
Push-down Automata	

= FA + Stack

PDA

if y is not free in P and Q

A push-down automaton M is a tuple M = (Q, ∑, Γ, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is the input alphabet (of terminal symbols, terminals)	

 Γ is the stack alphabet	

 δ: Q x ∑ε x Γε ⟶ P(Q x Γε) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

PDA

if y is not free in P and Q

A push-down automaton M is a tuple M = (Q, ∑, Γ, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is the input alphabet (of terminal symbols, terminals)	

 Γ is the stack alphabet	

 δ: Q x ∑ε x Γε ⟶ P(Q x Γε) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

intrinsically
nondeterministic

PDA

if y is not free in P and Q

A push-down automaton M is a tuple M = (Q, ∑, Γ, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is the input alphabet (of terminal symbols, terminals)	

 Γ is the stack alphabet	

 δ: Q x ∑ε x Γε ⟶ P(Q x Γε) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

intrinsically
nondeterministic

(r,c)∈ δ(q,a,b) means that in a state q, reading input
symbol a and popping b from the stack, the PDA may change to state r

and push c on the stack

PDA

if y is not free in P and Q

Compute via configurations

PDA

if y is not free in P and Q

Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	

!
 Q x ∑* x Γ* 	

!
an initial configuration is (q0, w, ε). 	

!
!

Compute via configurations

PDA

if y is not free in P and Q

Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	

!
 Q x ∑* x Γ* 	

!
an initial configuration is (q0, w, ε). 	

!
!

Compute via configurations

(q,w,u) ⊨ (r,w1, u1) if and only if	

w = aw1, u = bu2, and u1 = cu2

PDA

if y is not free in P and Q

Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	

!
 Q x ∑* x Γ* 	

!
an initial configuration is (q0, w, ε). 	

!
!

Compute via configurations

(q,w,u) ⊨ (r,w1, u1) if and only if	

w = aw1, u = bu2, and u1 = cu2

one-step computation

PDA

if y is not free in P and Q

Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	

!
 Q x ∑* x Γ* 	

!
an initial configuration is (q0, w, ε). 	

!
!

Compute via configurations

Definition
The language recognised / accepted by a push-down automaton
M = (Q, ∑, Γ, δ, q0, F) is	

!

L(M) = {w ∈ ∑*| (q0, w, ε) ⊨* (f, ε, ε) for some f ∈ F}

(q,w,u) ⊨ (r,w1, u1) if and only if	

w = aw1, u = bu2, and u1 = cu2

one-step computation

PDA

if y is not free in P and Q

Given M = (Q, ∑, Γ, δ, q0, F) a configuration of M is an element in 	

!
 Q x ∑* x Γ* 	

!
an initial configuration is (q0, w, ε). 	

!
!

Compute via configurations

Definition
The language recognised / accepted by a push-down automaton
M = (Q, ∑, Γ, δ, q0, F) is	

!

L(M) = {w ∈ ∑*| (q0, w, ε) ⊨* (f, ε, ε) for some f ∈ F}

(q,w,u) ⊨ (r,w1, u1) if and only if	

w = aw1, u = bu2, and u1 = cu2

zero-or-more-steps	

computation

one-step computation

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by 	

a push-down automaton.

PDA vs. CFG

Theorem PDA-CFG

A language is context-free if and only if it is recognised by 	

a push-down automaton.

regular languages	

 recognised by FA	

generated by regular grammars

context-free languages	

generated by CFG	

recognized by PDA

DPDA

if y is not free in P and Q

Definitions

DPDA

if y is not free in P and Q

Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	

!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as
well as b and e are inconsistent.	

!
!
A PDA M is deterministic if no two different transitions are compatible.	

!

Definitions

DPDA

if y is not free in P and Q

Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	

!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as
well as b and e are inconsistent.	

!
!
A PDA M is deterministic if no two different transitions are compatible.	

!

Definitions (r,c) ∈ δ(q,a,b)

DPDA

if y is not free in P and Q

Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	

!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as
well as b and e are inconsistent.	

!
!
A PDA M is deterministic if no two different transitions are compatible.	

!

Definitions (r,c) ∈ δ(q,a,b)

can fire at the same time

DPDA

if y is not free in P and Q

Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	

!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as
well as b and e are inconsistent.	

!
!
A PDA M is deterministic if no two different transitions are compatible.	

!

Definitions

Definition
A language L is a deterministic context-free language if there
exists a DPDA M that recognises	

L$ = {w$ | w ∈ L} 	

We say then that M recognises L and write L = L(M).

(r,c) ∈ δ(q,a,b)

can fire at the same time

DPDA

if y is not free in P and Q

Two words u, v ∈ ∑* are consistent if none is a prefix of the other.	

!
Two PDA transitions ((q,a,b),(r,c)) and ((p,d,e),(s,g)) are compatible if a and d, as
well as b and e are inconsistent.	

!
!
A PDA M is deterministic if no two different transitions are compatible.	

!

Definitions

Definition
A language L is a deterministic context-free language if there
exists a DPDA M that recognises	

L$ = {w$ | w ∈ L} 	

We say then that M recognises L and write L = L(M).

(r,c) ∈ δ(q,a,b)

$ is a fresh
symbol, not in ∑

can fire at the same time

