Turing Machines

- = finite control (automaton states)
 - + (potentially) infinite tape
 - + head for reading/writing

unlimited access to infinite memory!

Turing Machine

Definition

A Turing machine M is a tuple M = $(Q, \sum, \Gamma, \delta, q_0, !, q_{rej})$ where

Q is a finite set of states

 \sum is the input alphabet $(\Box \notin \sum)$

 Γ is the tape alphabet $(\Sigma \subseteq \Gamma, \Box \in \Gamma)$

 $\delta: Q\setminus\{!, q_{rej}\} \times \Gamma \longrightarrow Q \times \Gamma \times \{L,R\}$ is the transition function

 q_0 is the initial state, $q_0 \in Q$! (or q_{acc}) is the accept state, ! $\in Q$ q_{rej} is the reject state, $q_{rej} \in Q$

no transitions from ! and q_{rej}

or $\{L,R,N\}$

 $\delta(q,a) = (r,b,X)$ means that in a state q, reading the symbol a from the cell on which the head is positioned, the TM changes to state r, writes c in place of b, and moves the head for one cell in direction X

Turing machines

Compute via configurations

(q,w,i)shortly uqv if w = uv, |u| = i-1

Given $M = (Q, \sum, \Gamma, \delta, q_0, !, q_{rej})$ a configuration of Γ is an element in

Q x Γ^* x N (current state, input word, position of the head) an initial configuration is $(q_0, w, 1)$.

one-step computation

```
uaqbv \models uracv iff \delta(q,b) = (r,c,L)
uaqbv \models uacrv iff \delta(q,b) = (r,c,R)
qbv \models rcv iff \delta(q,b) = (r,c,L)
uaq \models uacr iff \delta(q,\Box) = (r,c,R)
```

Definition (Turing recognisable language)

The language recognised / accepted by a Turing machine $M = (Q, \Sigma, \Gamma, \delta, q_0, !, q_{rej})$ is

zero-or-more-steps computation

$$L(M) = \{w \in \sum^* | (q_0, w, I) \models^* (!, u, j) \text{ for some } u \text{ and } j\}$$

Turing machines

On input w may

- (1) accept w, if $(q_0, w, 1) \models^* (!, u, j)$ for some u and j
- (2) reject w, if $(q_0, w, I) \models^* (q_{rej}, u, j)$ for some u and j
- (3) loop, i.e., never reach! or q_{rej}

both (2) and (3) are not accepting

A decider TM on input w may only

- (1) accept w, if $(q_0, w, 1) \models^* (!, u, j)$ for some u and j
- (2) reject w, if $(q_0, w, I) \models^* (q_{rej}, u, j)$ for some u and j

deciders do not loop

Definition (Turing decidable language)

A language L is Turing decidable if L = L(M) for some Turing machine M = $(Q, \sum, \Gamma, \delta, q_0, !, q_{rej})$ which is a decider.