
Poster Abstract

Everyone Virtualizes Everything But Time∗

tiptoe.cs.uni-salzburg.at

Silviu S. Craciunas Christoph M. Kirsch Hannes Payer Harald Röck Ana Sokolova

Department of Computer Sciences
University of Salzburg, Austria

firstname.lastname@cs.uni-salzburg.at

Imagine a virtualized execution environment (VEE) that
virtualizes not only the host system it runs on, even not only
other systems slower than the host system, but also maintains
and adjusts the exact speed at which these systems operate,
in strong temporal isolation from each other, when they ex-
ecute code, process I/O, and manage memory. This is what
we argue for and are trying to build.

Just maintaining the exact speed at which virtualized sys-
tems operate is already a challenge but may result in an
even higher proliferation of virtualization technology signif-
icantly beyond today’s numbers. The potential of virtualized
processors that actually perform exactly like their originals,
or better, is clearly something to wish for. However, being
able to adjust, at any time, the exact speed at which they op-
erate, still in strong temporal isolation from each other, may
even give rise to programming paradigms beyond putting
nanosleeps of the best-guessed amount at the right place.

Here is how we believe temporal isolation can be done and
even be made programmable. The core part is a real-time
O(1)-scheduler based on the notion of variable-bandwidth
servers (VBS), which we have recently developed [1]. A
VBS has a bandwidth cap in percentage of CPU time, which
determines the maximum CPU bandwidth available to the
VBS guaranteed by the scheduler. Each VBS is in charge of
exactly one scheduling task, which may be an instance of a
virtual machine or just a process. New VBS and therefore
new scheduling tasks are admitted to the system in constant
time by checking if the sum of the bandwidth caps of the ex-
isting and new VBS remains less than or equal to the capac-
ity of the host. In order to be scheduled, a new task chooses a
so-called virtual periodic resource (λ,π), which determines
the amount of time λ (called limit) the task is guaranteed to
receive periodically at a given rate π (called period). Tasks
can choose any virtual periodic resource and even switch
subsequently from one resource to another at any time as
long as the resulting CPU utilization λ over π remains less
than or equal to the bandwidth cap of their associated VBS.
Switching resources needs to follow a particular sequence of

∗This work is supported by a 2007 IBM Faculty Award, the EU
ArtistDesign Network of Excellence on Embedded Systems De-
sign, and the Austrian Science Fund No. P18913-N15.

steps implemented by the scheduler, which guarantees that
task execution resumes within at most one period of the new
resource after the task initiated the switch.

A VBS-based system provides temporal isolation in the
sense that the real time a given piece of code needs to execute
is determined by the code itself and its inputs, independently
of any other concurrent activities. Temporal isolation is even
programmable with VBS since the code may choose the time
(and jitter), at least within some host-dependent range.

After obtaining encouraging experimental results with our
VBS implementation and simulated processes as well as
when executing real virtualized code in our prototype VEE
called Tiptoe [1], we are now working on integrating other
subsystems for I/O and memory management with the VBS
scheduler such that Tiptoe can also make workload-oriented
performance guarantees (throughput and latency), not just
in CPU time, but also in transmitted or allocated bytes, per
unit of real time. For this purpose, we focus on subsys-
tem implementations that can always process a given work-
load in CPU time that is at most linear in the size of the
workload, independently of the state of the system. For
example, our real-time memory management system called
Compact-fit [2], can allocate and deallocate memory in con-
stant time (unless compaction is needed for deallocation,
which takes linear time in the size of the deallocated object).
The VBS scheduler in combination with such subsystems
may then guarantee workload-oriented performance such as
I/O throughput and memory allocation rates, by using mere
CPU time as common ground. A key challenge, besides the
subsystem design, is to determine the exact relationship be-
tween workload size and required CPU time, which is highly
implementation- and host-dependent.

References
[1] CRACIUNAS, S., KIRSCH, C., PAYER, H., RÖCK, H.,

AND SOKOLOVA, A. Programmable temporal isolation
in real-time and embedded execution environments. In
Proc. IIES (2009), ACM.

[2] CRACIUNAS, S., KIRSCH, C., PAYER, H.,
SOKOLOVA, A., STADLER, H., AND STAUDINGER, R.
A compacting real-time memory management system.
In Proc. ATC (2008), USENIX.


