
Everyone Virtualizes Everything But Time
Silviu Craciunas, Christoph Kirsch, Hannes Payer, Harald Röck, Ana Sokolova
Department of Computer Sciences
University of Salzburg, Austria
firstname.lastname@cs.uni-salzburg.at

Contribution

Imagine a virtualized execution environment
(VEE) that virtualizes not only the host system
it runs on, even not only other systems slower
than the host system, but also maintains and
adjusts the exact speed at which these systems
operate, in strong temporal isolation from each
other, when they execute code, process I/O,
and manage memory.

Tiptoe

Microkernel

Processes

Process VM

ProcessOS

System VM

Process Operating
System
Services

CF Channels

IPC VBS

Channels

On the lowest level, there is a microkernel,
which contains the VBS scheduler and an IPC
mechanism. On top of the microkernel, pro-
cesses using the channel subsystem, and oper-
ating system services, e.g., device drivers, may
run along with operating system instances en-
capsulated in system VMs, and process VMs,
which may take advantage of CF and the chan-
nel subsystem. Scheduling parameters for the
VBS scheduler are set via system calls. [1]

Integration

The key problem is to design all system com-
ponents such that there always exists at most a
linear relationship between the amount of CPU
time required by each component to process a
workload and the actual amount of the work-
load.

VBS Scheduling

Tiptoe uses a real-time scheduler for schedul-
ing all system activities. Tiptoe assigns each
scheduling task, i.e., process or VM instance,
in the system to a unique VBS, which essen-
tially controls the execution speed of the as-
signed task and may even change the speed at
any time upon request.

ms

24 ms

12 20 24

a r f
c

10

Late strategy

a = r

8 12 16 20

8 16

c fEarly strategy

A VBS is configured by a single number u
that determines a utilization bound (band-
width cap). To configure their actual execu-
tion speed, each action of a process chooses a
pair (λ, π) (virtual periodic resource) such that
λ over π is less than or equal to the bandwidth
cap u of the used VBS. Switching to different
periods allows to trade off scheduling overhead
and temporal isolation at runtime.
Let {Pi | i ∈ I} be a set of processes each run-
ning on a VBS with utilization ui. If∑

i∈I

ui ≤ 1, (1)

then this set of processes is schedu-
lable using the EDF strategy so that
each action meets its response bounds.

Three different implementations:

list array matrix/tree
time O(n2) O(log(t) + n · log(t)) Θ(t)

space Θ(n) Θ(t + n) O(t2 + n)

2
0

2
5

2
10

2
15

2
20

matrix

tree

array

list
2

5 2
8 2

11 2
14

5KB

100KB

5MB

100MB

1GB

memory usage

KB

time instants (t)

memory usage

5 0 150 250 350 450 550 650

2 0
4 0
6 0
8 0

100
120

140
160
180
200
220
240

260
280
300
320

list_max
array_max
matrix_max

5 0 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5
list_avg
array_avg
matrix_avg

5 0 150 250 350 450 550 650

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7 list_stdev
array_stdev
matrix_stdev

0 3 3 6 7 100 150 200 250 300 349

5

2 0

100

500

2000

10000

50000

200000

0 3 3 6 5 9 8 131 180 229 278 327

5

2 0

100

500

2000

10000

50000

200000

1000000

0 3 3 6 5 9 8 130 179 228 276 325

5

2 0

100

500

2000

10000

50000

200000

1000000

0 7 3 146 255 365 474 584 693

5

2 0

100

500

2000

10000

50000

200000

1000000

Funding

This work is supported by a 2007 IBM Faculty Award, the EU ArtistDesign Network of Excellence on Embedded Systems Design, and the

Austrian Science Fund No. P18913-N15.

Compact-fit

Process VMs that use an object-based memory
model may use our Compact-fit explicit mem-
ory management system [2] to manage their
internal heaps in real time. Compact-fit is a
compacting memory management system for
allocating, deallocating, and accessing memory
in real time. The system provides predictable
memory fragmentation and response times that
are constant or linear in the size of the request,
independently of the global memory state.

 50

 100

 250

 500

 1000

 2500

 5000

 10000

 20000

 40000

 0 200 400 600 800 1000 1200 1400 1600 1800

N
um

be
r

of
 in

st
ru

ct
io

ns

Number of allocation operations of increasing size

CFM

CFNM

First-fit

Best-fit

DL

TLSF

Half-fit

First-fit
Best-fit

TLSF
Half-fit

CFM
DL

CFNM

 1

 10

 100

 1000

 5000

 0 2000 4000 6000 8000 10000 12000 14000 16000
N

um
be

r
of

 a
llo

ca
ta

bl
e

ob
je

ct
s

Object size

CFM 1

CFM 2

CFM 3,4
CFM 5

CFM 6,7,8,9
TLSF

CFM 1
CFM 2

CFM 3
CFM 4

CFM 5
CFM 6

CFM 7
CFM 8

CFM 9
TLSF

Results

Consider a process implementing a simple
feedback controller. The first action (α1) reads
sensor values, computes a new control com-
mand, and writes the actuators. The second
action (α2) updates the state of the controller
and has less stringent timing requirements. Ac-
tion α1 is associated with the virtual periodic
resource R1 = (320µs, 3550µs) while action α2

uses the resource R2 = (500µs, 5340µs).

0

20

40

60

80

100

120

 2 4 6 8 10
 0

 20

 40

 60

 80

 100

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

C
P

U
 u

ti
liz

a
ti
o

n
 (

%
)

Number of processes

α1
α2

CPU utilization

We show the minimum, maximum, and av-
erage response times of action α1 and α2, re-
spectively (left y-axis). The response time jitter
varies within two periods of the virtual peri-
odic resource independently of the overall sys-
tem utilization (right y-axis). CPU utilization
increases from 9% up to 92% when 9 additional
processes run concurrently.

References

[1] S.S. Craciunas and C.M. Kirsch and H. Payer and H. Röck and
A. Sokolova - Programmable Temporal Isolation in Real-Time
and Embedded Execution Environments In Proc. Workshop on
Isolation and Integration in Embedded Systems (IIES) 2009

[2] S.S. Craciunas and C.M. Kirsch and H. Payer and A. Sokolova
and H. Stadler and R. Staudinger - A Compacting Real-Time
Memory Management System In Proc. USENIX Annual Techni-
cal Conference 2008

Zero vs. non-zero overhead

Zero overhead response bounds :

bi,j = πi,j − 1 +
⌈
li,j
λi,j

⌉
· πi,j (2)

Non-zero overhead response bounds:

bri,j = πi,j − 1 +
⌈

li,j
λi,j − δSi,j

⌉
· πi,j (3)

δSi,j
=
(⌈

πi,j

gcd(πm,n)

⌉
+ 1
)
· σ

1

