
Automata
1VO + 1PS

Lecturer: Dr. Ana Sokolova

 http://cs.uni-salzburg.at/~anas/

Introduction to the Theory 	

of Computation

http://cs.uni-salzburg.at/~anas/

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

automata

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

automata grammars

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

automata grammars push-
down

automata

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

automata grammars push-
down

automata

Turing	

machines

4.11.21.10. 13.1.16.12.2.12.18.11. 27.1.

Setup and Dates
• Lectures Tuesday 10:45 pm - 12:15 pm  
 
Instructions Tuesday 12:30 pm - 2 pm  
 
 

• Books  
 
Introduction to the Theory of Computation by M. Sipser  
 
Introduction to Automata Theory, Languages, and Computation by J. E.
Hopcroft, R. Motwani, and J.D. Ullman  
 

Every “second”	

 Tuesday 	

starting today

automata grammars push-
down

automata

Turing	

machines

computability

The Rules... Instructions

• Instruction exercises on the web  
http://cs.uni-salzburg.at/~anas/Ana_Sokolova/
Automata2014.html  
on Tuesday afternoons, after class	

• To be solved by the students (in groups of at most
3 students) and handed in as homework at the
next meeting.	

• In class I will present a sample solution and the
students will be asked to present solutions/discuss
the exercises 

Starting in 2 weeks!

http://cs.uni-salzburg.at/~anas/Ana_Sokolova/Automata2014.html

The Rules... Instructions

• One randomly chosen exercise will be graded each
week	

• The graded exercise will be returned at the next
meeting.	

• Grade based on  
(1) exam  
(2) the grades of the corrected exercise and  
(3) activity in class (ability to present solutions)	

• All information about the course / rules / exams /
grading is / will be on the course webpage

The Rules... Grading

• Written exam on January 27, 10:45 am - 12:15 pm 	

• Grade based on the number of points on the
written exam (80%), homework grades and activity
in class (20%)	

• For better grade oral exam after the written one
upon appointment	

• 55% of the maximal points are needed to pass.

Finite Automata

Alphabets and Languages

if y is not free in P and Q

Alphabet and words

Alphabets and Languages

if y is not free in P and Q

∑ - alphabet (finite set)	

!
∑n = {a1a2..an | ai ∈ ∑} is the set of words of length n 	

!
∑* = {w | ∃n ∈ N. ∃ a1, a2, .. , an ∈ ∑. w = a1a2..an} is the set of all words over ∑	

!

Alphabet and words

Alphabets and Languages

if y is not free in P and Q

∑ - alphabet (finite set)	

!
∑n = {a1a2..an | ai ∈ ∑} is the set of words of length n 	

!
∑* = {w | ∃n ∈ N. ∃ a1, a2, .. , an ∈ ∑. w = a1a2..an} is the set of all words over ∑	

!

Alphabet and words
∑0 = {ℇ} contains only the

empty word

Alphabets and Languages

if y is not free in P and Q

∑ - alphabet (finite set)	

!
∑n = {a1a2..an | ai ∈ ∑} is the set of words of length n 	

!
∑* = {w | ∃n ∈ N. ∃ a1, a2, .. , an ∈ ∑. w = a1a2..an} is the set of all words over ∑	

!

Alphabet and words
∑0 = {ℇ} contains only the

empty word

A language L over ∑ is a subset L ⊆ ∑*

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0 q1

0
1 0

1

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0 q1

0
1 0

1

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

transitions, labelled by
alphabet symbols

M1:

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

transitions, labelled by
alphabet symbols

M1:

Accepts the language L(M1) = {w ∈∑* | w ends with a 0} = ∑*0

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

transitions, labelled by
alphabet symbols

M1:

regular language

Accepts the language L(M1) = {w ∈∑* | w ends with a 0} = ∑*0

alphabet

Deterministic Automata (DFA)

if y is not free in P and Q

∑ = {0,1}

Informal example

q0, q1 are states

q0 q1

0
1 0

1
q0 is initial q1 is final

transitions, labelled by
alphabet symbols

M1:

regular expressionregular language

Accepts the language L(M1) = {w ∈∑* | w ends with a 0} = ∑*0

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M

M1 = (Q, ∑, δ, q0, F) for

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M

M1 = (Q, ∑, δ, q0, F) for

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M
Q = {q0, q1}

M1 = (Q, ∑, δ, q0, F) for

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M
Q = {q0, q1}

∑ = {0, 1}

M1 = (Q, ∑, δ, q0, F) for

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M
Q = {q0, q1}

∑ = {0, 1}

F = {q1}

M1 = (Q, ∑, δ, q0, F) for

DFA

if y is not free in P and Q

A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑⟶ Q is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

In the example M
Q = {q0, q1}

∑ = {0, 1}

F = {q1} δ(q0, 0) = q1 ,δ(q0, 1) = q0	

δ(q1, 0) = q1, δ(q1, 1) = q0

DFA

if y is not free in P and Q

The extended transition function

DFA

if y is not free in P and Q

Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 	

!
 δ*: Q x ∑*⟶ Q 	

!
inductively, by: 	

!
 δ*(q, ε) = q and δ*(q,wa) = δ(δ*(q,w), a)	

The extended transition function

DFA

if y is not free in P and Q

Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 	

!
 δ*: Q x ∑*⟶ Q 	

!
inductively, by: 	

!
 δ*(q, ε) = q and δ*(q,wa) = δ(δ*(q,w), a)	

The extended transition function

In M1, δ*(q0,110010) = q1

DFA

if y is not free in P and Q

Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 	

!
 δ*: Q x ∑*⟶ Q 	

!
inductively, by: 	

!
 δ*(q, ε) = q and δ*(q,wa) = δ(δ*(q,w), a)	

The extended transition function

Definition
The language recognised / accepted by a deterministic finite
automaton M = (Q, ∑, δ, q0, F) is	

!

L(M) = {w ∈ ∑*| δ*(q0,w) ∈ F}

In M1, δ*(q0,110010) = q1

DFA

if y is not free in P and Q

Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 	

!
 δ*: Q x ∑*⟶ Q 	

!
inductively, by: 	

!
 δ*(q, ε) = q and δ*(q,wa) = δ(δ*(q,w), a)	

The extended transition function

Definition
The language recognised / accepted by a deterministic finite
automaton M = (Q, ∑, δ, q0, F) is	

!

L(M) = {w ∈ ∑*| δ*(q0,w) ∈ F}

In M1, δ*(q0,110010) = q1

L(M1) = {w0|w ∈ {0,1}*}

Regular languages and
operations

Let ∑ be an alphabet. A language L over ∑ (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

Regular languages and
operations

Let ∑ be an alphabet. A language L over ∑ (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

L(M1) = {w0|w ∈ {0,1}*}	

is regular

Regular languages and
operations

Let ∑ be an alphabet. A language L over ∑ (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

Regular operations

L(M1) = {w0|w ∈ {0,1}*}	

is regular

Regular languages and
operations

Let ∑ be an alphabet. A language L over ∑ (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

Regular operations

L(M1) = {w0|w ∈ {0,1}*}	

is regular

Let L, L1, L2 be languages over ∑. Then	

L1 ∪ L2, L1·L2, and L* are languages, where	

!
 L1·L2 = {w1·w2 | w1 ∈ L1,w2 ∈ L2}	

!
 L* = {w | ∃n ∈ N. ∃ w1, w2, .. , wn ∈ L. w = w1w2..wn}

Regular languages and
operations

Let ∑ be an alphabet. A language L over ∑ (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

Regular operations

L(M1) = {w0|w ∈ {0,1}*}	

is regular

Let L, L1, L2 be languages over ∑. Then	

L1 ∪ L2, L1·L2, and L* are languages, where	

!
 L1·L2 = {w1·w2 | w1 ∈ L1,w2 ∈ L2}	

!
 L* = {w | ∃n ∈ N. ∃ w1, w2, .. , wn ∈ L. w = w1w2..wn}

ℇ ∈ L* always

Regular expressions

Definition

Regular expressions

Definition

finite representation of infinite
languages

Regular expressions

Let ∑ be an alphabet. The following are regular expressions	

!
!
1. a for a ∈ ∑	

2. ε	

3. ∅	

4. (R1 ∪ R2) for R1, R2 regular expressions	

5. (R1·R2) for R1, R2 regular expressions	

6. (R1)* for R1 regular expression

Definition

finite representation of infinite
languages

Regular expressions

Let ∑ be an alphabet. The following are regular expressions	

!
!
1. a for a ∈ ∑	

2. ε	

3. ∅	

4. (R1 ∪ R2) for R1, R2 regular expressions	

5. (R1·R2) for R1, R2 regular expressions	

6. (R1)* for R1 regular expression

Definition

inductive

finite representation of infinite
languages

Regular expressions

Let ∑ be an alphabet. The following are regular expressions	

!
!
1. a for a ∈ ∑	

2. ε	

3. ∅	

4. (R1 ∪ R2) for R1, R2 regular expressions	

5. (R1·R2) for R1, R2 regular expressions	

6. (R1)* for R1 regular expression

Definition

inductive
example:	

(ab ∪ a)*

finite representation of infinite
languages

Regular expressions

Let ∑ be an alphabet. The following are regular expressions	

!
!
1. a for a ∈ ∑	

2. ε	

3. ∅	

4. (R1 ∪ R2) for R1, R2 regular expressions	

5. (R1·R2) for R1, R2 regular expressions	

6. (R1)* for R1 regular expression

Definition

inductive
example:	

(ab ∪ a)*

 corresponding languages

L(a) = {a}	

L(ε) = {ε}	

L(∅) = ∅	

L(R1 ∪ R2) = L(R1) ∪ L(R2)	

L(R1·R2) = L(R1)·L(R2)	

L(R1*) = L(R1)*

finite representation of infinite
languages

Equivalence of regular
expressions and regular languages

if y is not free in P and Q

Equivalence of regular
expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)
A language is regular (i.e., recognised by a finite automaton) iff	

it is the language of a regular expression.

Equivalence of regular
expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)
A language is regular (i.e., recognised by a finite automaton) iff	

it is the language of a regular expression.

Proof ⇐ easy, via the closure

properties discussed next,	

⇒ not so easy, we’ll skip it for now…

Closure under regular
operations

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

also under
intersection

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

also under
intersection

Theorem C2

The class of regular languages is closed under complement

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

also under
intersection

Theorem C2

The class of regular languages is closed under complement

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

also under
intersection

Theorem C2

The class of regular languages is closed under complement

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

also under
intersection

We can already prove
these!

Theorem C2

The class of regular languages is closed under complement

Closure under regular
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

But not yet these two…

also under
intersection

We can already prove
these!

Theorem C2

The class of regular languages is closed under complement

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

q2 q3

0,1
1

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

no 1 transition

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

no 1 transition

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

no 0 transition

no 1 transition

Nondeterministic Automata
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of
nondeterminism

q2 q3

0,1
1

no 0 transition

Accepts a word iff there exists an accepting run

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

∑ε = ∑ ∪ {ε}

In the example M

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

∑ε = ∑ ∪ {ε}

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

∑ε = ∑ ∪ {ε}

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

Q = {q0, q1, q2, q3}

∑ε = ∑ ∪ {ε}

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1}

∑ε = ∑ ∪ {ε}

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1} F = {q3}

∑ε = ∑ ∪ {ε}

In the example M M2 = (Q, ∑, δ, q0, F) for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
 Q is a finite set of states	

 ∑ is a finite alphabet	

 δ: Q x ∑ε⟶ P(Q) is the transition function	

 q0 is the initial state, q0 ∈Q	

 F is a set of final states, F⊆Q	

Definition

Q = {q0, q1, q2, q3}

∑ = {0, 1} F = {q3}

δ(q0, 0) = {q0}	

δ(q0, 1) = {q0,q1}	

δ(q0, ε) = ∅	

…..

∑ε = ∑ ∪ {ε}

