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The Rules... Instructions

• Instruction exercises on the web  
http://cs.uni-salzburg.at/~anas/Ana_Sokolova/
Automata2014.html  
on Tuesday afternoons, after class	


• To be solved by the students (in groups of at most 
3 students) and handed in as homework at the 
next meeting.	


• In class I will present a sample solution and the 
students will be asked to present solutions/discuss 
the exercises 

Starting in 2 weeks!

http://cs.uni-salzburg.at/~anas/Ana_Sokolova/Automata2014.html


The Rules... Instructions

• One randomly chosen exercise will be graded each 
week	


• The graded exercise will be returned at the next 
meeting.	


• Grade based on  
(1) exam  
(2) the grades of the corrected exercise and  
(3) activity in class (ability to present solutions)	


• All information about the course / rules / exams / 
grading is / will be on the course webpage



The Rules... Grading

• Written exam on January 27, 10:45 am - 12:15 pm 	


• Grade based on the number of points on the 
written exam (80%), homework grades and activity 
in class (20%)	


• For better grade oral exam after the written one 
upon appointment	


• 55% of the maximal points are needed to pass. 
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∑ - alphabet (finite set)	

!
∑n = {a1a2..an | ai ∈ ∑}  is the set of words of length n 	

!
∑* = {w | ∃n ∈ N. ∃ a1, a2, .. , an ∈ ∑. w = a1a2..an} is the set of all words over ∑	

!

Alphabet and words
∑0 = {ℇ} contains only the 

empty word

A language L over ∑ is a subset L ⊆ ∑*
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A deterministic finite automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
   Q is a finite set of states	

   ∑ is a finite alphabet	

   δ: Q x ∑⟶ Q  is the transition function	

   q0 is the initial state,  q0 ∈Q	

   F is a set of final states, F⊆Q	


Definition

In the example M
Q = {q0, q1}  

∑ = {0, 1}  

F = {q1}  δ(q0, 0) = q1 ,δ(q0, 1) = q0	


δ(q1, 0) = q1, δ(q1, 1) = q0
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Given M = (Q, ∑, δ, q0, F) we can extend δ: Q x ∑⟶ Q to 	

!
  δ*: Q x ∑*⟶ Q  	

!
inductively, by:  	

!
  δ*(q, ε) = q  and δ*(q,wa) = δ(δ*(q,w), a)	


The extended transition function

Definition
The language recognised / accepted by a deterministic finite 
automaton M = (Q, ∑, δ, q0, F) is	

!

L(M) = {w ∈ ∑*|  δ*(q0,w) ∈ F}

In M1,  δ*(q0,110010) = q1

L(M1) = {w0|w ∈ {0,1}*}
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Let ∑ be an alphabet.  A language L over ∑  (L ⊆ ∑*) is regular iff 	

it is recognised by a DFA.

Definition

Regular operations

L(M1) = {w0|w ∈ {0,1}*}	

is regular

Let L, L1, L2 be languages over ∑.  Then	

L1 ∪ L2, L1·L2, and L* are languages, where	

!
      L1·L2 = {w1·w2 | w1 ∈ L1,w2 ∈ L2}	

!
      L* = {w | ∃n ∈ N. ∃ w1, w2, .. , wn ∈ L. w = w1w2..wn} 

ℇ ∈ L*   always
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Regular expressions

Let ∑ be an alphabet.  The following are regular expressions	

!
!
1. a       for a ∈ ∑	

2. ε	

3. ∅	

4. (R1 ∪ R2)    for R1, R2 regular expressions	

5. (R1·R2)     for R1, R2 regular expressions	

6. (R1)*              for R1 regular expression

Definition

inductive
example:	

(ab ∪ a)*

 corresponding languages

L(a) = {a}	

L(ε) = {ε}	

L(∅) = ∅	


L(R1 ∪ R2) = L(R1) ∪ L(R2)	

L(R1·R2) = L(R1)·L(R2)	


L(R1*) = L(R1)*

finite representation of infinite 
languages
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Equivalence of regular 
expressions and regular languages

if y is not free in P and Q

Theorem (Kleene)
A language is regular (i.e., recognised by a finite automaton) iff	

it is the language of a regular expression.

Proof  ⇐ easy, via the closure 

properties discussed next,	

⇒ not so easy, we’ll skip it for now…
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Closure under regular 
operations

Theorem C1

The class of regular languages is closed under union

Theorem C3

The class of regular languages is closed under concatenation

Theorem C4

The class of regular languages is closed under Kleene star

But not yet these two…

also under 
intersection

We can already prove 
these!

Theorem C2

The class of regular languages is closed under complement
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Nondeterministic Automata 
(NFA)

∑ = {0,1}

Informal example

q0 q1
0,ε

0,1

1

M2:

sources of 
nondeterminism

q2 q3

0,1
1

no 0 transition

Accepts a word iff there exists an accepting run
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A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
   Q is a finite set of states	

   ∑ is a finite alphabet	

   δ: Q x ∑ε⟶ P(Q)  is the transition function	

   q0 is the initial state,  q0 ∈Q	

   F is a set of final states, F⊆Q	


Definition

Q = {q0, q1, q2, q3}  

∑ = {0, 1}  F = {q3}  

∑ε = ∑ ∪ {ε}



In the example M M2 = (Q, ∑, δ, q0, F)   for

NFA

if y is not free in P and Q

A nondeterministic automaton M is a tuple M = (Q, ∑, δ, q0, F) where	

!
   Q is a finite set of states	

   ∑ is a finite alphabet	

   δ: Q x ∑ε⟶ P(Q)  is the transition function	

   q0 is the initial state,  q0 ∈Q	

   F is a set of final states, F⊆Q	


Definition

Q = {q0, q1, q2, q3}  

∑ = {0, 1}  F = {q3}  

δ(q0, 0) = {q0}	

δ(q0, 1) = {q0,q1}	

δ(q0, ε) = ∅	

…..

∑ε = ∑ ∪ {ε}


