ h     ⇒     enq(x) ∈ h  ⋀   deq(x) ≮h  enq(x) 

2. … … 

3. enq(x) <h enq(y)  ⋀   deq(y) ∈ h     ⇒     deq(x) ∈ h  ⋀   deq(y) ≮h  deq(x)

infinite 
inductive 
violations

V violations 
rem(x) <s ins(x) 

and 
ins(x) <s  rem(⊥) <s  rem(x) 

and 
enq(x) <s enq(y) ∧  
deq(y) <s deq(x)

infinitely many CV violations 
enq(x1) <h deq(⊥) ⋀ enq(x2) <h deq(x1) ⋀ … ⋀ enq(xn+1) <h deq(xn) ⋀ deq(⊥) <h deq(xn+1)

MOVEP 18.7.18





• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for

Ana Sokolova MOVEP 18.7.18



• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for

Ana Sokolova 

infinite 
inductive 
violations

MOVEP 18.7.18



• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for

Ana Sokolova 

infinite 
inductive 
violations

But not yet for Stack:  
infinite CV violations  

without clear  
inductive structure

MOVEP 18.7.18



• Pool without empty removals 

• Queue without empty removals 

• Priority queue without empty removals 

• Pool  

• Queue  

• Priority queue

It works for

Ana Sokolova 

infinite 
inductive 
violations

But not yet for Stack:  
infinite CV violations  

without clear  
inductive structure

Exploring the space of 
data structures  

as well as new ideas  
for problematic cases

MOVEP 18.7.18


