

IVO + IPS

Lecturer: Dr. Ana Sokolova
http://cs.uni-salzburg.at/~anas/

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm

Instructions Tuesday 12:30 pm-2 pm
2I.IO. 4.II. I8.II. 2.I2. 16.I2. 13.I. 27.I.

- Books

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm 21.10. 4.11. 18.11. 2.12. 16.12. 13.1. 27.1.
- Books

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm 21.10. 4.11. 18.11. 2.12. 16.12. 13.1. 27.1.

automata

- Books

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm 21.10. 4.11. 18.11. 2.12. 16.12. 13.1. 27.1. automata

grammars

- Books

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm

Every "second" Tuesday starting today

21.10. 4.11. 18.11. 2.12. 16.12. 13.1. 27.1.

- Books

grammars pushdown
 automata

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm

Every"second" Tuesday

 starting today
2I.10. 4.II. I8.II. 2.I2. 16.12. 13.1. 27.I.

- Books

grammars

 automataIntroduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

Setup and Dates

- Lectures Tuesday 10:45 pm - 12:15 pm Instructions Tuesday 12:30 pm-2 pm

Every "second" Tuesday

2I.10. 4.II. 18.11. 2.12. 16.12. 13.1. 27.1.

- Books
 automata

Introduction to the Theory of Computation by M. Sipser
Introduction to Automata Theory, Languages, and Computation by J. E. Hopcroft, R. Motwani, and J.D. Ullman

The Rules... Instructions

- Instruction exercises on the web http://cs.uni-salzburg.at/~anas/Ana_Sokolova/ Automata2014.html on Tuesday afternoons, after class
- To be solved by the students (in groups of at most 3 students) and handed in as homework at the next meeting.
- In class I will present a sample solution and the students will be asked to present solutions/discuss the exercises

The Rules... Instructions

- One randomly chosen exercise will be graded each week
- The graded exercise will be returned at the next meeting.
- Grade based on
(I) exam
(2) the grades of the corrected exercise and
(3) activity in class (ability to present solutions)
- All information about the course / rules / exams / grading is / will be on the course webpage

The Rules... Grading

- Written exam on January 27, 10:45 am - 12:15 pm
- Grade based on the number of points on the written exam (80\%), homework grades and activity in class (20\%)
- For better grade oral exam after the written one upon appointment
- 55% of the maximal points are needed to pass.

Finite Automata

Alphabets and Languages

Alphabet and words

Alphabets and Languages

Alphabet and words

Σ - alphabet (finite set)
$\Sigma^{n}=\left\{a_{1} a_{2} . . a_{n} \mid a_{i} \in \Sigma\right\}$ is the set of words of length n
$\Sigma^{*}=\left\{w \mid \exists n \in \mathbb{N} . \exists a_{\mid}, a_{2}, . ., a_{n} \in \sum . w=a_{\mid} a_{2} . . a_{n}\right\}$ is the set of all words over Σ

Alphabets and Languages

Alphabet and words

Σ-alphabet (finite set)
$\Sigma^{n}=\left\{a_{1} a_{2} . a_{n} \mid a_{i} \in \Sigma\right\}$ is the set of words of length n
$\Sigma^{*}=\left\{w \mid \exists n \in \mathbb{N} . \exists a_{1}, a_{2}, . ., a_{n} \in \Sigma \cdot w=a_{\mid a_{2} . . a_{n}}\right\}$ is the set of all words over Σ

Alphabets and Languages

Alphabet and words

Σ-alphabet (finite set)
$\Sigma^{n}=\left\{a_{1} a_{2} . a_{n} \mid a_{i} \in \Sigma\right\}$ is the set of words of length n
$\Sigma^{*}=\left\{w \mid \exists n \in \mathbb{N} . \exists a_{1}, a_{2}, . ., a_{n} \in \Sigma \cdot w=a_{\mid a_{2} . . a_{n}}\right\}$ is the set of all words over Σ

A language L over \sum is a subset $L \subseteq \Sigma^{*}$

Deterministic Automata (DFA)

Informal example

$$
\Sigma=\{0,1\}
$$

$$
M_{1}:
$$

Deterministic Automata (DFA)

alphabet

Informal example

$$
\Sigma=\{0,1\}
$$

$$
M_{1}:
$$

Deterministic Automata (DFA)

alphabet

Deterministic Automata (DFA)

alphabet

Informal example

$\Sigma=\{0,1\}$
M_{1} :
qo, qı are states
qo is initial

Deterministic Automata (DFA)

alphabet

Informal example

q 0 is initial
q । is final

Deterministic Automata (DFA)

alphabet
Informal example
$\Sigma=\{0, I\}$
qo is initial

$$
\mathrm{q} \text { ı is final }
$$

transitions, labelled by alphabet symbols

Deterministic Automata (DFA)

alphabet

Accepts the language $L\left(M_{1}\right)=\left\{w \in \sum^{*} \mid w\right.$ ends with a 0$\}=\Sigma^{*} 0$

Deterministic Automata (DFA)

alphabet

Accepts the language $L\left(M_{1}\right)=\left\{w \in \sum^{*} \mid w\right.$ ends with a 0$\}=\Sigma^{*} 0$
regular language

Deterministic Automata (DFA)

alphabet

Accepts the language $L\left(M_{1}\right)=\left\{w \in \sum^{*} \mid w\right.$ ends with a 0$\}=\sum^{*} 0$

DFA

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $\mathrm{F} \subseteq \mathrm{Q}$

DFA

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

In the example M

DFA

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$
In the example $M \quad M_{I}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for

DFA

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

> In the example $M \quad M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for
> $\quad Q=\left\{q_{0}, q_{1}\right\}$

$D F A$

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

$$
\begin{aligned}
& \text { In the example } M \quad M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { for } \\
& \quad Q=\left\{q_{0}, q_{1}\right\} \\
& \quad \Sigma=\{0, \mathrm{l}\}
\end{aligned}
$$

$D F A$

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

$$
\begin{aligned}
& \text { In the example } M \quad M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { for } \\
& \quad Q=\left\{q_{0}, q_{1}\right\} \quad F=\left\{q_{1}\right\} \\
& \quad \Sigma=\{0, \mathrm{l}\}
\end{aligned}
$$

$D F A$

Definition

A deterministic finite automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: Q \times \Sigma \longrightarrow Q$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

$$
\begin{array}{|ll}
\text { In the example } M & M_{1}=\left(Q, \Sigma, \delta, q_{0}, F\right) \text { for } \\
Q=\left\{q_{0}, q_{1}\right\} \quad F=\left\{q_{1}\right\} & \delta\left(q_{0}, 0\right)=q_{1}, \delta\left(q_{0}, I\right)=q_{0} \\
\Sigma=\{0, l\} & \delta\left(q_{1}, 0\right)=q_{1}, \delta\left(q_{1}, l\right)=q_{0}
\end{array}
$$

DFA

The extended transition function

DFA

The extended transition function

Given $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ we can extend $\delta: Q \times \Sigma \longrightarrow Q$ to

$$
\delta^{*}: Q \times \Sigma^{*} \longrightarrow Q
$$

inductively, by:

$$
\delta^{*}(q, \varepsilon)=q \text { and } \delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)
$$

DFA

The extended transition function

Given $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ we can extend $\delta: \mathrm{Q} \times \Sigma \longrightarrow \mathrm{Q}$ to

$$
\delta^{*}: Q \times \Sigma^{*} \longrightarrow Q
$$

inductively, by:
$\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)$

DFA

The extended transition function

Given $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ we can extend $\delta: \mathrm{Q} \times \Sigma \longrightarrow \mathrm{Q}$ to

$$
\delta^{*}: Q \times \Sigma^{*} \longrightarrow Q
$$

inductively, by:
$\ln M_{1}, \delta^{*}(q 0, I \mid 0010)=q_{1}$
$\delta^{*}(\mathrm{q}, \varepsilon)=\mathrm{q}$ and $\delta^{*}(\mathrm{q}, \mathrm{wa})=\delta\left(\delta^{*}(\mathrm{q}, \mathrm{w}), \mathrm{a}\right)$

Definition

The language recognised / accepted by a deterministic finite automaton $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{0}, \mathrm{~F}\right)$ is

$$
L(M)=\left\{w \in \Sigma^{*} \mid \delta^{*}(q 0, w) \in F\right\}
$$

DFA

The extended transition function

Given $M=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ we can extend $\delta: \mathrm{Q} \times \Sigma \longrightarrow \mathrm{Q}$ to

$$
\delta^{*}: Q \times \Sigma^{*} \longrightarrow Q
$$

inductively, by:
$\delta^{*}(q, \varepsilon)=q$ and $\delta^{*}(q, w a)=\delta\left(\delta^{*}(q, w), a\right)$

Definition

$$
L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0,1\}^{n}\right\}
$$

The language recognised / accepted by a deterministic finite automaton $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \delta, \mathrm{q}_{\mathrm{o}}, \mathrm{F}\right)$ is

$$
L(M)=\left\{w \in \Sigma^{*} \mid \delta^{*}(q 0, w) \in F\right\}
$$

Regular languages and operations

Definition

Let \sum be an alphabet. A language L over $\Sigma\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular languages and operations

$$
L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\}
$$

is regular

Definition

Let \sum be an alphabet. A language L over $\sum\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular languages and operations

Definition

$$
\begin{gathered}
L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\} \\
\text { is regular }
\end{gathered}
$$

Let \sum be an alphabet. A language L over $\Sigma\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular operations

Regular languages and operations

Definition

$$
\begin{aligned}
& L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\} \\
& \text { is regular }
\end{aligned}
$$

Let \sum be an alphabet. A language L over $\Sigma\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular operations

Let L, L_{1}, L_{2} be languages over \sum. Then $L_{1} \cup L_{2}, L_{1} \cdot L_{2}$, and L^{*} are languages, where

$$
\begin{aligned}
& L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\} \\
& L^{*}=\left\{w \mid \exists n \in \mathbb{N} . \exists w_{1}, w_{2}, . ., w_{n} \in L . w=w_{1} w_{2} . . w_{n}\right\}
\end{aligned}
$$

Regular languages and operations

Definition

$$
\begin{gathered}
L\left(M_{1}\right)=\left\{w 0 \mid w \in\{0, \mid\}^{*}\right\} \\
\text { is regular }
\end{gathered}
$$

Let \sum be an alphabet. A language L over $\sum\left(L \subseteq \Sigma^{*}\right)$ is regular iff it is recognised by a DFA.

Regular operations

Let L, L_{1}, L_{2} be languages over \sum. Then $L_{1} \cup L_{2}, L_{1} \cdot L_{2}$, and L^{*} are languages, where

$$
\begin{aligned}
& L_{1} \cdot L_{2}=\left\{w_{1} \cdot w_{2} \mid w_{1} \in L_{1}, w_{2} \in L_{2}\right\} \\
& L^{*}=\left\{w \mid \exists n \in \mathbb{N} . \exists w_{1}, w_{2}, . ., w_{n} \in L . w=w_{1} w_{2} . . w_{n}\right\}
\end{aligned}
$$

Regular expressions

Definition

finite representation of infinite

 languages
Regular expressions

Definition

Regular expressions

Definition

Let \sum be an alphabet. The following are regular expressions
I. a for $\mathrm{a} \in \sum$
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ for R_{1}, R_{2} regular expressions
5. $\left(R_{1} \cdot R_{2}\right)$ for R_{1}, R_{2} regular expressions
6. $\left(R_{I}\right)^{*}$ for R_{1} regular expression

Regular expressions

inductive

Definition

Let \sum be an alphabet. The following are regular expressions
I. a for $\mathrm{a} \in \sum$
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ for R_{1}, R_{2} regular expressions
5. ($R_{1} \cdot R_{2}$) for R_{1}, R_{2} regular expressions
6. $\left(R_{I}\right)^{*}$ for R_{1} regular expression

Regular expressions

Let \sum be an alphabet. The following are regular expressions
I. a for $\mathrm{a} \in \sum$
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ for R_{1}, R_{2} regular expressions
5. $\left(R_{1} \cdot R_{2}\right)$ for R_{1}, R_{2} regular expressions
6. $\left(R_{l}\right)^{*}$ for R_{1} regular expression

Regular expressions

Let \sum be an alphabet. The following are regular expressions
corresponding languages
I. a for $\mathrm{a} \in \Sigma$
2. ε
3. \varnothing
4. $\left(R_{1} \cup R_{2}\right)$ for R_{1}, R_{2} regular expressions
5. $\left(R_{1} \cdot R_{2}\right)$ for R_{1}, R_{2} regular expressions
6. $\left(R_{1}\right)^{*}$ for R_{1} regular expression

$$
\begin{gathered}
\mathrm{L}(\mathrm{a})=\{\mathrm{a}\} \\
\mathrm{L}(\varepsilon)=\{\varepsilon\} \\
\mathrm{L}(\varnothing)=\varnothing \\
\mathrm{L}\left(\mathrm{R}_{1} \cup \mathrm{R}_{2}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right) \cup \mathrm{L}\left(\mathrm{R}_{2}\right) \\
\mathrm{L}\left(\mathrm{R}_{1} \cdot \mathrm{R}_{2}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right) \cdot \mathrm{L}\left(\mathrm{R}_{2}\right) \\
\mathrm{L}\left(\mathrm{R}_{1}{ }^{*}\right)=\mathrm{L}\left(\mathrm{R}_{1}\right)^{*}
\end{gathered}
$$

Equivalence of regular

 expressions and regular languages
Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Equivalence of regular expressions and regular languages

Theorem (Kleene)

A language is regular (i.e., recognised by a finite automaton) iff it is the language of a regular expression.

Proof \Leftarrow easy, via the closure properties discussed next, \Rightarrow not so easy, we'll skip it for now...

Closure under regular operations

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation

Closure under regular operations

Theorem CI

The class of regular languages is closed under union

Theorem C2

The class of regular languages is closed under complement

Theorem C3
The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Closure under regular operations

Theorem CI

The class of regular languages is closed under union
We can already prove these!

Theorem C3
The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

Closure under regular operations

Theorem CI

The class of regular languages is closed under union
We can already prove these!

Theorem C2

The class of regular languages is closed under complement

Theorem C3

The class of regular languages is closed under concatenation
But not yet these two...

Theorem C4

The class of regular languages is closed under Kleene star

Nondeterministic Automata (NFA)

Informal example

$$
\Sigma=\{0, I\}
$$

$$
\mathrm{M}_{2}: \xrightarrow{0,1} \xrightarrow{\text { (90) }} \xrightarrow{0, \varepsilon} \xrightarrow{0,1}
$$

Nondeterministic Automata (NFA)

Informal example

$$
\Sigma=\{0,1\}
$$

Nondeterministic Automata (NFA)

Informal example

$$
\Sigma=\{0,1\}
$$

Nondeterministic Automata (NFA)

Informal example

$$
\Sigma=\{0, I\}
$$

Nondeterministic Automata (NFA)

no | transition

Informal example

$$
\Sigma=\{0,1\}
$$

Nondeterministic Automata (NFA)

no | transition

Informal example

no 0 transition

Nondeterministic Automata (NFA)

no | transition

Informal example

no 0 transition

$$
\Sigma=\{0,1\}
$$

Accepts a word iff there exists an accepting run

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet
$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function
q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

In the example M

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$
In the example $M \quad M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$
In the example $M \quad M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$
In the example $M \quad M_{2}=(Q, \Sigma, \delta, q 0, F)$ for
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{0,1\}$

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$
In the example $M \quad M_{2}=(Q, \Sigma, \delta, q 0, F)$ for
$Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$
$\Sigma=\{0, I\} \quad F=\left\{q_{3}\right\}$

NFA

Definition

A nondeterministic automaton M is a tuple $M=\left(Q, \Sigma, \delta, q_{0}, F\right)$ where
Q is a finite set of states
Σ is a finite alphabet

$$
\sum_{\varepsilon}=\sum \cup\{\varepsilon\}
$$

$\delta: \mathrm{Q} \times \sum_{\varepsilon} \longrightarrow P(\mathrm{Q})$ is the transition function q_{0} is the initial state, $\mathrm{q}_{0} \in \mathrm{Q}$
F is a set of final states, $F \subseteq Q$

> | > In the example M | $M_{2}=\left(Q, \Sigma, \delta, q_{0}, F\right)$ for |
| :---: | :--- |
| > $Q=\left\{q_{0}, q_{1}, q_{2}, q_{3}\right\}$ | $\delta\left(q_{0}, 0\right)=\left\{q_{0}\right\}$ |
| > | $\delta\left(q_{0}, \mathrm{I}\right)=\left\{q_{0}, q_{1}\right\}$ |
| > $\Sigma=\{0, \mathrm{l}\} \quad F=\left\{q_{3}\right\}$ | $\delta\left(q_{0}, \varepsilon\right)=\varnothing$ > |

