Push-down Automata = FA + Stack

Definition

A push-down automaton M is a tuple M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ where

Q is a finite set of states \sum is the input alphabet (of terminal symbols, terminals) Γ is the stack alphabet $\delta: Q \times \sum_{\epsilon} \times \Gamma_{\epsilon} \longrightarrow \mathcal{P}(Q \times \Gamma_{\epsilon})$ is the transition function q_0 is the initial state, $q_0 \in Q$ F is a set of final states, $F \subseteq Q$

 $(r,c) \in \delta(q,a,b)$ means that in a state q, reading input symbol a and popping b from the stack, the PDA may change to state r and push c on the stack

Compute via configurations

Compute via configurations

Given M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

 $Q \times \Sigma^* \times \Gamma^*$

an initial configuration is (q_0, w, ε) .

Compute via configurations

Given M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

 $Q \times \Sigma^* \times \Gamma^*$

an initial configuration is (q_0, w, ϵ) .

 $(q,w,u) \vDash (r,w_1, u_1)$ if and only if w = aw₁, u = bu₂, and u₁ = cu₂

Compute via configurations

Given M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

 $Q \times \Sigma^* \times \Gamma^*$

an initial configuration is (q_0, w, ϵ) .

 $(q,w,u) \vDash (r,w_1, u_1)$ if and only if w = aw₁, u = bu₂, and u₁ = cu₂ one-step computation

Compute via configurations

Given M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

 $Q \times \Sigma^* \times \Gamma^*$

an initial configuration is (q_0, w, ϵ) .

 $(q,w,u) \vDash (r,w_1, u_1)$ if and only if w = aw₁, u = bu₂, and u₁ = cu₂

Definition

The language recognised / accepted by a push-down automaton $M = (Q, \sum, \Gamma, \delta, q_0, F)$ is

 $L(M) = \{ w \in \Sigma^* | \ (q_0, w, \epsilon) \vDash^* (f, \epsilon, \epsilon) \text{ for some } f \in F \}$

one-step computation

Compute via configurations

Given M = $(Q, \Sigma, \Gamma, \delta, q_0, F)$ a configuration of M is an element in

 $Q \times \Sigma^* \times \Gamma^*$

an initial configuration is (q_0, w, ϵ) .

 $(q,w,u) \vDash (r,w_1, u_1)$ if and only if w = aw₁, u = bu₂, and u₁ = cu₂

Definition

The language recognised / accepted by a put $M = (Q, \Sigma, \Gamma, \delta, q_0, F)$ is

zero-or-more-steps computation

one-step computation

 $L(M) = \{ w \in \Sigma^* | \ (q_0, w, \epsilon) \vDash^* (f, \epsilon, \epsilon) \text{ for some } f \in F \}$

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by a push-down automaton.

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by a push-down automaton.

context-free languages generated by CFG recognized by PDA regular languages recognised by FA generated by regular grammars

Definitions

Definitions

Two words $u, v \in \sum^*$ are consistent if none is a prefix of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions are compatible.

Two words $u, v \in \sum^*$ are consistent if none is 2 peak of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions are compatible.

Definitions

Two words $u, v \in \sum^*$ are consistent if none is a new of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions

can fire at the same time

 $(r,c) \in \delta(q,a,b)$

Definitions

Two words $u, v \in \sum^*$ are consistent if none is a point of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions

can fire at the same time

 $(r,c) \in \delta(q,a,b)$

Definition A language L is a deterministic context-free language if there exists a DPDA M that recognises $L\$ = \{w\$ \mid w \in L\}$ We say then that M recognises L and write L = L(M).

Definitions

Two words $u, v \in \sum^*$ are consistent if none is a point of the other.

Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as well as b and e are inconsistent.

A PDA M is deterministic if no two different transitions can fire a

can fire at the same time

 $(r,c) \in \delta(q,a,b)$

