Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist $x, y, z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$ 2. |y| > 03. $|xy| \le p$

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist x, y, $z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |y| > 0
- 3. |xy| ≤p

Proof sketch easy, using the pigeonhole principle

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist x, y, $z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |y| > 0
- 3. |xy| ≤p

Proof sketch easy, using the pigeonhole principle

Example "corollary"

L= { $0^n 1^n \mid n \in \mathbb{N}$ } is nonregular.

every long enough word of a regular language can be pumped

Theorem (Pumping Lemma)

If L is a regular language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist x, y, $z \in \sum^*$ such that w = xyz and 1. $xy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |y| > 0
- 3. |xy| ≤p

Proof sketch easy, using the pigeonhole principle

Example "corollary"

L= { $0^n 1^n \mid n \in \mathbb{N}$ } is nonregular.

Context-free Grammars and Push-down Automata

Informal example

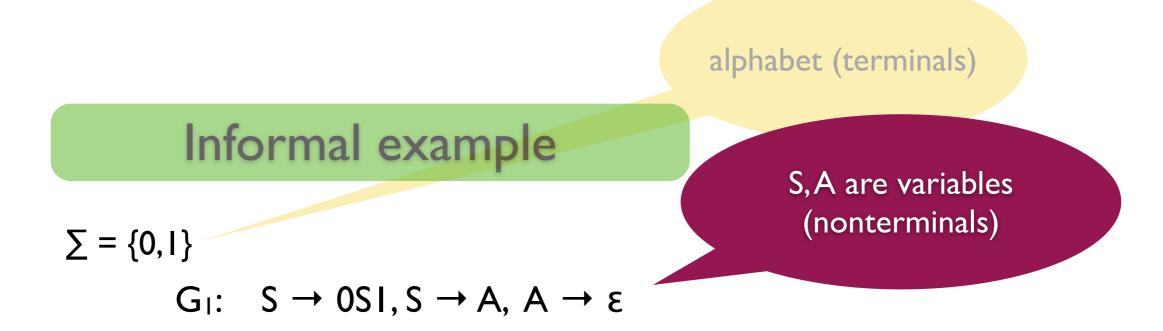
 $\sum = \{0, I\}$ G₁: S \rightarrow 0SI, S \rightarrow A, A $\rightarrow \epsilon$

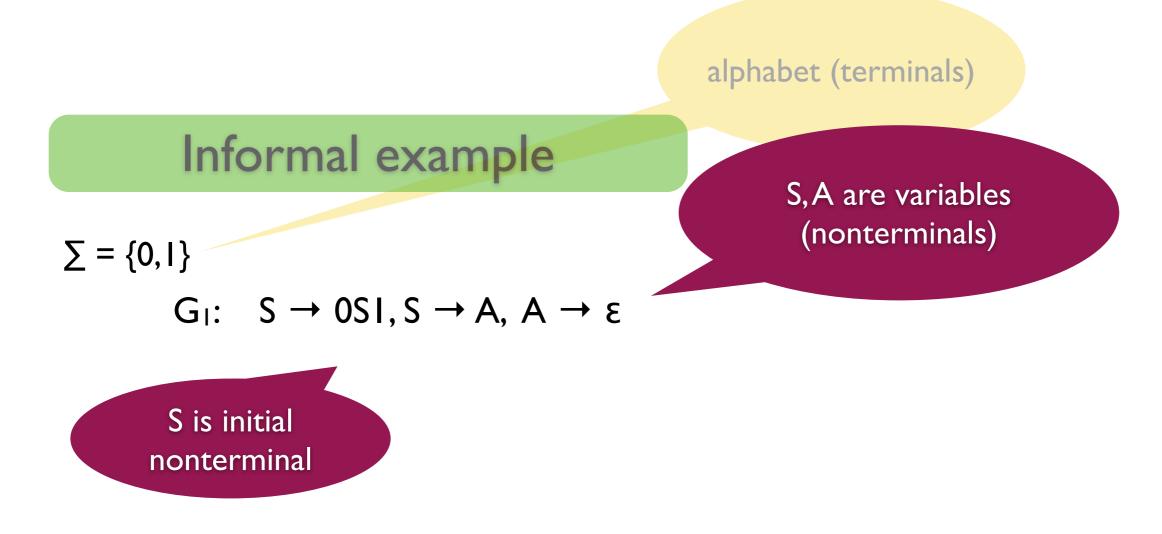
alphabet (terminals)

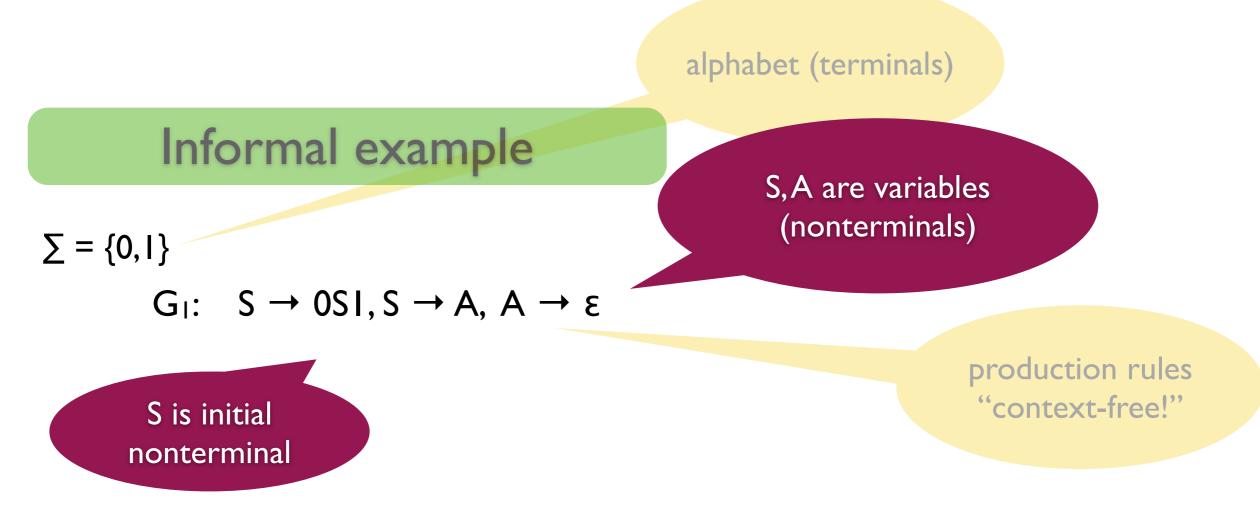
Informal example

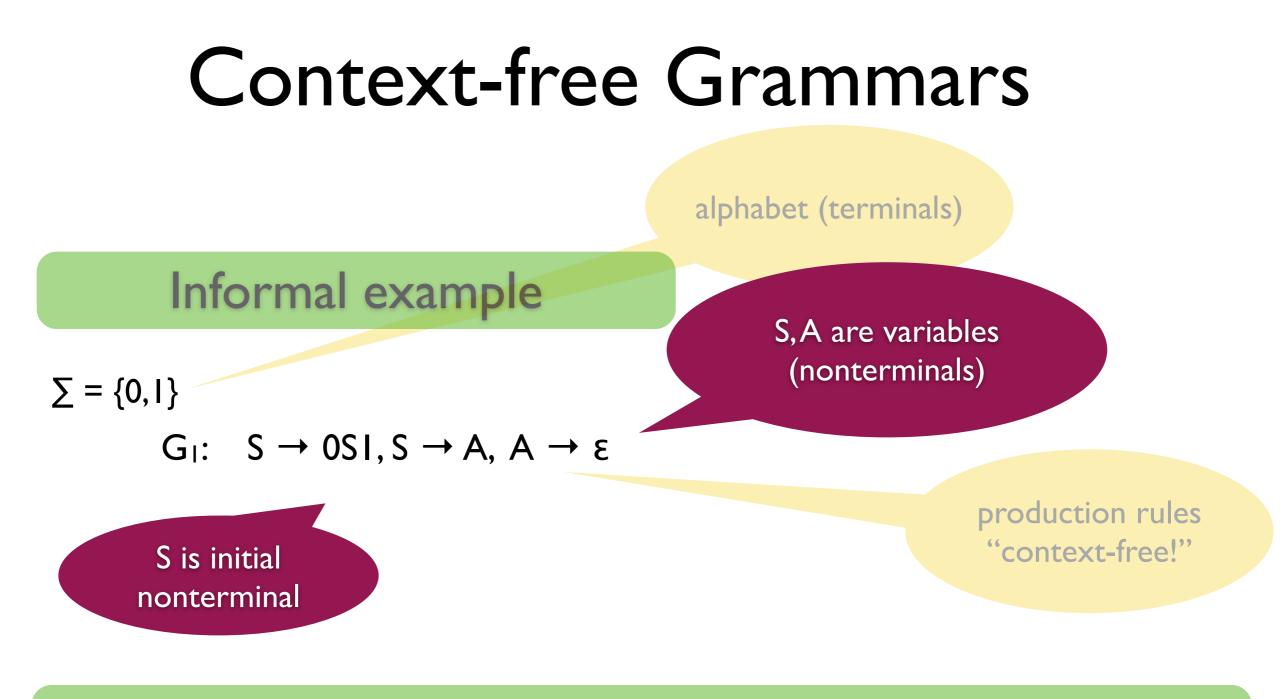
 $\sum = \{0, |\}$

G₁: $S \rightarrow 0SI, S \rightarrow A, A \rightarrow \epsilon$

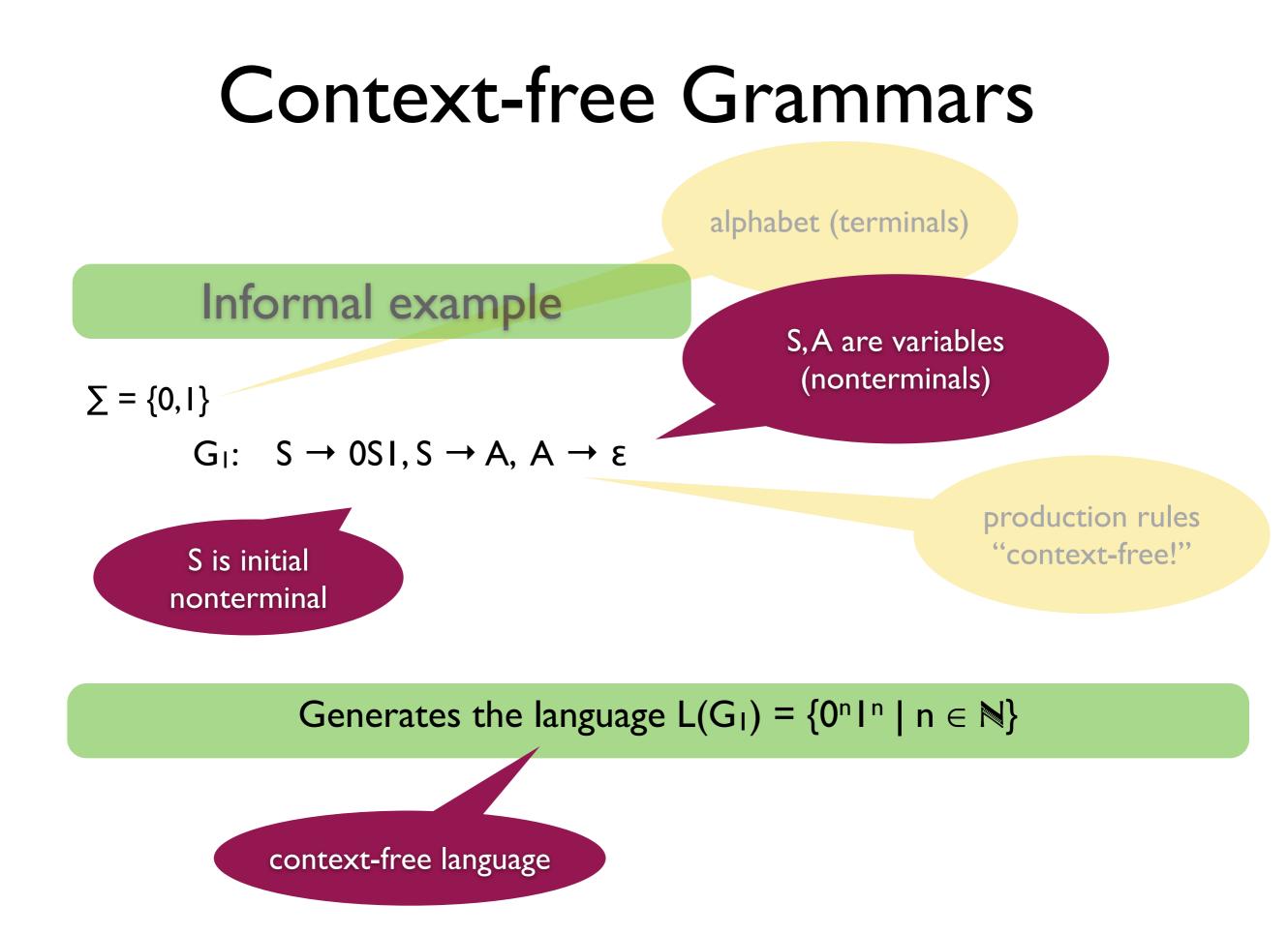








Generates the language $L(G_I) = \{0^n | n \in \mathbb{N}\}$



A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) Σ is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \ge V$ S is the initial nonterminal, $S \in V$

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) \sum is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \ge V$ S is the initial nonterminal, $S \in V$

In the example G

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) \sum is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \times (\sum \cup V)^*$ S is the initial nonterminal, $S \in V$

In the example G $G_1 = (V, \Sigma, R, S)$ for

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) \sum is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \times (\sum \cup V)^*$ S is the initial nonterminal, $S \in V$

In the example G
$$G_1 = (V, \Sigma, R, S)$$
 for $V = \{S, A\}$

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) Σ is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \ge V$ S is the initial nonterminal, $S \in V$

In the example G $G_1 = (V, \Sigma, R, S)$ for $V = \{S, A\}$ $\Sigma = \{0, 1\}$

Definition

A context-free grammar G is a tuple $G = (V, \Sigma, R, S)$ where

V is a finite set of variables (nonterminal symbols, nonterminals) \sum is a finite alphabet (of terminal symbols, terminals) R is a finite set of (production) rules, $R \subseteq V \times (\sum \cup V)^*$ S is the initial nonterminal, $S \in V$

In the example G $G_1 = (V, \Sigma, R, S)$ for $V = \{S, A\}$ $R = \{ (S, 0S1), (S, A), (A, \epsilon) \}$

Derivations

Given G = (V, Σ , R, S) we have uAv \Rightarrow uwv for u, v, w $\in (\Sigma \cup V)^*$, A \rightarrow w \in R

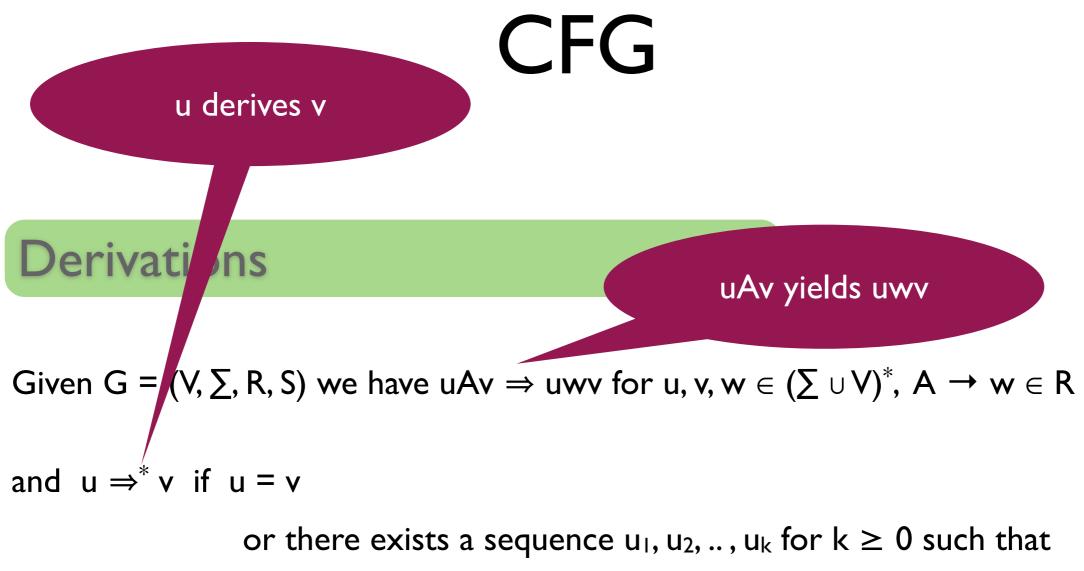
and $u \Rightarrow^* v$ if u = v

or there exists a sequence $u_1, u_2, ..., u_k$ for $k \ge 0$ such that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow ... \Rightarrow u_k \Rightarrow v$

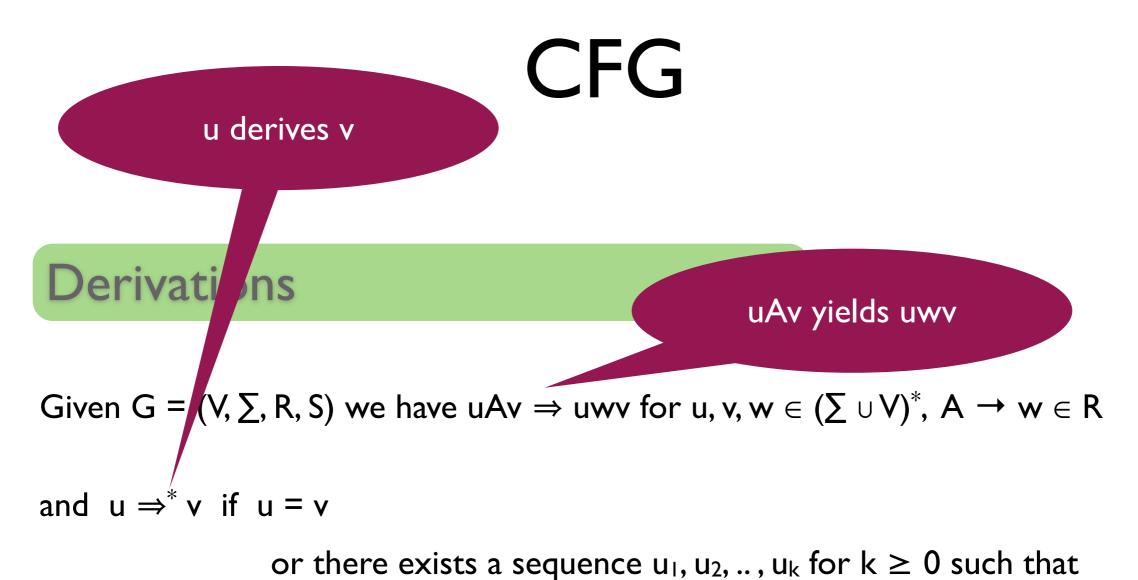
Given G = (V, Σ, R, S) we have uAv \Rightarrow uwv for u, v, w $\in (\Sigma \cup V)^*$, A \rightarrow w $\in R$

and $u \Rightarrow^* v$ if u = v

or there exists a sequence $u_1, u_2, ..., u_k$ for $k \ge 0$ such that $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow .. \Rightarrow u_k \Rightarrow v$



$$u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow .. \Rightarrow u_k \Rightarrow v$$

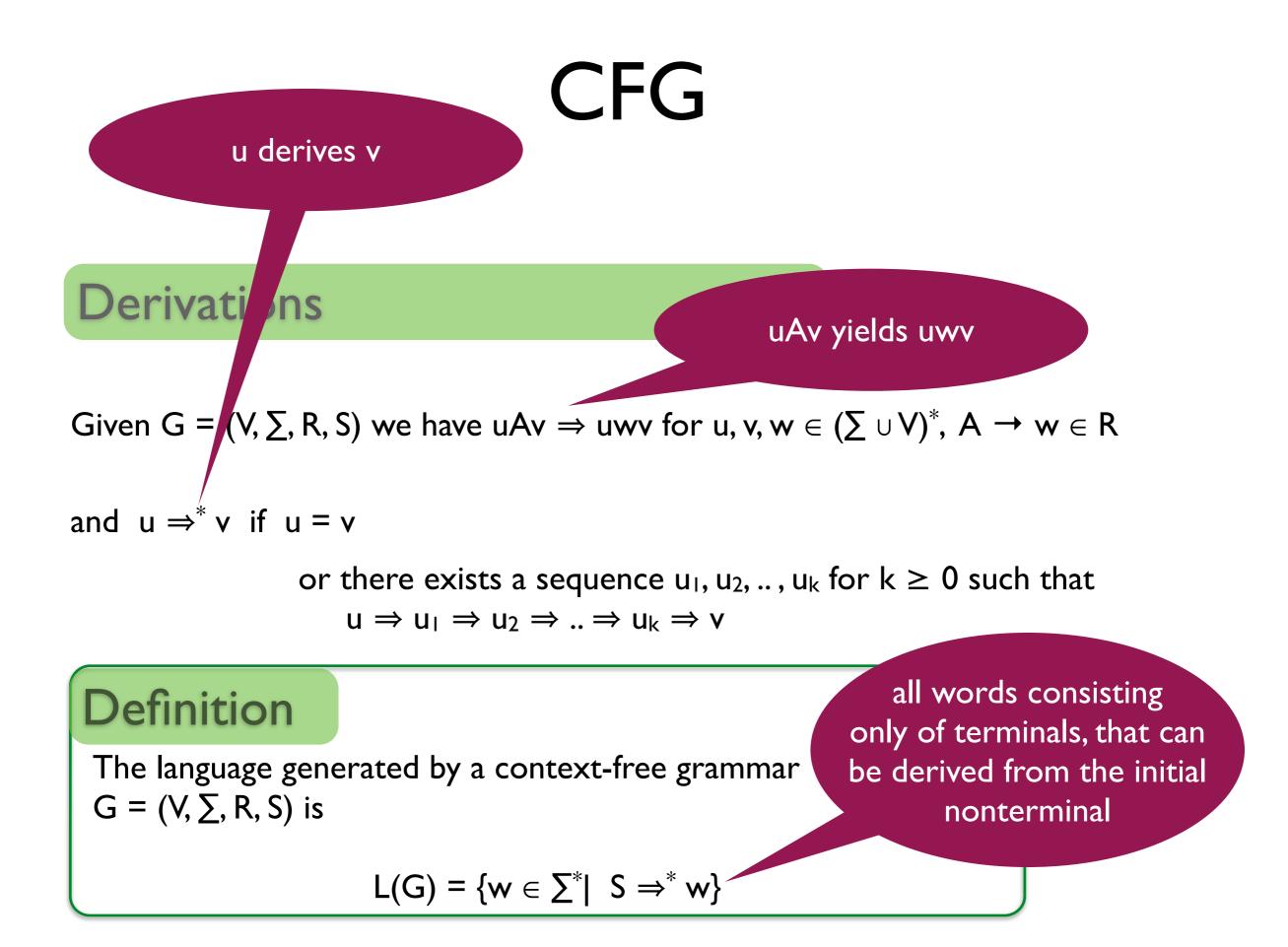


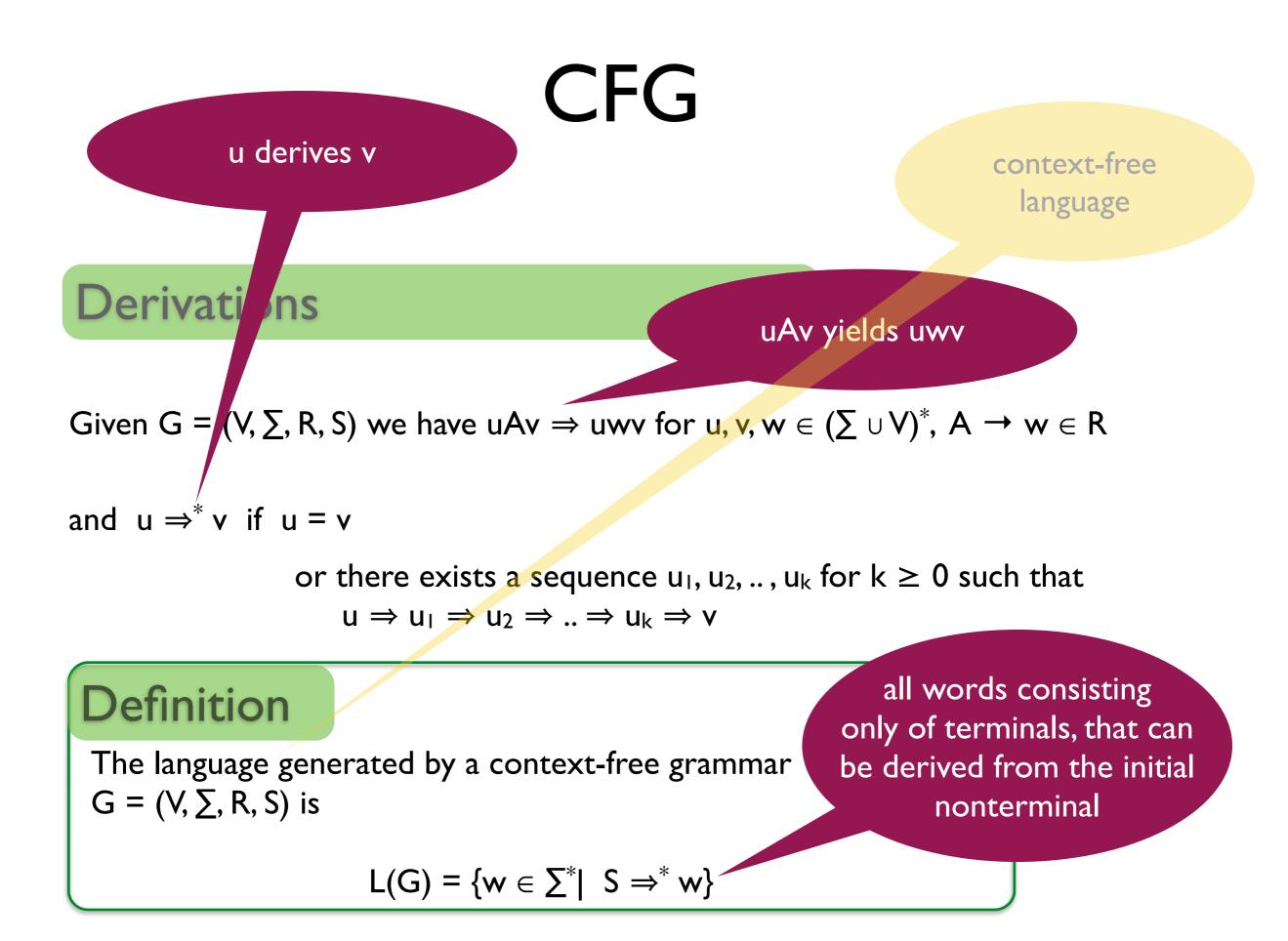
 $u \Rightarrow u_1 \Rightarrow u_2 \Rightarrow .. \Rightarrow u_k \Rightarrow v$

Definition

The language generated by a context-free grammar $G = (V, \Sigma, R, S)$ is

 $\mathsf{L}(\mathsf{G}) = \{\mathsf{w} \in \Sigma^* | S \Rightarrow^* \mathsf{w}\}$





Regular vs. CF languages

Theorem RL-CFL

The class of regular languages is contained in the class of context -free languages.

Regular vs. CF languages

Theorem RL-CFL

The class of regular languages is contained in the class of context -free languages.

context-free languages generated by CFG recognized by PDA regular languages recognised by FA generated by regular grammars

Theorem (Pumping Lemma)

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

If L is a context-free language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist u, v, x, y, $z \in \sum^*$ such that w = uvxyz and 1. $uv^ixy^iz \in L$, for all $i \in \mathbb{N}$ 2. |vy| > 03. $|vxy| \le p$

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

If L is a context-free language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist u, v, x, y, $z \in \sum^*$ such that w = uvxyz and 1. $uv^ixy^iz \in L$, for all $i \in \mathbb{N}$ 2. |vy| > 0

3. |vxy| ≤p

Example "corollary"

L= { $a^n b^n c^n \mid n \in \mathbb{N}$ } is non-context-free.

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

If L is a context-free language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist u, v, x, y, $z \in \sum^*$ such that w = uvxyz and I. $uv^ixy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |vy| > 0
- 3. |vxy| ≤p

Proof sketch easy, using the pigeonhole principle

Example "corollary"

L= { $a^n b^n c^n \mid n \in \mathbb{N}$ } is non-context-free.

every long enough word of a context-free language can be pumped at two places simultaneously

Theorem (Pumping Lemma)

If L is a context-free language, then there is a number $p \in \mathbb{N}$ (the pumping length) such that for any $w \in L$ with $|w| \ge p$, there exist u, v, x, y, $z \in \sum^*$ such that w = uvxyz and I. $uv^ixy^iz \in L$, for all $i \in \mathbb{N}$

- 2. |vy| > 0
- 3. |vxy| ≤p

Proof sketch easy, using the pigeonhole principle

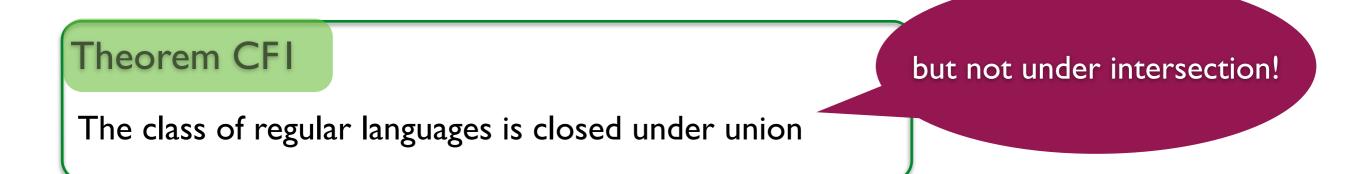
Example "corollary"

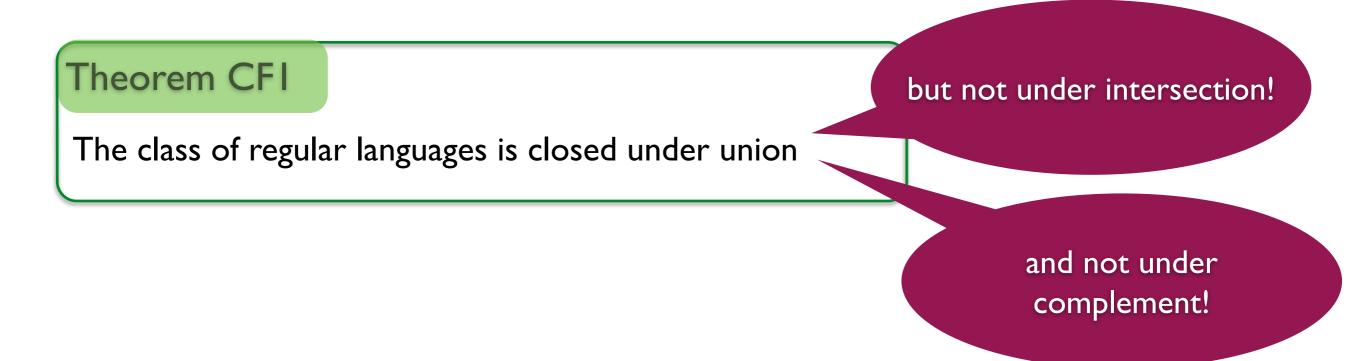
L= { $a^n b^n c^n \mid n \in \mathbb{N}$ } is non-context-free.

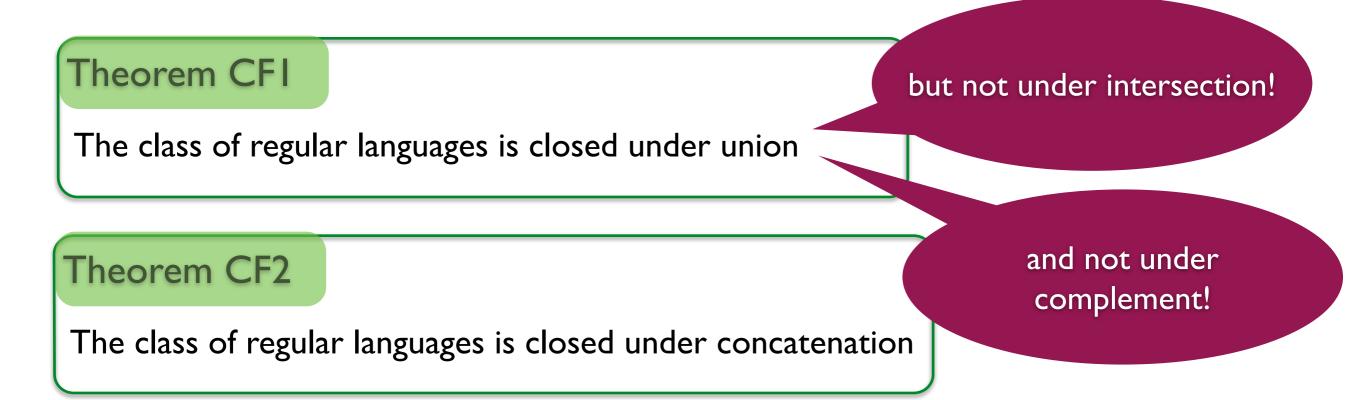
Note the logical structure!

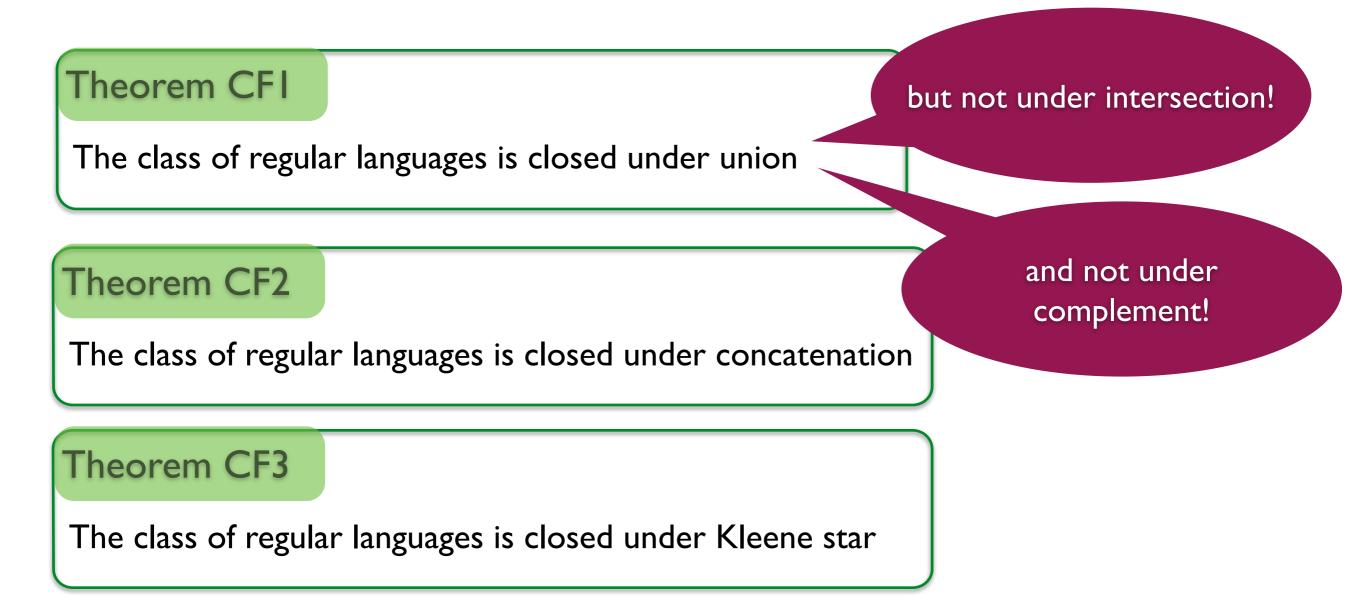
Theorem CFI

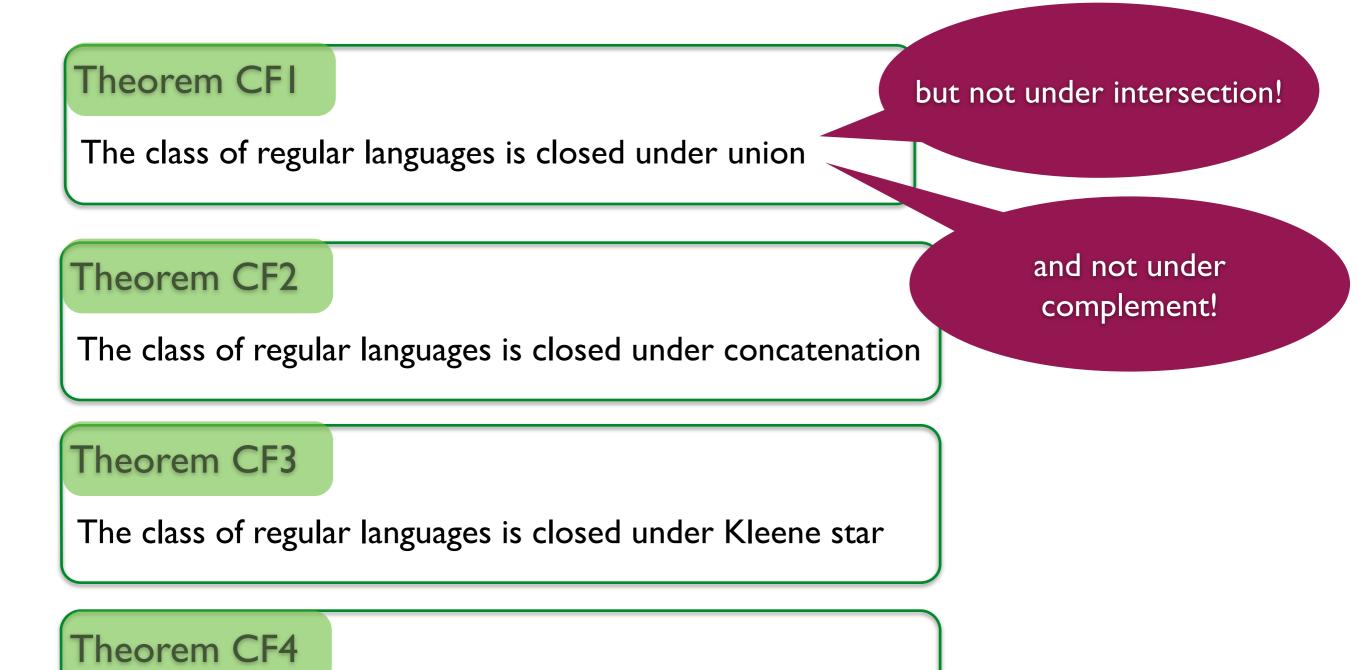
The class of regular languages is closed under union











The intersection of a regular language and a context-free language is context-free