Relaxing the Consistency Condition

Local Linearizability main idea

Already present in some shared-memory consistency conditions (not in our form of choice)

- Partition a history into a set of local histories
- Require linearizability per local history

Local sequential consistency... is also possible

Local Linearizability (queue) example

(sequential) history not linearizable

Ana Sokolova

Local Linearizability (queue) definition

Queue signature $\Sigma = \{enq(x) \mid x \in V\} \cup \{deq(x) \mid x \in V\} \cup \{deq(empty)\}$

For a history h with a thread T, we put $I_T = \{enq(x)^T \in h \mid x \in V\}$	in-methods of thread T are enqueues performed by thread T	
$O_T = \{ deq(x)^T \in \mathbf{h} \mid enq(x)^T \in I_T \} \cup \{ deq(empty) \}$		
out-methods of thread T are dequeues (performed by any thread) corresponding to enqueues that are in-methods		
h is locally linearizable iff every thread-induced history		
is linea	$\mathbf{n}_{T} = \mathbf{n} (\mathbf{I}_{T} \cup \mathcal{O}_{T})$ rizable.	

Local Linearizability for Container-Type DS

Signature Σ = Ins \cup Rem \cup SOb \cup DOb

For a history **h** with a thread T, we put $I_{T} = \{m^{T} \in \mathbf{h} \mid m \in Ins\}$ in-methods of thread T are inserts performed by thread T $O_{T} = \{m(a) \in \mathbf{h} \ \cap \ Rem| \ i(a)^{T} \in I_{T}\} \cup \{m(e) \mid e \in Emp\}$ $\cup \{m(a) \in \mathbf{h} \ \cap \ DOb| \ i(a)^{T} \in I_{T}\}$

> out-methods of thread T are removes and data-observations (performed by any thread)

h is locally linearizable iff every thread-induced history $\mathbf{h}_{T} = \mathbf{h} | (\mathbf{I}_{T} \cup \mathbf{O}_{T})$

is linearizable.

MOVEP 18.7.18

n-methods

Generalizations of Local Linearizability

Signature Σ

Where do we stand?

Where do we stand?

For queues (and most container-type data structures)

Properties

Local linearizability is compositional

like linearizability unlike sequential consistency

h (over multiple objects) is locally linearizable
iff
each per-object subhistory of h is locally linearizable

Local linearizability is modular / "decompositional" uses decomposition into smaller histories, by definition

may allow for modular verification