Nonregular languages

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \sum^*$ such that w = xyz and

- I. $xy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |y| > 0
- 3. |xy| ≤p

Proof sketch easy, using the pigeonhole principle

Example "corollary"

L= $\{0^n1^n \mid n \in \mathbb{N}\}\$ is nonregular.

Note the logical structure!

Context-free Grammars and Push-down Automata

Context-free Grammars

alphabet (terminals)

Informal example

 $\Sigma = \{0, I\}$ $G_1: S \to 0SI, S \to A, A \to \varepsilon$

S is initial nonterminal

S, A are variables (nonterminals)

production rules "context-free!"

Generates the language $L(G_1) = \{0^n I^n \mid n \in \mathbb{N}\}\$

context-free language

CFG

Definition

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals)

 \sum is a finite alphabet (of terminal symbols, terminals)

R is a finite set of (production) rules, $R \subseteq V \times (\sum \cup V)^*$

S is the initial nonterminal, $S \in V$

In the example G

$$V = \{S, A\}$$

$$\sum = \{0, 1\}$$

$$G_1 = (V, \sum, R, S)$$
 for

$$R = \{ (S, OSI), (S,A), (A, \epsilon) \}$$

CFG

u derives v

context-free language

Derivati Ins

uAv yields uwv

Given $G = (V, \Sigma, R, S)$ we have $uAv \Rightarrow uwv$ for $u, v, w \in (\Sigma \cup V)^*$, $A \rightarrow w \in R$

and $u \Rightarrow^* v$ if u = v

or there exists a sequence $u_1, u_2, ..., u_k$ for $k \ge 0$ such that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow ... \Rightarrow u_k \Rightarrow v$

Definition

The language generated by a context-free grammar $G = (V, \Sigma, R, S)$ is

all words consisting only of terminals, that can be derived from the initial nonterminal

$$L(G) = \{w \in \Sigma^* | S \Rightarrow^* w\}$$

Regular vs. CF languages

Theorem RL-CFL

The class of regular languages is contained in the class of context -free languages.

context-free languages generated by CFG recognized by PDA regular languages recognised by FA generated by regular grammars

Non-context-free languages

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

If L is a context-free language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \geq p$, there exist u, v, x, y, $z \in \sum^*$ such that w = uvxyz and

- I. $uv^ixy^iz \in L$, for all $i \in \mathbb{N}$
- 2. |vy| > 0
- 3. $|vxy| \le p$

Proof sketch easy, using the pigeonhole principle

Example "corollary"

L= $\{a^nb^nc^n \mid n \in \mathbb{N}\}\$ is non-context-free.

Note the logical structure!

Properties of CF languages

Theorem CFI

but not under intersection!

The class of regular languages is closed under union

Theorem CF2

The class of regular languages is closed under concatenation

and not under complement!

Theorem CF3

The class of regular languages is closed under Kleene star

Theorem CF4

The intersection of a regular language and a context-free language is context-free