
Push-down Automata	


= FA + Stack



PDA

if y is not free in P and Q

A push-down automaton M is a tuple M = (Q, ∑, Γ, δ, q0, F) where	


!
   Q is a finite set of states	


   ∑ is the input alphabet (of terminal symbols, terminals)	


   Γ is the stack alphabet	


   δ: Q x ∑ε x Γε ⟶ P(Q x Γε)  is the transition function	


   q0 is the initial state,  q0 ∈Q	


   F is a set of final states, F⊆Q	
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   δ: Q x ∑ε x Γε ⟶ P(Q x Γε)  is the transition function	


   q0 is the initial state,  q0 ∈Q	


   F is a set of final states, F⊆Q	



Definition

intrinsically 
nondeterministic

(r,c)∈ δ(q,a,b) means that in a state q, reading input 
symbol a and popping b from the stack, the PDA may change to state r 

and push c on the stack
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Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	


!
  Q x ∑* x  Γ*  	


!
an initial configuration is (q0, w, ε).  	


!
!

Compute via configurations

Definition
The language recognised / accepted by a push-down automaton 
M = (Q, ∑, Γ, δ, q0, F) is	


!

L(M) = {w ∈ ∑*|  (q0, w, ε) ⊨* (f, ε, ε) for some f ∈ F}

(q,w,u) ⊨ (r,w1, u1)  if and only if	


w = aw1, u = bu2, and u1 = cu2

zero-or-more-steps	


computation

one-step computation
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A language is context-free if and only if it is recognised by 	


a push-down automaton.



PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by 	


a push-down automaton.

regular languages	


  recognised by FA	



generated by regular grammars

context-free languages	


generated by CFG	


recognized by PDA
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Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	


!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as 
well as b and e are inconsistent.	


!
!
A PDA M is deterministic if no two different transitions are compatible.	


!

Definitions

Definition
A language L is a deterministic context-free language if there 
exists a DPDA M that recognises	



L$ = {w$ | w ∈ L}   	


We say then that M recognises L and write L = L(M).

(r,c) ∈ δ(q,a,b)

$ is a fresh 
symbol, not in ∑

can fire at the same time


