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Abstract

We provide a full description of congruence relations of finitely generated
convex, positively convex, and absolutely convex algebras. As a conse-
quence of this result we obtain that finitely generated convex (positively
convex, absolutely convex) algebras are finitely presentable. Convex al-
gebras are important in the area of probabilistic systems. In particular
positively convex algebras are, as they are the Eilenberg-Moore algebras
of the subdistribution monad.
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1 Introduction

In this paper we present a study of the equational classes CA, PCA, and ACA,
of convex, positively convex, and absolutely convex algebras. We describe all
congruence relations of such algebras. Knowing the congruences, we obtain
that finitely generated convex (positively convex, absolutely convex) algebras
are finitely presentable.

A convex algebra is an algebra with an infinite set of operations of arbitrary
positive arities providing convex combinations of the arguments, which satisfy
two axioms (axiom schemes): (1) the projection axiom stating that a convex
combination with a single coefficient equal to 1 equals the identity map, and (2)
the barycenter axiom stating that a convex combination of convex combinations
equals the convex combination with suitably multiplied and summed coefficients.
Positively convex and absolutely convex algebras are defined in a similar way
from larger convex structures (sub-convex combinations for positively convex
algebras and linear combinations with coefficients whose absolute values are
sub-convex for absolutely convex algebras). The full definitions and details
follow in Section 3.

Examples of convex algebras are provided by convex subsets of a vector space
over the scalar field R (a subset of a vector space is convex, if it contains with
each two points the whole line segment connecting them): If C is such, then C
is the carrier of a convex algebra with the operations inherited from the vector
space. However, these examples do not exhaust the class CA; the major obstacle
being possible failure of cancellation laws in general convex algebras. Examples
of positively convex algebras are provided by convex subsets of a vector space
over R which contain the zero vector. Examples of absolutely convex algebras
are provided by convex subsets of a vector space R which are symmetric around
the zero vector.
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Among others, convex algebras appear in a categorical context. To explain
this, e.g. for the PCA-situation, consider the category Vec+1 whose objects are
regularly ordered normed vector spaces over the scalar field R and morphisms are
positive and linear contractions between such spaces. The functor ∆ : Vec+

1
→

Sets which acts on objects as

∆(V ) :=
{

x ∈ V | ‖x‖ ≤ 1, x ≥ 0
}

,

and on morphisms as restriction to ∆(V ), has a left adjoint. It turns out
that the algebraic category PCA is the category of Eilenberg-Moore algebras
of the monad induced by this adjunction, cf. [Pu84]. Moreover, the monad in
question is actually the discrete subprobability distribution monad, hence PCA

is the category of Eilenberg-Moore algebras of the subprobability distribution
monad [Do06, Do08]. In recent line of research, (positively) convex algebras are
recognized as state transformers in the duality between predicates and states,
capturing the essence of the semantics of program logics for probabilistic and
quantum computation [Ja10, Ja11, Ja13].

Our aim in this paper is to achieve full understanding of the structure of
finitely generated algebras in CA (PCA and ACA). We manage this with Theorem
4.10 and 4.11 below, where we describe the congruences on any polytope in the
euclidean space Rn considered as a convex algebra.

It is simple to check that, for each n ∈ N+, the free algebra Fn in CA with n
generators is given by the standard (n−1)-simplex in Rn (a particular polytope).
For n = 3, we can picture this algebra as1

(1.1)

Clearly, knowing all congruences of the free algebras Fn, n ∈ N+, is enough
to understand all finitely generated algebras in CA. These results on CA can be
transferred to PCA and ACA. Therefore, we also achieve full understanding of the
structure of finitely generated positively convex or absolutely convex algebras.

Besides its obvious intrinsic interest, our motivation to investigate finitely
generated algebras in CA (PCA or ACA) originates in a problem related to prob-
abilistic systems. The probability subdistribution monad arising from the above
mentioned adjunction, including the functor ∆, and its Eilenberg-Moore alge-
bras play a crucial role in connection with the axiomatization of trace semantics
for probabilistic systems given in [SS11]. There the question arose whether or
not each finitely generated algebra in PCA is also finitely presentable. Using the
newly established knowledge about congruence relations, we can answer this
question affirmatively, cf. Corollary 5.5.

Historically, work on convex algebras (commonly called convex modules or
convex spaces or abstract convex sets) can be traced back von Neumann and

1Picture source: http://en.wikipedia.org/wiki/Simplex
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Morgenstern’s book on the theory of games and economic behavior. In the
1960’s and 1970’s quite some mathematicians investigated convex algebras, mo-
tivated by problems in physics and chemistry. The theory of absolutely convex
algebras (and their analogues allowing infinitary operations) started in [PR84],
where they were realized to be the Eilenberg-Moore algebras associated with
the adjunction induced by the unit ball functor from the category of Banach
spaces (with linear contractions) to Sets. A similar treatment of positively
convex algebras was given shortly after in [Pu84]. Later on these notions were
extensively studied, mainly focussing on the categorical viewpoint and topo-
logical questions, see, e.g., [PR85, BK93, Ke98, Pu01a, Pu01b, Pu03] and the
references therein. A far reaching generalization, namely the concept of convex-
ity theories, has been developed in a series of papers involving several authors
which started with [Rö94], and went on (at least) till [Rö01].

Previous work which is the closest to our approach is [PR90, Ke99, Ke00],
where congruence relations in (infinitary or p-) absolutely convex modules (alge-
bras) are studied. Some parts of our results read similarly and several geometric
ideas employed there can also be used in the present setting. In order to prevent
confusion concerning terminology, let us note explicitly that in the literature
algebras in CA (PCA or ACA) are also called “finitely (positively/absolutely
or totally) convex modules/spaces”. The term “finitely” thereby refers to the
fact that they carry only finitary operations. However, in the present paper
we stick to the purely algebraic setting and do not touch upon the possibil-
ity of allowing infinitary operations. Hence, we omit the prefix “finitely” from
the notation. Moreover, we also choose the term “algebra” over “module” or
“space” since it has been used in recent work regarding positively convex al-
gebras [Do06, Do08, SS11] and “absolutely” over “totally” as it is preferred in
more recent work [Pu01a].

The structure of the paper is as follows. After the introduction, we recall
some notions and facts from convex geometry in Section 2. In Section 3, we
present the equational classes of convex, positively convex and absolutely con-
vex algebras. After collecting some basic facts, we investigate the relationship
between CA, PCA, and ACA. Interestingly, it turns out that CA and PCA are
closely related, whereas ACA carries a significantly stronger structure. Section 4
is the core of the paper. There we formulate and prove Theorems 4.10 and 4.11
that describe the congruence relations on a polytope K in euclidean space. It
turns out that a congruence on K is fully determined by two ingredients: (1)
a family of linear subspaces, describing the congruence classes in the interior
of K and in the interior of each of its lower dimensional facets; (2) a graph,
describing how the interiors of K and each of its facets are related to the lower
dimensional facets forming the respective boundary. Finally, in Section 5, we
give the already mentioned application, and show that in each of the algebraic
categories corresponding to CA, PCA, and ACA, the notions “finitely generated”
and “finitely presentable” coincide.

Our basic reference concerning terminology and results of universal algebra
is the (old but still excellent) book [Grä68], or the more recent book [BS00]. For
the (few) notions from category theory which are used in this paper, we refer
the reader to [La98]. Our standard references concerning convex geometry are
[Br83, Grü03].
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2 Preliminaries from convex geometry

Basic universal algebra and euclidean topology notions and results will be re-
called when they are needed. In this section we explicitly recall some definitions
and results from convex geometry, since they are maybe less widely known. The
proofs of these simple properties can be found in standard books on convexity,
e.g. [Br83, Grü03, Sc14] or, for the convenience of the reader, in an older tech-
nical report version of this paper [SW12]. We start with recalling the definition
of a convex set.

Definition 2.1. A subset C of a vector space V over the field R is convex
if for all x, y ∈ C and any scalar λ ∈ [0, 1] it holds that λx + (1 − λ)y ∈ C.
Geometrically, this means that C contains, together with each two points, the
whole line segment connecting them.

Linear functions map convex sets to convex sets. The following simple property
shows that convexity is the same as being closed under arbitrary convex linear
combinations.

Lemma 2.2. Let C be a subset of a vector space V over R. Then C is convex
if and only if

n
∑

i=1

pixi ∈ C

for all n ∈ N+, all xi ∈ C, and all pi ∈ [0, 1] with i = 1, . . . , n such that
∑n

i=1 pi = 1.

The following subsets, associated with a finite nonempty subset Y of V , play
an important role throughout the paper:

spanY :=
{

∑

y∈Y

λyy | λy ∈ R
}

,

dirY :=
{

∑

y∈Y

λyy | λy ∈ R,
∑

y∈Y

λy = 0
}

,

aff Y :=
{

∑

y∈Y

λyy | λy ∈ R,
∑

y∈Y

λy = 1
}

,

coY :=
{

∑

y∈Y

λyy | λy ∈ [0, 1],
∑

y∈Y

λy = 1
}

,

c̆oY :=
{

∑

y∈Y

λyy | λy ∈ (0, 1],
∑

y∈Y

λy = 1
}

.

We refer to coY as the (closed) convex hull of Y and c̆oY as the open convex
hull of Y or the interior of coY . We will see later that this choice of terminol-
ogy is indeed justified, cf. Lemma 2.5. The linear span spanY is the smallest
vector subspace that contains Y . Moreover, we refer to aff Y as the affine space
generated by Y and dirY as the directions of aff Y . Note that dirY is a vector
subspace. Clearly, for each nonempty finite set Y ,

c̆oY ⊆ coY ⊆ aff Y ⊆ spanY and dirY ⊆ spanY.
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If Y contains only one element, then c̆oY = coY = aff Y = Y and dirY = {0}.
If |Y | ≥ 2, then c̆oY ⊂ coY ⊂ aff Y and dirY 6= {0}.

First, some simple geometric properties of these sets.

Lemma 2.3. Let Y be a nonempty finite subset of a vector space V over R.
Then the following hold:

(i) For each z ∈ aff Y , we have aff Y = z + dirY .

(ii) For each z ∈ aff Y , we have dirY =
{

w − z | w ∈ aff Y
}

.

(iii) Also, dirY =
{

w − z | z, w ∈ aff Y
}

.

(iv) Finally, for every y0 ∈ Y , dirY = span{y − y0 | y ∈ Y
}

.

In the situation when V = Rn some important topological properties hold.
These are expressed in the following two lemmas. Note that whenever we men-
tion topological properties, we have in mind the Euclidean topology in Rn. In
the sequel, by Clos(X) we denote the topological closure of a set X ⊆ Rn.

Lemma 2.4. Let Y be a finite nonempty subset of Rn. Then coY is compact
and convex. Moreover, coY = Clos(c̆oY ).

Lemma 2.5. Let Y be a nonempty finite subset of Rn. Then c̆oY is open
considered as a subset of aff Y .

Lemma 2.5 implies an alternative characterisation of dirY .

Lemma 2.6. Let Y be a nonempty finite subset of Rn. Then, for z ∈ aff Y

dirY = span{y − z | y ∈ c̆oY } .

Also
dirY = span{y2 − y1 | y1, y2 ∈ c̆oY } .

Let C ⊆ Rn be convex. A point e ∈ C is called an extremal point of C if

e = tx+ (1− t)y with x, y ∈ C, t ∈ (0, 1) ⇒ x = y = e .

Geometrically, this means that e does not lie in the interior of any line segment
with endpoints in C. We denote the set of all extremal points of C by extC.

Compact convex sets can be recovered from their extremal points. The
Krĕın-Milman theorem states in a very general context that each compact con-
vex set is the closed convex hull of its extremal points, see, e.g., [Ru91, 3.23].
The version of this theorem for subsets C of Rn, that we use here, can be found
in [Grü03, 2.4.5].

We mainly deal with a certain kind of geometric objects called polytopes.
Polytopes are of central interest to us since, as already mentioned in the in-
troduction, the free finitely generated algebras in CA, PCA, ACA are carried by
polytopes. We next recall the definition of a polytope.
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Definition 2.7. Let K be a subset of the euclidean space Rn. The set K is a
polytope if it is of the form K = coY for some finite nonempty set Y ⊆ Rn.

A basic example of a polytope is a simplex.

Example 2.8 (A d-dimensional simplex). Let a ∈ Rn, and let {u1, . . . , ud} be
a linearly independent subset of Rn. Then the polytope

K := co
(

{a} ∪ {a+ ui | i = 1, . . . , d}
)

is called a d-dimensional simplex.
For instance, for d = n = 3 and

a :=





0
0
0



 , u1 :=





1
0
0



 , u2 :=





0
1
0



 , u3 :=





0
0
1



 , (2.1)

we obtain the pyramid having the triangle with corner points (0, 0, 0), (1, 0, 0),
(0, 1, 0) as its base and the point (0, 0, 1) as its apex.

Another concrete example of a polytope is an octahedron.

Example 2.9 (A d-dimensional octahedron). Let a ∈ Rn, and let {u1, . . . , ud}
be a linearly independent subset of Rn. Then the polytope

K := co
(

{a+ ui | i = 1, . . . , d} ∪ {a− ui | i = 1, . . . , d}
)

is called a d-dimensional octahedron.
For instance, if d = n = 3 and a, u1, u2, u3 are again as in (2.1), we obtain a

regular octahedron with center at the origin.2

Polytopes can be defined in several equivalent ways. The definition used in
[Grü03] is presented in the next lemma. The fact that this definition is equivalent
to the one above, i.e., the proof of the lemma is, in essence, a consequence of
the Krĕın-Milman theorem.

Lemma 2.10. A subset K ⊆ Rn is a polytope if and only if K is compact,
convex, and the set extK of its extremal points is finite.

Note that if K is a polytope and K = coY for some finite set Y , then
extK ⊆ Y and K = co(extK).

Remark 2.11. The mentioned concrete examples, the simplex from Example
2.8 and the octahedron from Example 2.9, are of particular interest in the
present context. They are the free algebras with 3 generators in the equational
classes PCA and ACA, respectively (similarly as the standard simplex (1.1) is in
CA). This fact (of course for dimension n instead of 3), together with the results
of Section 3 below, shows that describing all congruences of polytopes as convex
algebras suffices to know all congruences of all finitely generated algebras in CA,
PCA, and ACA.

2Picture source: http://en.wikipedia.org/wiki/Octahedron
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3 The equational classes CA, PCA, and ACA

In this section we investigate the three convexity theories of convex, positively
convex, and absolutely convex algebras and their induced equational classes. To
start with, let us recall the definitions.

Definition 3.1. The variety of convex algebras is given by the signature (set
of formal operations)

Tca :=
{

(pi)
n
i=1 ∈ Rn | n ∈ N+, p1, . . . , pn ≥ 0,

n
∑

i=1

pi = 1
}

,

where (pi)
n
i=1 denotes an n-ary operation, and equations given by the following

two axioms.

(1) The projection axiom:

(δij)
n
i=1(x1, . . . , xn) = xj , n ∈ N+, j = 1, . . . , n,

where δij denotes the Kronecker-delta

δij :=

{

1 , i = j

0 , i 6= j

(2) The barycenter axiom:

(pi)
n
i=1

(

(p1j)
m
j=1(x1, . . . , xm), . . . , (pnj)

m
j=1(x1, . . . , xm)

)

=

= (
n
∑

i=1

pipij)
m
j=1(x1, . . . , xm),

whenever n,m ∈ N+, (pi)
n
i=1 ∈ Tca, and (pij)

m
j=1 ∈ Tca, i = 1, . . . , n.

The operation appearing on the right-hand side of the barycenter axiom is well
defined since

m
∑

j=1

(

n
∑

i=1

pipij

)

=
n
∑

i=1

pi

(

m
∑

j=1

pij

)

, (3.1)

and hence (
∑n

i=1 pipij)
m
j=1 ∈ Tca.

By CA we denote the equational class of convex algebras. A convex algebra
A is then, as usual, a pair A = 〈A, (τA(pi)

n
i=1 | (pi)

n
i=1 ∈ Tca)〉 with τA(pi)

n
i=1 an

n-ary operation on A, that satisfies the equations of CA.

Definition 3.2. The variety of positively convex algebra has the signature

Tpca :=
{

(pi)
n
i=1 ∈ Rn | n ∈ N+, p1, . . . , pn ≥ 0,

n
∑

i=1

pi ≤ 1
}

,

and equations given again by the projection axiom and the barycenter axiom,
where in the latter (pi)

n
i=1 and (pij)

m
j=1 vary through Tpca.
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We denote the equational class of all positively convex algebras as PCA. A
positively convex algebra is then an algebra A = 〈A, (τA(pi)

n
i=1 | (pi)

n
i=1 ∈ Tpca)〉

that satisfies the equations of PCA.

Definition 3.3. The variety of absolutely convex algebras has formal operations

Taca :=
{

(pi)
n
i=1 ∈ Rn | n ∈ N+,

n
∑

i=1

|pi| ≤ 1
}

,

and again equations given by the projection axiom and the barycenter axiom,
where in the latter (pi)

n
i=1 and (pij)

m
j=1 vary through Taca.

We denote the equational class of all absolutely convex algebras as ACA.
The term “absolutely convex” can be seen as a short form of “absolutely
positively convex” which would be an appropriate term as the sum is still
less than or equal to 1. An absolutely convex algebra is an algebra A =
〈A, (τA(pi)

n
i=1 | (pi)

n
i=1 ∈ Taca)〉 in ACA.

Note that, again because of (3.1), the operation appearing on the right-
hand side of the barycenter axiom is always well defined, i.e., is in Tpca or Taca,
respectively (to see this for Taca, use the triangle inequality).

Slightly overloading the notation, we will also write CA, PCA, ACA for the
categories of convex, positively convex, and absolutely convex algebras, respec-
tively, with corresponding algebra homomorphisms. As already mentioned in
the introduction, PCA is the category of Eilenberg-Moore algebras of the sub-
distribution monad.

It is obvious, since Tca ⊆ Tpca ⊆ Taca and the axioms “coincide”, that
each absolutely convex algebra can be considered as a positively convex al-
gebra, which in turn can be considered a convex algebra. To be precise,
if A = 〈A, (τAα | α ∈ Tpca)〉 is a positively convex algebra, then UCA(A) =
〈A, (τAα | α ∈ Tca)〉 is a convex algebra. Similarly, if A = 〈A, (τAα | α ∈ Taca)〉
is an absolutely convex algebra, then UPCA(A) = 〈A, (τAα | α ∈ Tpca)〉 is a pos-
itively convex algebra, and in turn UCA(UPCA(A)) is a convex algebra. More
precisely, UPCA and UCA are the forgetful functors

ACA
UPCA // PCA

UCA // CA (3.2)

mapping morphisms to themselves. Due to this fact, many results immediately
transfer from CA to PCA and ACA.

Another interesting fact, which we shall explain in the sequel, is that CA and
PCA are closely related, whereas ACA is significantly different (Proposition 3.6
and Proposition 3.9 below).

When working with algebras in CA, PCA, or ACA, it is practical (and cus-
tomary) to write operations as formal sums and/or to use vector notation:

τA(pi)
n
i=1(x1, . . . , xn) =

n
∑

i=1

pixi = (p1, . . . , pn)







x1

...
xn






.

From now on, we will mainly use the formal-sum notation. In the next lemma
we provide some simple but useful identities which follow from the projection
and barycenter axioms. For the convenience of the reader, an explicit proof can
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be found in [SW12]. In the setting of ACA (with infinitary operations) these
identities were shown in [PR84, Theorem 2.4] using a different proof.

Lemma 3.4. For items (i)–(iii), let A be an algebra in any of the classes CA,
PCA, or ACA. For items (iv) and (v), assume that A belongs to PCA or ACA.
Let c stand for ca, pca, aca, if A is in CA, PCA, ACA, respectively.

(i) The operations are commutative, that is

n
∑

i=1

pixi =

n
∑

i=1

pσ(i)xσ(i)

whenever n ∈ N+, σ is a permutation of {1, . . . , n}, and (pi)
n
i=1 ∈ Tc.

(ii) The extended projection law

n
∑

i=1

pixi =

m
∑

k=1

pikxik

holds whenever (pi)
n
i=1 ∈ Tc and i1, . . . , im satisfy

i1 < · · · < im, {i1, . . . , im} ⊇ {i ∈ {1, . . . , n} | pi 6= 0}.

(iii) Whenever (pi)
n
i=1 ∈ Tc and x ∈ A, we have

n
∑

i=1

pix =

(

n
∑

i=1

pi

)

x.

(iv) The elements
n
∑

i=1

0xi, for n ∈ N+, x1, . . . , xn ∈ A

all coincide. We denote this element as 0A.

(v) The element 0A plays the role of a zero element: Let (pi)
n
i=1 ∈ Tc and let

i1, . . . , im satisfy

i1 < · · · < im, {i1, . . . , im} ⊇ {i ∈ {1, . . . , n} | xi 6= 0A}.

Then
n
∑

i=1

pixi =

{

∑m

k=1 pikxik , m ≥ 1

0A , m = 0

Note that items (iv) and (v) would not at all make sense within CA, since the
operations appearing in them do not belong to Tca.

Remark 3.5. Let A ∈ CA. A consequence of the extended projection law is
that the barycenter axiom remains valid when the sequences (pij)

m
j=1 appearing
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therein are no more of the same length m and no more bound to the same
variables. More precisely, let

n,m ∈ N+, Ki ⊆ N+, i = 1, . . . , n with

n
⋃

i=1

Ki = {1, . . . ,m},

(pi)
n
i=1 ∈ Tca, (3.3)

(pij)j∈Ki
with pij ≥ 0,

∑

j∈Ki

pij = 1, i = 1, . . . , n. (3.4)

Set mi := |Ki|, and write Ki = {κi
k | k = 1, . . . ,mi} with κi

k < κi
k+1. Then

n
∑

i=1

pi

(

mi
∑

k=1

piκi
k
xκi

k

)

=

m
∑

j=1

(

n
∑

i=1
j∈Ki

pipij

)

xj ,

whenever x1, . . . , xm ∈ A.
The same holds when A ∈ PCA and the conditions (3.3) and (3.4) are re-

placed by

(pi)
n
i=1 ∈ Tpca,

(pij)j∈Ki
with pij ≥ 0,

∑

j∈Ki

pij ≤ 1, i = 1, . . . , n.

Furthermore, the same holds when A ∈ ACA and (3.3) and (3.4) are replaced
by

(pi)
n
i=1 ∈ Taca,

(pij)j∈Ki
with pij ∈ R,

∑

j∈Ki

|pij | ≤ 1, i = 1, . . . , n.

This remark also clarifies the note made in [Pu03, p.110] immediately after the
definition of positively convex algebra (in which the above stronger form of the
barycenter axiom is required).

Positively convex algebras vs. convex algebras

In this subsection we make precise the connection between CA and PCA.
Let A ∈ CA. An algebra Apca in PCA is an extension of A to PCA if

UCA(Apca) = A. In order words, if A = 〈A, (τAα | α ∈ Tca)〉 and Apca =
〈A, (τ̄Aα | α ∈ Tpca)〉, then Apca is an extension of A to PCA if

τ̄Aα = τAα, α ∈ Tca . (3.5)

We will soon be able to show that any algebra in CA with nonempty carrier
has an extension to PCA, i.e., is in the image of the functor UCA. Before we
continue, we introduce one more category, the category CA• of pointed convex
algebras. Objects of CA• are pairs (A, a) where A = 〈A, (τAα | α ∈ Tca)〉
is an algebra in CA and a ∈ A is a fixed element, point, in the carrier. A
map f : A → B is a CA•-morphism from a pointed convex algebra (A, a) to a
pointed convex algebra (B, b) if and only if it is a convex algebra homomorphism
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from A to B and it preserves the designated point, i.e., f(a) = b. There is an
obvious forgetful functor U• : CA• → CA that forgets the point, i.e., on objects
U•(A, a) = A and on morphisms it is the identity, U•(f) = f . Clearly, every
algebra in CA with nonempty carrier is in the image of U•.

Proposition 3.6. The category CA• is isomorphic to the category PCA of pos-
itively convex algebras. We have the following situation of categories and func-
tors.

CA•

U•   
❇❇

❇❇
❇❇

❇

F
,,∼= PCA

UCA}}⑤⑤
⑤⑤
⑤⑤
⑤⑤G

kk

CA

Proof. Let A be a convex algebra and a ∈ A. The functor F is given on
morphisms by F (f) = f and on objects by

F (A, a) = 〈A, (τ̄A,aα|α ∈ Tpca)〉

with
τ̄A,a(pi)

n
i=1(x1, . . . , xn) := τA(p1, . . . , pn, p̄)(x1, . . . , xn, a),

for

p̄ := 1−
n
∑

i=1

pi.

The extended projection law in A gives that

F (A, a) = 〈A, (τ̄A,aα | α ∈ Tpca)〉

satisfies (3.5). We still need to check it satisfies the PCA axioms. The projection
axiom holds in F (A, a) as all operations involved belong to Tca. To show the
PCA-barycenter axiom, let (pi)

n
i=1 ∈ Tpca and (pij)

m
i=1 ∈ Tpca, i = 1, . . . , n, be

given. Denote

p̄ := 1−
n
∑

i=1

pi, p̄i := 1−
m
∑

j=1

pij , i = 1, . . . , n.

Then (δij again denotes the Kronecker-delta)

(p1, . . . , pn, p̄), (pi1, . . . , pim, p̄i), for i = 1, . . . , n, and (δi,m+1)
m+1
i=1

all belong to Tca, and hence we may apply the CA-barycenter axiom and use
the projection axiom. This gives

τ̄A,a(pi)
n
i=1

(

τ̄A,a(p1j)
m
j=1(x1, . . . , xm), . . . , τ̄A,a(pnj)

m
j=1(x1, . . . , xm)

)

=

=

n
∑

i=1

piτ̄A,a(p1j)
m
j=1(x1, . . . , xm) + p̄a =

=

n
∑

i=1

pi
(

m
∑

j=1

pijxj + p̄ia
)

+ p̄a =

11



=

n
∑

i=1

pi
(

m
∑

j=1

pijxj

)

+
(

n
∑

i=1

pip̄i + p̄
)

a =

= τ̄A,a

(

n
∑

i=1

pipij
)m

j=1
(x1, . . . , xm).

The last equality holds since, due to (3.1),

n
∑

i=1

pip̄i + p̄ = 1−
m
∑

j=1

(

n
∑

i=1

pipij

)

.

Moreover, we have for arbitrary x ∈ A

0A = τ̄A(0)(x) = τA(0, 1)(x, a) = a . (3.6)

A CA• morphism f : (A, a) → (B, b) is a PCA morphism from F (A, a) to F (B, b)
since

f(τ̄A,a(pi)
n
i=1(x1, . . . , xn)) = f(τA(p1, . . . , pn, p̄)(x1, . . . , xn, a))

= τB(p1, . . . , pn, p̄)(f(x1), . . . , f(xn), f(a))

= τB(p1, . . . , pn, p̄)(f(x1), . . . , f(xn), b)

= τ̄B,b(pi)
n
i=1(f(x1), . . . , f(xn)).

Since F (A, a) is an extension of A to PCA we have UCA ◦ F = U•.
Let now A be in PCA. The functor G is defined on objects by G(A) =

(UCA(A), 0A) ∈ CA• and again leaves the morphisms unchanged, i.e., G(f) = f .
Clearly, any PCA morphism f : A → B satisfies that f(0A) = 0B and is a CA

morphisms from UCA(A) to UCA(B). From the definition of G it is obvious that
U• ◦G = UCA.

Finally, note that F and G are inverse to each other: For the morphisms,
this is clear. For A in CA and a ∈ A we have

G ◦ F (A, a) = G(F (A, a))
(3.6)
= (UCA(F (A, a)), a) = (U•(A, a), a) = (A, a).

For A = 〈A, (τAα | τAα ∈ Tpca)〉 in PCA we have

F ◦G(A) = F (UCA(A), 0A) = A

since UCA(A) = 〈A, (τAα | α ∈ Tca)〉, F (UCA(A), 0A) = 〈A, (τ̄A,0Aα | α ∈ Tpca)〉
and for (pi)

n
i=1 ∈ Tpca

τ̄A,0A(pi)
n
i=1(x1, . . . , xn) = τA(p1, . . . , pn, p̄)(x1, . . . , xn, 0A)

(∗)
= τA(p1, . . . , pn)(x1, . . . , xn)

where p̄ := 1−
∑n

i=1 pi and the equality marked by (∗) holds by Lemma 3.4(v).

12



Remark 3.7. In concrete terms, Proposition 3.6 shows that any convex algebra
A with nonempty carrier has an extension to PCA and the set of all possible
extensions is in a bijective correspondence with the carrier A. Hence, any convex
algebra with nonempty carrier is in the image of the functor UCA; the size of
the inverse image of U• or UCA of a single convex algebra equals the size of its
carrier.

Proposition 3.6 enables us to relate the congruences of algebras in CA and PCA.
Let A be an algebra in CA or PCA. Recall that an equivalence relation Θ on
A is a congruence of A if whenever (xi, yi) ∈ Θ, for i ∈ {1, . . . , n} then also
(
∑n

i=1 pixi,
∑n

i=1 piyi) ∈ Θ for (pi)
n
i=1 ∈ Tca or (pi)

n
i=1 ∈ Tpca, respectively.

Equivalently, congruences are kernels of homomorphisms: Θ ⊆ A × A is a
congruence if and only if there is an algebra B and a homomorphism f : A → B
with

Θ = ker f = {(x, y) ∈ A×A | f(x) = f(y)}.

In general categorical terms, congruences are kernel pairs. By ConCA A or
ConPCA A we denote the sets of all CA- or PCA-congruences on A, respectively.

Lemma 3.8. Let A be an algebra in PCA. Then ConPCA A = ConCA UCA(A).

Proof. The inclusion ⊆ is clear as any PCA congruence of A is a CA congruence
of UCA(A). Formally, let Θ ∈ ConPCA A. Then Θ = ker f for some PCA-
homomorphism f : A → B. But then f = UCA(f) : UCA(A) → UCA(B) and
Θ = ker(f) showing that Θ ∈ ConCA UCA(A).

For the opposite inclusion, assume Θ ∈ ConCA UCA(A). Then Θ = ker(f)
for a CA-homomorphism f : UCA(A) → B for some algebra B in CA. Consider
now G(A) = (UCA(A), 0A) in CA•. Let b = f(0A) ∈ B. Then f : G(A) → (B, b)
is a CA•-homomorphism. Furthermore, f = F (f) : A → F (B, b) is a PCA-
homomorphism and Θ = ker(f), showing that Θ ∈ ConPCA A.

Absolutely convex algebras vs. positively convex algebras

We now compare absolutely convex algebras and positively convex algebras.
The question is which positively convex algebras are in the image of the functor
UPCA. It turns out that not every positively convex algebra has this property.

Let A ∈ PCA. An algebra Aaca in ACA is an extension of A to ACA if
UPCA(Aaca) = A. In order words, if A = 〈A, (τAα | α ∈ Tpca)〉 and Aaca =
〈A, (τ̄Aα | α ∈ Taca)〉, then Aaca is an extension of A to ACA if

τ̄Aα = τAα, α ∈ Tpca . (3.7)

We identify one more category and show its equivalence to ACA. Let PCA	

be the category whose objects are pairs (A, ω) where A is a positively convex
algebra and ω is an involutory homomorphism (ω2 = id) on A with the property
that

τA(p1, . . . , pn, q1, . . . , qn)(x1, . . . , xn, ωx1, . . . , ωxn) =

=τA(p
′
1, . . . , p

′
n, q

′
1, . . . , q

′
n)(x1, . . . , xn, ωx1, . . . , ωxn),

(3.8)
whenever n ∈ N+,

(p1, . . . , pn, q1, . . . , qn), (p
′
1, . . . , p

′
n, q

′
1, . . . , q

′
n) ∈ Tpca,

13



pk − qk = p′k − q′k, k = 1, . . . , n.

A morphism f in PCA	 from (A, ωA) to (B, ωB) is a PCA homomorphism from A
to B that commutes with the involutory morphisms, i.e., ωB ◦f = f ◦ωA. There
is an obvious forgetful functor U	 : PCA	 → PCA that forgets the involutory
homomorphism, i.e., U	(A, ω) = A.

Proposition 3.9. The category PCA	 is isomorphic to the category ACA of
absolutely convex algebras. We have the following situation of categories and
functors.

PCA	

U	 ""❉
❉❉

❉❉
❉❉

❉

H
,,∼= ACA

UPCA~~⑤⑤
⑤⑤
⑤⑤
⑤⑤I

ll

PCA

Proof. Let A be a positively convex algebra that admits an involutory homo-
morphism ω satisfying (3.8). The functor H is identity on morphisms and on
objects it acts as

H(A, ω) = 〈A, (τ̄A,ωα|α ∈ Taca)〉

with

τ̄A,ω(pi)
n
i=1(x1, . . . , xn) := τA(p

+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(x1, . . . , xn, ωx1, . . . , ωxn),

(3.9)
where

p+ := max{p, 0}, p− := −min{p, 0}, p ∈ R. (3.10)

Note that p = p+ − p−. Moreover, we have

n
∑

i=1

p+i +

n
∑

i=1

p−i =

n
∑

i=1

|pi|,

and hence the operation in Tpca on the right side of (3.9) is well-defined. If
(pi)

n
i=1 ∈ Tpca, then p+i = pi and p−i = 0 for all i ∈ {1, . . . , n}, and the extended

projection law for A gives

τ̄A,ω(pi)
n
i=1(x1, . . . , xn) = τA(p1, . . . , pn, 0, . . . , 0)(x1, . . . , xn, ωx1, . . . , ωxn)

= τA(pi)
n
i=1(x1, . . . , xn).

It is not difficult to see that the projection axiom holds for H(A, ω); we skip the
details. To check the ACA barycenter axiom, let (pi)

n
i=1 ∈ Taca and (pij)

m
j=1 ∈

Taca, i = 1, . . . , n, be given. First, compute

ωτ̄A,ω(pij)
m
j=1(x1, . . . , xm) =

= ωτA(p
+
i1, . . . , p

+
im, p−i1, . . . , p

−
im)(x1, . . . , xm, ωx1, . . . , ωxm)

= τA(p
+
i1, . . . , p

+
im, p−i1, . . . , p

−
im)(ωx1, . . . , ωxm, x1, . . . , xm)

= τA(p
−
i1, . . . , p

−
im, p+i1, . . . , p

+
im)(x1, . . . , xm, ωx1, . . . , ωxm). (3.11)

where the last equality holds by commutativity, Lemma 3.4(i), and the one but
last from ω being involutory. Next we use the PCA barycenter axiom for A to
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compute

τ̄A,ω(pi)
n
i=1

(

τ̄A,ω(p1j)
m
j=1(x1, . . . , xm), . . . , τ̄A,ω(pnj)

n
j=1(x1, . . . , xm)

)

=

=

n
∑

i=1

p+i





m
∑

j=1

p+i,jxj +

m
∑

j=1

p−i,jωxj



+

n
∑

i=1

p−i ω





m
∑

j=1

p+i,jxj +

m
∑

j=1

p−i,jωxj





(3.11)
=

n
∑

i=1

p+i





m
∑

j=1

p+i,jxj +

m
∑

j=1

p−i,jωxj



+

n
∑

i=1

p−i





m
∑

j=1

p−i,jxj +

m
∑

j=1

p+i,jωxj





=
m
∑

j=1

(

n
∑

i=1

p+i p
+
i,j +

n
∑

i=1

p−i p
−
i,j

)

xj +
m
∑

j=1

(

n
∑

i=1

p+i p
−
i,j +

n
∑

i=1

p−i p
+
i,j

)

ωxj

(∗)
=

m
∑

j=1

(

n
∑

i=1

pipi,j

)+

xj +

m
∑

j=1

(

n
∑

i=1

pipi,j

)−

ωxj

= τ̄A,ω(

n
∑

i=1

pipi,j)
m
j=1(x1, . . . , xm)

where the equality marked with (∗) follows from (3.8) since

(

n
∑

i=1

p+i p
+
ij +

n
∑

i=1

p−i p
−
ij

)

−
(

n
∑

i=1

p+i p
−
ij +

n
∑

i=1

p−i p
+
ij

)

=

=

n
∑

i=1
pi≥0,pij≥0

pipij +

n
∑

i=1
pi<0,pij<0

pipij −
n
∑

i=1
pi≥0,pij<0

pi(−pij) −
n
∑

i=1
pi<0,pij≥0

(−pi)pij

=

n
∑

i=1

pipij

=
(

n
∑

i=1

pipij

)+

−
(

n
∑

i=1

pipij

)−

.

Hence, we have shown that H(A, ω) is an extension of A to ACA.
A PCA	 morphism f : (A, ωA) → (B, ωB) is an ACA morphism from

H(A, ωA) to H(B, ωB) as

f(τ̄A,ωA
(pi)

n
i=1(x1, . . . , xn)) =

= f(τA(p
+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(x1, . . . , xn, ωAx1, . . . , ωAxn))

= τB(p
+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(f(x1), . . . , f(xn), f(ωAx1), . . . , f(ωAxn))

= τB(p
+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(f(x1), . . . , f(xn), ωBf(x1), . . . , ωBf(xn))

= τ̄B,ωB
(pi)

n
i=1(f(x1), . . . , f(xn)).

Since H(A, ω) is an extension of A to ACA, we have UPCA ◦H = U	.
Let now A = 〈A, (τAα | α ∈ Taca)〉 be in ACA. The functor I is defined on

objects by I(A) = (UPCA(A), ω̄A) ∈ PCA	 with ω̄A(x) = τA(−1)x. It leaves
the morphisms unchanged, i.e., I(f) = f . All this is well defined since, for
(pi)

n
i=1 ∈ Taca, we have

τA(−1)
(

τA(pi)
n
i=1(x1, . . . , xn)

)

= τA(−pi)
n
i=1(x1, . . . , xn)

= τA(pi)
n
i=1

(

τA(−1)(x1), . . . , τA(−1)(xn)
)

.
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This shows that ω̄A is a PCA endomorphism of UPCA(A) (it is even an ACA

endomorphism of A). Moreover, we have

τA(−1)(τA(−1)(x)) = τA(1)(x) = x,

i.e., ω̄A is involutory. Equation (3.8) will follow from

τA(p1, . . . , pn, q1, . . . , qn)(x1, . . . , xn, ω̄Ax1, . . . , ω̄Axn) =

= τA(p1 − q1, . . . , pn − qn)(x1, . . . , xn),
(3.12)

whenever (p1, . . . , pn, q1, . . . , qn) ∈ Taca. Note here that

n
∑

i=1

|pi − qi| ≤
n
∑

i=1

(|pi|+ |qi|) =
n
∑

i=1

|pi|+
n
∑

i=1

|qi| ≤ 1,

and hence the operation written on the right-hand side is legitimate.
To see (3.12), we compute using the ACA barycenter axiom

n
∑

i=1

pixi +

n
∑

i=1

qiω̄A(xi) =

n
∑

i=1

pixi +

n
∑

i=1

qi(−1)xi

=
n
∑

i=1

(pi − qi)xi.

Finally, for any ACA homomorphism f : A → B and x ∈ A we have

f ◦ ω̄A(x) = f(τA(−1)x) = τB(−1)f(x) = ω̄B ◦ f(x)

showing that f is a PCA	 morphism from I(A) to I(B), as f is certainly a PCA

homomorpshism from Upca(A) to Upca(B). From the definition of I it is obvious
that U	 ◦ I = UPCA.

It remains to show that H and I are inverse to each other: For the mor-
phisms, this is clear. Let (A, ωA) in PCA	. Then

I ◦H(A, ω) = I(H(A, ω)) = (UPCA(H(A, ω)), ω̄A) = (A, ω)

since in H(A, ω) we have

τ̄A,ω(−1)(x) = τA(0, 1)(x, ωx) = ωx

by the projection axiom. For A = 〈A, (τAα | α ∈ Taca)〉 we have UPCA(A) =
〈A, (τAα | α ∈ Tpca)〉 and

H ◦ I(A) = H(UPCA(A), ω̄A) = 〈A, (τ̄A,ω̄A
α | α ∈ Taca)〉 = A

since, as a consequence of the axioms,

τ̄A,ω̄A
(pi)

n
i=1(x1, . . . , xn) =

= τA(p
+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(x1, . . . , xn, ω̄Ax1, . . . , ω̄Axn)

=

n
∑

i=1

(p+i − p−i )xi =

n
∑

i=1

pixi = τA(pi)
n
i=1(x1, . . . , xn).
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As a consequence of Proposition 3.9, not every algebra in PCA is in the image of
UPCA, i.e., not every positively convex algebra has an extension to an absolutely
convex algebra. Namely, there are positively convex algebras which do not admit
an involutory endomorphism satisfying (3.8). Examples of such can already be
found in euclidean space, as the following proposition (proven in [SW12]) shows.

Proposition 3.10. Let K ⊆ Rn be a polytope with 0 ∈ K, and let K =
〈K, (τKα | α ∈ Tpca)〉 be the positively convex algebra with the operations given
as the usual sum of vectors in Rn

τK(pi)
n
i=1(x1, . . . , xn) :=

n
∑

i=1

pixi, (pi)
n
i=1 ∈ Tpca .

If K has an extension to ACA, then K has an even number of extremal points.

We close the discussion of ACA by making explicit the relationship between
ACA congruences and PCA congruences. Denote by ConACA A the set of all
congruences of A in ACA.

Lemma 3.11. Let A in ACA. Then

ConACA A = ConPCA UPCA(A) ∩ [ω̄A]

where [ω̄A] denotes the set of ω̄A-invariant relations on A, i.e.,

[ω̄A] = {Θ ⊆ A×A | (ω̄A × ω̄A)Θ ⊆ Θ}

for ω̄A = τA(−1) as before.

Proof. If Θ ∈ ConACA A then Θ ∈ ConPCA UPCA(A) and (ω̄A×ω̄A)Θ ⊆ Θ as ω̄A =
τA(−1) is an ACA operation. For the converse, let Θ ∈ ConPCA UPCA(A) ∩ [ω̄A].
Let (pi)

n
i=1 ∈ Taca and (xi, x

′
i) ∈ Θ, i = 1, . . . , n, be given. Since A = H ◦I(A) =

H(UPCA(A), ω̄A), we have from (3.12) that

τA(pi)
n
i=1(x1, . . . , xn) = τA(p

+
1 , . . . , p

+
n , p

−
1 , . . . , p

−
n )(x1, . . . , xn, ω̄Ax1, . . . , ω̄Axn).

The same equation holds for x′
i instead of xi. Since Θ is a PCA congruence on

UPCA(A), the operations on the right are operations of UPCA(A), xiΘx′
i, and by

ω̄A invariance ω̄AxiΘω̄Ax
′
i, we see that indeed

τA(pi)
n
i=1(x1, . . . , xn)Θ τA(pi)

n
i=1(x

′
1, . . . , x

′
n) .

Remark 3.12. We can also compare the corresponding homomorphisms in the
situation of Lemma 3.11. Let A be an algebra in ACA. Then f : A → B is an ACA

homomorphism if and only if f : UPCA(A) → UPCA(B) is a PCA homomorphism
and ω̄B ◦ f = f ◦ ω̄A.
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4 Convex equivalences on polytopes

The finitely generated free algebras in CA, PCA, and ACA are polytopes. There-
fore, in order to understand all finitely generated algebras in CA, PCA, and ACA,
it suffices to describe the congruences of polytopes, which we do in this section.

Let K ⊆ Rn be a polytope. We consider the convex algebra K with carrier
K and operations inherited from Rn (as in Proposition 3.10). The following
property is a direct consequence of the definitions and Lemma 2.2 but it is an
important observation for what follows.

Lemma 4.1. An equivalence relation Θ on a polytope K is in ConCA K if and
only if it is convex as a subset of K × K ⊆ Rn × Rn, with operations defined
component-wise.

Throughout the paper, we denote

VK := P(extK) \ {∅},

where P(M) denotes the power set of a set M , and consider VK as a join-
subsemilattice of the lattice P(extK). The elements of VK (subsets of extK)
represent facets of K: each facet is the convex hull of an element in VK .

We denote by SubRn the set of all linear subspaces of Rn, and consider
SubRn as being ordered by inclusion.

In the following definition we introduce the crucial concepts for describing
ConCA K. Recall that, due to Lemma 3.8 and Lemma 3.11, this immediately
yields a description of ConPCA K and ConACA K (provided that K has an exten-
sion to PCA or ACA, respectively, which we here denote the same).

Definition 4.2. Let K ⊆ Rn be a polytope and let Θ ∈ ConCA K. We define a
map ϕΘ : VK → SubRn by

ϕΘ(Y ) = span
{

x2 − x1 | x1, x2 ∈ c̆oY, x1Θx2

}

, Y ∈ VK .

We define a graph GΘ with vertices VK and (undirected) edges EΘ given by

{Y1, Y2} ∈ EΘ ⇐⇒ Θ ∩ (c̆oY1 × c̆oY2) 6= ∅, Y1, Y2 ∈ VK .

We denote by ≈Θ the equivalence relation on VK defined as

Y1 ≈Θ Y2 ⇐⇒ Y1 and Y2 are connected by a path in GΘ.

The equivalence classes of ≈Θ are the connected components of GΘ, see, e.g.,
[Di00]. Note that there is always an edge in GΘ connecting a vertex Y with
itself, even if |Y | = 1, due to the definition of c̆oY .

The intuition behind the graph EΘ and the linear subspaces ϕΘ(Y ) is as
follows. As mentioned, each element (vertex) in VK represents a facet of K.
The subspace ϕΘ(Y ) describes the congruence within the interior of the facet
represented by Y . For example, if Y contains three elements, then the facet it
represents is a triangle. The theorems below will show that if ϕΘ(Y ) is the zero
subspace, then all points in the interior of this triangle are separate classes of Θ;
if ϕΘ(Y ) is a one dimensional subspace, then there are infinitely many parallel
classes in the interior of the triangle, all in the direction of ϕΘ(Y ); finally if
ϕΘ(Y ) is a two dimensional subspace, then all points in the triangle belong to
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a single class of Θ. The edges EΘ of the graph GΘ describe the Θ-connectivity
between the facets. For example, if y1, y2, y3 ∈ extK, then {y1} and {y2, y3} in
VK are connected by an edge of GΘ if y1 is Θ-related to some point in the open
line segment connecting y2 and y3.

Within this section we give and prove three theorems that make this intu-
ition precise and give a complete description of the congruence lattice ConCA K.
Before, we present several auxiliary results that are essential for our proofs.
From now on, unless stated otherwise, let K be a polytope and Θ a convex
congruence of K.

Geometric consequences of convexity

We start with a definition of the useful concept of a perspective.

Definition 4.3. For each z ∈ K we denote by Φz : [0, 1] × Rn → Rn the map
defined as

Φz(s, x) := sz + (1− s)x, s ∈ [0, 1], x ∈ Rn.

Based on geometric intuition, we refer to Φz as the perspective with center z.

Since K is convex and z ∈ K, we have Φz(s,K) ⊆ K for any s ∈ [0, 1].
Moreover, Φz(0, .) is the identity map, and Φz(1, .) is the constant map with
value z.

The following observation is simple but important, and we further refer to
it as perspective invariance. Intuitively speaking, perspective invariance means
that a congruence class cannot split and distribute over several different classes
when moved with a perspective.

Lemma 4.4. Let A ⊆ K be an equivalence class of Θ. Then, for each z ∈ K
and s ∈ [0, 1], there exists an equivalence class Az,s ⊆ K of Θ with

Φz(s,A) ⊆ Az,s.

K

•

z

A

Φz(s,A)

Perspective invariance implies in particular that each equivalence class of Θ is
convex.

Proof. Let x1, x2 ∈ K with x1Θx2, z ∈ K, and s ∈ [0, 1] be given. Since zΘz
and (x, y) 7→ sx+ (1− s)y is an operation of K ∈ CA, we have

(

Φz(s, x1),Φz(s, x2)
)

= (sz + (1− s)x1, sz + (1− s)x2) ∈ Θ .

To deduce that equivalence classes are convex, let x1, x2 ∈ K with x1Θx2, and
s ∈ [0, 1] be given. Perspective invariance with z := x1 gives

(x1, sx1 + (1− s)x2) =
(

Φx1
(s, x1),Φx1

(s, x2)
)

∈ Θ.
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Also the next fact is simple but useful.

Lemma 4.5.

(i) Let Y1, Y2 ∈ VK be given. Then

∀z ∈ c̆oY1, x ∈ c̆oY2 : Φz(s, x) ∈ c̆o(Y1 ∪ Y2), s ∈ (0, 1).

(ii) Let Y ∈ VK be given. Then

∀z ∈ coY, x ∈ c̆oY : Φz(s, x) ∈ c̆oY, s ∈ [0, 1).

∀z ∈ c̆oY, x ∈ coY : Φz(s, x) ∈ c̆oY, s ∈ (0, 1].

Proof. For the proof of (i) write

z =
∑

y∈Y1

λ1
yy, λ1

y ∈ (0, 1],
∑

y∈Y1

λ1
y = 1,

x =
∑

y∈Y2

λ2
yy, λ2

y ∈ (0, 1],
∑

y∈Y2

λ2
y = 1.

Then

Φz(s, x) = s
(

∑

y∈Y1

λ1
yy
)

+ (1− s)
(

∑

y∈Y2

λ2
yy
)

=

=
∑

y∈Y1\Y2

sλ1
yy +

∑

y∈Y1∩Y2

(

sλ1
y + (1− s)λ2

y

)

y +
∑

y∈Y2\Y1

(1− s)λ2
yy.

All coefficients in these sums are positive and they sum up to 1. Hence,
Φz(s, x) ∈ c̆o(Y1 ∪ Y2). Item (ii) follows in the same manner.

Also the property shown in the next lemma will be used in several instances.

Lemma 4.6. Let Y ∈ VK , |Y | ≥ 2, and let x1, x2 ∈ c̆oY , x1 6= x2. Consider
the map Γ: R → aff Y given by

Γ(t) := tx2 + (1− t)x1, t ∈ R.

Clearly, Γ(R) = aff{x1, x2} is the line containing x1 and x2.
3 Then

ΦΓ(r)(s,Γ(t)) = Γ
(

sr + (1− s)t
)

, r, t ∈ R, s ∈ [0, 1]. (4.1)

There exist numbers t− < 0 and t+ > 1, such that

Γ−1(c̆oY ) = (t−, t+), Γ−1(coY ) = [t−, t+]

3Note that Γ actually depends on the points x1 and x2 but we prefer a light, overloaded
notation.
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t−

•
0
•

1
•

t+

•

Γ

R

aff Y
coY

x1
•

x2
• Γ(t+)

•

Γ(t−)

•

Proof. To show (4.1), we compute

ΦΓ(r)(s,Γ(t)) = sΓ(r) + (1− s)Γ(t) =

=s
(

rx2 + (1− r)x1

)

+ (1− s)
(

tx2 + (1− t)x1

)

=

=
(

sr + (1− s)t
)

x2 +
(

s(1− r) + (1− s)(1− t)
)

x1 =

=
(

sr + (1− s)t
)

x2 +
(

1− (sr + (1− s)t)
)

x1 = Γ(sr + (1− s)t).

Recall that R and aff Y inherit the euclidean topology from Rn. Moreover they
also inherit the euclidean metric from Rn. Also, a line is continuous, i.e., Γ is
a continuous function. Consider the set Γ−1(c̆oY ). Since Γ is continuous and
c̆oY is an open subset of aff Y by Lemma 2.5, this set is an open subset of R.
Since Γ is linear and c̆oY is convex, cf. Section 2, it is convex. We will now
show that Γ−1(c̆oY ) is bounded. Note that Γ(t) = x1 + t(x2 − x1). Therefore,
for ‖ · ‖ denoting the euclidean norm, using the downward triangle inequality,
we get

‖Γ(t)‖ ≥ |‖t(x2 − x1)‖ − ‖x1‖| ≥ |t| · ‖x2 − x1‖ − ‖x1‖.

Hence, for each positive real number R, if |t| > R+‖x1‖
‖x2−x1‖

, then ‖Γ(t)‖ > R. This

shows that the inverse image by Γ of a bounded set in aff Y is a bounded set
in R. Now, since c̆oY ⊆ coY and the latter is bounded by Lemma 2.4, we get
that Γ−1(c̆oY ) is bounded. Note that in R a set is open, convex, and bounded
if and only if it is a finite open interval. Hence

Γ−1(c̆oY ) = (t−, t+)

with some numbers t−, t+ ∈ R. Since Γ(0) = x1 ∈ c̆oY and Γ(1) = x2 ∈ c̆oY ,
we must have t− < 0 and t+ > 1.

Again by Lemma 2.4, coY is the closure of c̆oY and hence continuity of Γ
implies that Γ−1(coY ) is closed. Since Γ−1(c̆oY ) ⊆ Γ−1(coY ) and [t−, t+] is
the closure of Γ−1(c̆oY ) = (t−, t+), we also have [t−, t+] ⊆ Γ−1(coY ).

To show the opposite inclusion, let t ∈ R with Γ(t) ∈ coY be given. If
t ∈ [0, 1], we have Γ(t) ∈ co{x1, x2} ⊆ c̆oY , and hence t ∈ (t−, t+). Next,

consider the case that t > 1. Choose t′ ∈ (1, t) and set s := t′

t
. Then s ∈ (0, 1)
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and

ΦΓ(t)(s, x1) = sΓ(t) + (1− s)x1 = s(tx2 + (1− t)x1) + (1− s)x1 =

= (st)x2 + (1− st)x1 = t′x2 + (1− t′)x1 = Γ(t′).

By Lemma 4.5, we have Γ(t′) ∈ c̆oY . Thus t′ ∈ (t−, t+). Since t′ was arbitrary
in (1, t), we have (1, t) ⊆ (t−, t+) and hence [1, t] ⊆ [t−, t+] showing t ∈ [t−, t+].
The case that t < 0 is analogous.

The structure of GΘ

In order to understand the structure of GΘ, we need one preparatory result.

Lemma 4.7. Let Y1, Y2 ∈ VK , and assume that Y1 ⊆ Y2. If {Y1, Y2} ∈ EΘ,
i.e.,

∃x1 ∈ c̆oY1, x2 ∈ c̆oY2 : x1Θx2,

then actually
∀x′

1 ∈ c̆oY1, ∃x
′
2 ∈ c̆oY2 : x′

1Θx′
2.

Proof. If Y1 = Y2, we can always choose x′
2 := x′

1. If |Y1| = 1, also | c̆oY1| = 1,
and hence the assertion is trivial. Note that in general the assertion can not be
obtained in a trivial way, as c̆oY1 ∩ c̆oY2 = ∅ if Y1 ⊂ Y2. Think for example of
|Y1| = 2 and |Y2| = 3 when c̆oY2 is the interior of a triangle and c̆oY1 is the
interior of one of its sides.

Assume that Y1 ⊂ Y2, |Y1| > 1, and choose x1 ∈ c̆oY1 and x2 ∈ c̆oY2 with
x1Θx2. Let x′

1 ∈ c̆oY1 be given. If x′
1 = x1, we can take x′

2 := x2. Hence,
assume that x′

1 6= x1. Consider the line Γ containing the points x′
1, x1, i.e.,

Γ(t) := tx1 + (1− t)x′
1, t ∈ R.

By Lemma 4.6, we have Γ−1(c̆oY1) = (t−, t+) and Γ−1(coY1) = [t−, t+] with
some t− < 0 and t+ > 1. Set s := 1

1−t−
, then s ∈ (0, 1) and st−+(1− s) ·1 = 0.

By (4.1) since Γ(1) = x1 we have

ΦΓ(t−)(s, x1) = Γ(st− + (1− s) · 1) = Γ(0) = x′
1.

Take x′
2 := ΦΓ(t−)(s, x2). By perspective invariance and the above equality, we

get x′
1Θx′

2. Since Γ(t−) ∈ coY1 ⊆ coY2 and x2 ∈ c̆oY2, Lemma 4.5(ii) implies
x′
2 = ΦΓ(t−)(s, x2) ∈ c̆oY2, which completes the proof.

•

•

•

•

•

Θ
Θ

x1

x2

x
′

1
‖

ΦΓ(t
−

)(s, x1)

ΦΓ(t
−

)(s, x2)

‖

x
′

2

Γ(t−)

Γ(R)

coY2
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Corollary 4.8. Let Y1, Y2, Y3 ∈ VK , and assume that {Y1, Y2}, {Y2, Y3} ∈ EΘ.
If Y2 ⊆ Y3, then also {Y1, Y3} ∈ EΘ.

Proof. Choose x1 ∈ c̆oY1 and x2 ∈ c̆oY2 with x1Θx2. According to Lemma 4.7
there exists x3 ∈ c̆oY3 with x2Θx3. Transitivity gives x1Θx3, and we see that
{Y1, Y3} ∈ EΘ.

Behaviour of Θ inside of c̆oY

Let Y ∈ VK . Our aim is to describe Θ ∩ (c̆oY × c̆oY ). If Y contains only one
element, then c̆oY = Y and clearly Θ∩ (c̆oY × c̆oY ) = Y × Y . Hence, assume
that |Y | ≥ 2.

The main observation is that an equivalence class of Θ which contains two
different points of c̆oY must already stretch all the way to the boundary of
c̆oY . This is the analogue of [PR90, Theorem 1.3], where a similar result
was established for congruences of absolutely convex algebras. However, the
proof given there does not immediately carry over to the presently considered
situation, since we are bound to operations in Tca, i.e., true convex combinations.

Lemma 4.9. Let x1, x2 ∈ c̆oY , x1 6= x2, with x1Θx2. Then

aff{x1, x2} ∩ c̆oY ⊆ [x1]Θ,

where [x1]Θ denotes the Θ-equivalence class of x1.

Proof. Consider the line containing the points x1 and x2, i.e., the map

Γ(t) := tx2 + (1− t)x1, t ∈ R,

and let t−, t+ be as given by Lemma 4.6. Recall that aff{x1, x2} = Γ(R). As a
first step we show that, for each t ∈ (t−, t+), the set Γ

−1([Γ(t)]Θ∩ c̆oY ) contains
an open neighbourhood of t.

Consider first the case that t ≥ 1
2 . Choose s ∈ [0, 1) such that st++(1−s) 12 =

t. This is doable since under the assumption for t we have t+ > 1
2 . Then by

(4.1)

ΦΓ(t+)(s, x1) = ΦΓ(t+)(s,Γ(0)) = Γ(st+),

ΦΓ(t+)(s, x2) = ΦΓ(t+)(s,Γ(1)) = Γ(st+ + (1− s)),

ΦΓ(t+)

(

s,
1

2
(x1 + x2)

)

= ΦΓ(t+)

(

s,Γ(
1

2
)) = Γ(t).

Γ(t+)

ΦΓ(t+)(s, .)x1

x2

Γ(t)

•

•
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Projective invariance implies

Γ(st+)ΘΓ(st+ + (1− s)).

Note that co(Y +z) = co(Y )+z and for any linear map f it holds that f(coY ) =
co(f(Y )). Since the map t 7→ Γ(t)− x1 is linear, we have

Γ
(

[st+, st+ + (1− s)]
)

= co
{

Γ(st+),Γ(st+ + (1− s))
}

(4.2)

and we conclude from convexity of equivalence classes that

Γ
(

[st+, st+ + (1− s)]
)

⊆ [Γ(st+)]Θ.

Since st+ < t < st++(1− s), in particular Γ(t) ∈ [Γ(st+)]Θ and so [Γ(st+)]Θ =
[Γ(t)]Θ. It follows that

t ∈ (st+, st+ + (1− s)) ⊆ Γ−1
(

[Γ(t)]Θ
)

.

We have t− < 0 ≤ st+ and (since t+ > 1) st+ + (1− s) < st+ + (1− s)t+ = t+.
Therefore,

Γ
(

(st+, st+ + (1− s))
)

⊆ Γ
(

(t−, t+)
)

⊆ c̆oY .

Hence, we have found an open neighbourhood of t which is contained in
Γ−1([Γ(t)]Θ ∩ c̆oY ). The case that t ≤ 1

2 is treated in the same way, using
the perspective ΦΓ(t−).

From this it is easy to deduce that actually for each t ∈ (t−, t+) the set
Γ−1([Γ(t)]Θ∩ c̆oY ) is open: Let t′ ∈ Γ−1([Γ(t)]Θ∩ c̆oY ). Then Γ(t′) ∈ [Γ(t)]Θ∩
c̆oY and hence, by Lemma 4.6, t′ ∈ (t−, t+) and Γ(t′)ΘΓ(t). Then, by what we
showed above, there exists an open neighbourhood U of t′ with

U ⊆ Γ−1([Γ(t′)]Θ ∩ c̆oY ) .

However, [Γ(t′)]Θ = [Γ(t)]Θ.

Let I ⊆ (t−, t+) be such that {Γ(t) | t ∈ I} is a set of class representatives of
the equivalence relation Θ ∩ [Γ((t−, t+)) × Γ((t−, t+))]. Recall that (t−, t+) =
Γ−1(c̆oY ) by Lemma 4.6. We have,

(t−, t+) =
⋃

t∈I

[

Γ−1([Γ(t)]Θ) ∩ (t−, t+)
]

,

where the “⊇” inclusion is obvious, and the other one is a consequence of
⋃

t∈I([Γ(t)]Θ) ⊇ Γ(t−, t+) and properties of the inverse image Γ−1.

Now, the sets Γ−1([Γ(t)]Θ) ∩ (t−, t+), for t ∈ I, are all nonempty (each
contains t), disjoint (since the corresponding equivalence classes are disjoint),
and open (by the above shown). Since (t−, t+) is connected, it must be that
|I| = 1. This just says that all of Γ((t−, t+)) is contained in a single class of Θ.
On the other hand,

(t−, t+) = Γ−1(c̆oY ) = Γ−1(Γ(R) ∩ c̆oY ) = Γ−1(aff{x1, x2} ∩ c̆oY )

and hence

Γ((t−, t+)) = Γ(Γ−1(aff{x1, x2} ∩ c̆oY )) = aff{x1, x2} ∩ c̆oY

where the last equality holds since aff{x1, x2} ∩ c̆oY is contained in the image
of Γ. The statement of the lemma is now a direct consequence of this as x1 ∈
aff{x1, x2} ∩ c̆oY .
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The forward theorem

We are now in position to present our main result, the description of a given
convex congruence on a polytope in terms of the function ϕΘ and graph GΘ.
This theorem will be accompanied by a converse construction resulting in The-
orem 4.11 below.

Theorem 4.10. Let K be a polytope in Rn and let Θ ∈ ConCA K. Then

(i) The map ϕΘ is monotone.

(ii) Let C be a component of the graph GΘ. Then C contains a largest element
with respect to inclusion. Denoting this largest element by Y (C), we have
{Y, Y (C)} ∈ EΘ, Y ∈ C.

(iii) The connectivity relation ≈Θ is a congruence of the join-semilattice VK .

(iv) Let C be a component of GΘ and Y (C) its largest element. Then

ϕΘ(Y ) = ϕΘ(Y (C)) ∩ dirY for Y ∈ C, (4.3)

[

c̆oY + ϕΘ(Y (C))
]

∩ c̆oY (C) 6= ∅ for Y ∈ C. (4.4)

Set
Z(C) :=

⋃

Y ∈C

c̆oY, (4.5)

then the congruence Θ can be recovered from ϕΘ and GΘ as

Θ =
⋃

C component
of GΘ

{

(x1, x2) ∈ Z(C)× Z(C) : x2 − x1 ∈ ϕΘ(Y (C))
}

. (4.6)

Let us point out that reconstructing Θ by means of the formula (4.6) only
requires knowledge of the classes of ≈Θ and the values of ϕΘ on the respective
largest elements of these classes.

Proof. Our schedule is as follows. We first prove (i) and (ii), then the
representation (4.6), and only then we establish (iii) and (iv).

(i) We exploit perspective invariance to show that ϕΘ is monotone. Let Y1, Y2 ∈
VK with Y1 ⊆ Y2 be given. If Y1 = Y2, there is nothing to prove. Hence, assume
that Y1 ⊂ Y2.

Let w ∈ ϕΘ(Y1), and write according to the definition of ϕΘ

w =
m
∑

k=1

λk(x
k
2 − xk

1),

with some
λk ∈ R, xk

1 , x
k
2 ∈ c̆oY1, xk

1Θxk
2 , k = 1, . . . ,m.

Set z := 1
|Y2\Y1|

∑

y∈Y2\Y1
y, and fix s ∈ (0, 1). Note that the assumption Y1 ⊂ Y2

ensures that z is well defined. Perspective invariance gives

Φz(s, x
k
1)ΘΦz(s, x

k
2), k = 1, . . . ,m.
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By Lemma 4.5(i), since z ∈ c̆o(Y2\Y1) and Y2 = (Y2\Y1)∪Y1 by the assumption,
we have Φz(s, x

k
1),Φz(s, x

k
2) ∈ c̆oY2, and hence

w′ :=

m
∑

k=1

λk

(

Φz(s, x
k
2)− Φz(s, x

k
1)
)

∈ ϕΘ(Y2).

However,
Φz(s, x

k
2)− Φz(s, x

k
1) = (1− s)(xk

2 − xk
1),

and hence w′ = (1 − s)w. Since ϕΘ(Y2) is a vector subspace, it follows that
also w ∈ ϕΘ(Y2). ⋄

(ii) We proceed in three steps. The first step is to show that

{Y1, Y2} ∈ EΘ ⇒ {Y1, Y1 ∪ Y2}, {Y2, Y1 ∪ Y2} ∈ EΘ

To this end, choose x1 ∈ c̆oY1 and x2 ∈ c̆oY2 with x1Θx2. By convexity of
equivalence classes, we have

1

2
(x1 + x2)Θxj , j = 1, 2,

and since Φx1

(

1
2 , x2

)

= 1
2 (x1+x2), Lemma 4.5(i) gives 1

2 (x1+x2) ∈ c̆o(Y1∪Y2)
which shows the above property.

Let C be a component of GΘ. The second step is to show that

Y1, Y2 ∈ C ⇒ ∃Y3 ∈ C : Y1 ∪ Y2 ⊆ Y3, {Y1, Y3}, {Y2, Y3} ∈ EΘ

To established existence of Y3 with the required properties, we use induction on
the length of a path in GΘ connecting Y1 and Y2.

If Y1 and Y2 can be connected by a path of length 1, i.e., if {Y1, Y2} ∈ EΘ,
then set Y3 := Y1 ∪ Y2. By the property shown in the first step, we have
{Y1, Y3}, {Y2, Y3} ∈ EΘ. This also implies that Y3 ∈ C.

For the inductive step, let m ∈ N+ be given, and assume that Y1 and Y2 can
be connected by a path of length m+ 1. This means that there exist

Y ′
0 , . . . , Y

′
m+1 ∈ VK , Y ′

0 = Y1, Y
′
m+1 = Y2 with {Y ′

k, Y
′
k+1} ∈ EΘ

for k ∈ {0, . . . ,m}. Clearly, all Y ′
k belong to C. The inductive hypothesis

provides a vertex Y ′ ∈ C with

Y1 ∪ Y ′
m ⊆ Y ′, {Y1, Y

′}, {Y ′
m, Y ′} ∈ EΘ.

Now, since Y ′
m ⊆ Y ′ and {Y2, Y

′
m}, {Y ′

m, Y ′} ∈ EΘ, from Corollary 4.8, we get
{Y2, Y

′} ∈ EΘ. From the property shown in the first step, we get {Y2, Y2 ∪
Y ′}, {Y ′, Y2 ∪ Y ′} ∈ EΘ. Another application of Corollary 4.8, this time since
{Y1, Y

′}, {Y ′, Y2∪Y
′} ∈ EΘ and obviously Y ′ ⊆ Y2∪Y

′, gives that also {Y1, Y2∪
Y ′} ∈ EΘ. Thus the element Y3 := Y2 ∪ Y ′ has all required properties. This
finishes the proof of the second step.

Let Y ∈ C. If there exists Y ′ ∈ C with Y ′ * Y , the property shown in the
second step gives an element Y ′′ ∈ C with Y ∪ Y ′ ⊆ Y ′′ and Y ⊂ Y ′′ (since
Y ⊂ Y ∪ Y ′). Hence, Y is not maximal in C. We conclude that if an element
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is maximal in C, then it must also be the largest in C. Since C is finite (the
whole graph is finite), there certainly exists a maximal element. Let Y0 be such.
Then, since it is the largest, we have

Y0 ⊇
⋃

Y ∈C

Y,

and hence Y0 =
⋃

Y ∈C Y .
Let Y ∈ C be given. By the property shown in the second step, applied to

Y and Y0, we obtain Y3 ∈ C with

Y ∪ Y0 ⊆ Y3, {Y, Y3}, {Y0, Y3} ∈ EΘ.

However, since Y0 is the largest element of C, it follows that Y3 = Y0. Hence,
we have shown that {Y, Y0} ∈ EΘ. ⋄

Next we present a description of Θ inside of c̆oY . We will show that

Θ ∩ (c̆oY × c̆oY ) =
{

(x1, x2) ∈ c̆oY × c̆oY : x2 − x1 ∈ ϕΘ(Y )
}

. (4.7)

The inclusion “⊆” is immediate from the definition of ϕΘ, Definition 4.2. We
have to show the reverse inclusion. Let x1, x2 ∈ c̆oY be given, and assume that
x2 − x1 ∈ ϕΘ(Y ). If x1 = x2, there is nothing to prove. Hence, assume in
addition that x1 6= x2. Note that this implies that |Y | > 1.

Since x2 − x1 ∈ ϕΘ(Y ), we can write

x2 − x1 =

m
∑

i=1

λi(x
i
2 − xi

1),

with some λi ∈ R and xi
1, x

i
2 ∈ c̆oY , xi

1Θxi
2. Clearly, we may assume that

always xi
1 6= xi

2.
Choose ε > 0, and define elements zk for k = 0, . . . ,m

zk := x1 + ε

k
∑

i=1

λi(x
i
2 − xi

1).

Note that for k = 1, . . . ,m we have

zk = zk−1 + ελk(x
k
2 − xk

1).

Then z0 = x1 and it is easy to see that

zk ∈ aff Y, k = 0, . . . ,m.

By Lemma 2.5, c̆oY is an open subset of aff Y . Now from x1 ∈ c̆oY , we can
make the choice of ε > 0 such that

zk ∈ c̆oY, k = 0, . . . ,m.

We will next show that

zk−1Θzk, k = 1, . . . ,m.
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Let k ∈ {1, . . . ,m} be given. First consider the case that xk
1 = zk−1. Then we

have
zk = xk

1 + ελk(x
k
2 − xk

1) ∈ aff{xk
1 , x

k
2} ∩ c̆oY.

By Lemma 4.9, the set on the right side is contained in [xk
1 ]Θ, and thus zkΘzk−1.

Assume now that xk
1 6= zk−1. Let Γ be the line containing the points zk−1

and xk
1 , that is

Γ(t) := txk
1 + (1− t)zk−1, t ∈ R.

Let t−, t+ be as in Lemma 4.6. Choose s ∈ (0, 1) such that st− + (1 − s) = 0
(this is always possible, namely s = 1

1−t−
is such). Then, using Lemma 4.6,

ΦΓ(t−)(s, x
k
1) = ΦΓ(t−)(s,Γ(1)) = Γ(st− + (1− s) · 1) = Γ(0) = zk−1.

By perspective invariance

ΦΓ(t−)(s, x
k
2)Θ zk−1.

Also

ΦΓ(t−)(s, x
k
2)− zk−1 = ΦΓ(t−)(s, x

k
2)− ΦΓ(t−)(s, x

k
1) = (1− s)(xk

2 − xk
1).

It follows that

zk = zk−1 +
ελk

1− s

(

ΦΓ(t−)(s, x
k
2)− zk−1

)

∈

aff
{

ΦΓ(t−)(s, x
k
2), zk−1

}

∩ c̆oY ⊆ [zk−1]Θ,

where the last inclusion holds by Lemma 4.9 since ΦΓ(t−)(s, x
k
2) ∈ c̆oY by

Lemma 4.5 using also Lemma 4.6, ΦΓ(t−)(s, x
k
2)Θ zk−1 as shown above, and

ΦΓ(t−)(s, x
k
2) 6= zk−1 since xk

2 6= xk
1 as assumed above, and we again have

zkΘzk−1.

By transitivity we have z0Θzm, i.e. x1Θzm, and another application of
Lemma 4.9 gives

x2 = x1 +

m
∑

i=1

λi(x
i
2 − xi

1) = x1 +
1

ε
(zm − x1) ∈ aff{x1, zm} ∩ c̆oY ⊆ [x1]Θ,

where again x1 6= zm by the made assumption x1 6= x2. This completes the
proof of (4.7). ⋄

Next we show the following auxiliary statement:

Let C be a component of GΘ and Y (C) its largest element, and let Z(C) be as
in (4.5). Then

Θ ∩ (Z(C)× Z(C)) =
{

(x1, x2) ∈ Z(C)× Z(C) : x2 − x1 ∈ ϕΘ(Y (C))
}

. (4.8)

As a first step, we show: If x ∈ Z(C), x′ ∈ c̆oY (C), and xΘx′, then x − x′ ∈
ϕΘ(Y (C)).

If x = x′, this is trivial. Hence, assume that x 6= x′. Let z := 1
2 (x + x′).

Since equivalence classes of Θ are convex, we have zΘx′.
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Recall that Y (C) =
⋃

Y ∈C Y and c̆o is monotone, implying that Z(C) ⊆
c̆oY (C) ⊆ coY (C). Hence x ∈ coY (C) and x′ ∈ c̆oY (C), which by Lemma 4.5
gives z ∈ c̆oY (C) as z = Φx(

1
2 , x

′). Equation (4.7) now implies that z − x′ ∈
ϕΘ(Y (C)). It follows that

x− x′ = 2(z − x′) ∈ ϕΘ(Y (C))

which completes the first step.

We now prove the inclusion “⊆” in (4.8). Let x1, x2 ∈ Z(C) with x1Θx2 be given.
Since, by the already proved (ii), for any Y ∈ C we have {Y, Y (C)} ∈ EΘ, we
can choose x′

1, x
′
2 ∈ c̆oY (C) with x1Θx′

1 and x2Θx′
2. Transitivity implies x′

1Θx′
2,

and (4.7) thus gives x′
1 − x′

2 ∈ ϕΘ(Y (C)). By the property shown in the first
step, also x1 − x′

1, x2 − x′
2 ∈ ϕΘ(Y (C)), and together

x2 − x1 = (x2 − x′
2) + (x′

2 − x′
1) + (x′

1 − x1) ∈ ϕΘ(Y (C)).

Finally, we show the inclusion “⊇” in (4.8). This is done by reversing the
argument in the previous paragraph. Let x1, x2 ∈ Z(C) with x2−x1 ∈ ϕΘ(Y (C))
be given. Again choose x′

1, x
′
2 ∈ c̆oY (C) with x1Θx′

1 and x2Θx′
2. Again from

the property shown in the first step, we have x1 − x′
1, x2 − x′

2 ∈ ϕΘ(Y (C)).
Hence, also

x′
2 − x′

1 = (x′
2 − x2) + (x2 − x1) + (x1 − x′

1) ∈ ϕΘ(Y (C)),

and (4.7) implies that x′
1Θx′

2. Transitivity gives x1Θx2, showing (4.8). ⋄

We are now in position to establish the representation (4.6) of Θ, which is then
used to prove (iii) and (iv). The main observation to make is that

K =
⋃

Y ∈VK

c̆oY =
⋃

C

⋃

Y ∈C

c̆oY.

Hence, we can write K as the disjoint union

K =
⋃

C component
of GΘ

Z(C)

where disjointness is easy to check: Assume x ∈ Z(C) ∩ Z(C′). Then x ∈ c̆oY
for some Y ∈ C and x ∈ c̆oY ′ for some Y ′ ∈ C′. From the reflexivity of Θ we
have (x, x) ∈ Θ and from the definition of GΘ this yields {Y, Y ′} ∈ EΘ, which
implies that C = C′.

As a consequence, Θ is the disjoint union

Θ =
⋃

C,C′ components
of GΘ

[

Θ ∩ (Z(C)× Z(C′))
]

.

With a similar argument as above, the definition of GΘ ensures that

Θ ∩ (Z(C)× Z(C′)) = ∅, C 6= C′,
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and hence
Θ =

⋃

C component
of GΘ

[

Θ ∩ (Z(C)× Z(C))
]

.

The desired representation (4.6) follows now directly from (4.8). ⋄

(iii) Let Y1, Y2 ∈ VK , and let C1 and C2 be the components which contain
Y1 and Y2, respectively. Moreover, let C be the component which contains
Y (C1) ∪ Y (C2). We show that then Y1 ∪ Y2 ∈ C. This suffices for the proof that
≈Θ is a congruence on the join-semilattice VK since if Y1 ≈Θ Y ′

1 and Y2 ≈Θ Y ′
2 ,

i.e., Y ′
1 ∈ C1 and Y ′

2 ∈ C2, then both Y1 ∪ Y2 and Y ′
1 ∪ Y ′

2 are in C showing that
Y1 ∪ Y2 ≈Θ Y ′

1 ∪ Y ′
2 .

For j = 1, 2 choose

xj ∈ c̆oYj , x′
j ∈ c̆oY (Cj) with xjΘx′

j .

Since Θ is convex, we have

(1

2
(x1 + x′

1),
1

2
(x2 + x′

2)
)

=
1

2
(x1, x

′
1) +

1

2
(x2, x

′
2) ∈ Θ.

By Lemma 4.5 we have

Φx1
(
1

2
, x2) =

1

2
(x1 + x2) ∈ c̆o(Y1 ∪ Y2)

Φx′

1
(
1

2
, x′

2) =
1

2
(x′

1 + x′
2) ∈ c̆o

(

Y (C1) ∪ Y (C2)
)

and hence Y1 ∪ Y2 ≈Θ Y (C1) ∪ Y (C2). This just means that Y1 ∪ Y2 ∈ C. ⋄

(iv) Let C be a component of GΘ, Y ∈ C, and Y (C) the largest element of C.
If |Y | = 1, we have ϕΘ(Y ) = {0} and dirY = {0}. Hence, in this case,

equality (4.3) holds trivially. Assume that |Y | ≥ 2. The inclusion ‘⊆’ in (4.3)
follows since ϕΘ is monotone, Y ⊆ Y (C), and

ϕΘ(Y ) ⊆ span
(

c̆oY − c̆oY
)

= dirY,

where the last equality follows by Lemma 2.6. To show the reverse inclusion,
let u ∈ ϕΘ(Y (C)) ∩ dirY be given. Choose x1 ∈ c̆oY , let ε > 0, and set x2 :=
x1 + εu. Since u ∈ dirY and x1 ∈ aff Y , we have x1 + span{u} ⊆ aff Y . Since
c̆oY is an open subset of aff Y , we can choose ε > 0 so small that x2 ∈ c̆oY .
We have x2 − x1 = εu ∈ ϕΘ(Y (C)), and hence (4.6) implies that x1Θx2. This
is enough to conclude that u = 1

ε
· εu = 1

ε
(x2 − x1) ∈ ϕΘ(Y ).

It remains to prove (4.4). To this end, remember that {Y, Y (C)} ∈ EΘ,
i.e., there exist x1 ∈ c̆oY , x2 ∈ c̆oY (C), with x1Θx2. By (4.6), we have
x2 − x1 ∈ ϕΘ(Y (C)), and hence

x2 ∈
[

c̆oY + ϕΘ(Y (C))
]

∩ c̆oY (C).

The proof of Theorem 4.10 is now complete.
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The converse construction

Convex congruences of a polytope K can be constructed from certain join-
semilattice congruences of VK . The following theorem provides this converse
construction.

Theorem 4.11. Let K be a polytope in Rn. Let ∼ be a congruence relation
of the join-semilattice VK with the property that each congruence class C of ∼
contains a largest element, say Y (C). Moreover, let

ϕ : {Y (C) | C class of ∼} −→ SubRn

be a monotone map such that, for each class C of ∼,

ϕ(Y (C)) ⊆ dirY (C),
[

c̆oY + ϕ(Y (C))
]

∩ c̆oY (C) 6= ∅ for Y ∈ C.

Then there exists a unique congruence Θ ∈ ConCA K such that

≈Θ = ∼, ϕΘ(Y (C)) = ϕ(Y (C)) for C a class of ∼ .

This congruence Θ can be computed from ∼ and ϕ by means of the formula

Θ =
⋃

C class
of ∼

{

(x1, x2) ∈ Z(C)× Z(C) : x2 − x1 ∈ ϕ(Y (C))
}

, (4.9)

where again Z(C) :=
⋃

Y ∈C c̆oY . Its associated function ϕΘ is given as

ϕΘ(Y ) = ϕ
(

Y (C)
)

∩ dirY for Y ∈ C, (4.10)

and the set of edges EΘ of its associated graph GΘ is given as

{Y1, Y2} ∈ EΘ ⇐⇒
(

Y1 ∼ Y2 ∧
[

c̆oY1 + ϕ
(

Y ([Y1]∼)
)]

∩ c̆oY2 6= ∅
)

(4.11)

where [Y1]∼ denotes the equivalence class of Y1.

Proof. Let a relation ∼ and a map ϕ as in the statement of Theorem 4.11 be
given. For each equivalence class C of ∼, we denote its largest element by Y (C)
and set

Z(C) :=
⋃

Y ∈C

c̆oY.

Consider the relation on K defined as

Θ =
⋃

C class
of ∼

{

(x1, x2) ∈ Z(C)× Z(C) | x2 − x1 ∈ ϕ(Y (C))
}

.

The main step is to show that the relation Θ is a convex congruence on K, i.e.,
Θ ∈ ConCA K, and

≈Θ = ∼, ϕΘ(Y (C)) = ϕ(Y (C)) for C class of ∼ .

First of all, Θ is an equivalence relation as a direct consequence of ϕ(Y (C))
being a linear subspace.
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Next, notice the following: If x ∈ c̆oY , x′ ∈ c̆oY ′, and xΘx′, then x and x′

must both belong to the same of the sets Z(C), and hence Y ∼ Y ′.
To show that Θ is a convex congruence, let (x1, x

′
1), (x2, x

′
2) ∈ Θ and s ∈

(0, 1) be given. Choose Yj , Y
′
j , j = 1, 2, such that xj ∈ c̆oYj , x

′
j ∈ c̆oY ′

j . Then
Yj ∼ Y ′

j , and hence also
Y1 ∪ Y2 ∼ Y ′

1 ∪ Y ′
2 .

Let C be the class of ∼ which contains Y1 ∪ Y2. Lemma 4.5 gives

x := sx1 + (1− s)x2 ∈ c̆o(Y1 ∪ Y2), x′ := sx′
1 + (1− s)x′

2 ∈ c̆o(Y ′
1 ∪ Y ′

2),

and hence x, x′ ∈ Z(C).
Let Cj be the class which contains Yj . Since Yj ∼ Y (Cj), it follows that

Y1∪Y2 ∼ Y (C1)∪Y (C2), and hence Y (C1)∪Y (C2) ⊆ Y (C). Since ϕ is monotone,
we conclude that

ϕ(Y (Cj)) ⊆ ϕ(Y (C)), j = 1, 2.

We compute

x′ − x = s(x′
1 − x1) + (1− s)(x′

2 − x2) ∈ ϕ(Y (C1)) + ϕ(Y (C2)) ⊆ ϕ(Y (C)),

and this shows that (x, x′) ∈ Θ and therefore Θ is a convex congruence.
Next, we show that ϕΘ(Y (C)) = ϕ(Y (C)) whenever C is a class of ∼. By the

definition of Θ, we have

{

x2 − x1 | x1, x2 ∈ c̆oY (C), x1Θx2

}

⊆ ϕ(Y (C)),

and hence ϕΘ(Y (C)) ⊆ ϕ(Y (C)). Conversely, let u ∈ ϕ(Y (C)) be given. Choose
x1 ∈ c̆oY (C) ⊆ aff Y (C), let ε > 0, and set x2 := x1 + εu. Since ϕ(Y (C)) ⊆
dirY (C), we have x2 ∈ aff Y (C). Since c̆oY (C) is an open subset of aff Y (C), we
may choose ε > 0 so small that x2 ∈ c̆oY (C). Then, by the definition of Θ, we
have x1Θx2. It follows that u = 1

ε
(x2 − x1) ∈ ϕΘ(Y (C)).

In order to establish the inclusion “≈Θ ⊆∼”, it is enough to show that
{Y1, Y2} ∈ EΘ implies Y1 ∼ Y2. This, however, is clear from the note made
in the beginning of this proof. We next prove the reverse inclusion. First, let
one element Y ∈ VK be given, and denote by C the class of ∼ which contains
Y , i.e., C = [Y ]∼. By the hypothesis that [c̆oY + ϕ(Y (C))] ∩ c̆oY (C) 6= ∅, we
can choose x1 ∈ c̆oY , u ∈ ϕ(Y (C)), and x2 ∈ c̆oY (C), such that x2 = x1 + u.
By the definition of Θ, we have x1Θx2. This shows that {Y, Y (C)} ∈ EΘ. Let
now Y1, Y2 ∈ VK with Y1 ∼ Y2, and denote by C the class of ∼ which contains
Y1 (and hence also Y2). By what we just showed, {Y1, Y (C)}, {Y2, Y (C)} ∈ EΘ.
This implies that Y1 ≈Θ Y2.

The fact that Θ can be computed by means of (4.9) is just the above def-
inition of Θ. The fact that Θ is unique, is clear from (4.6). The remaining
assertions of Theorem 4.11 now follow easily, as shown below.

Let Y ∈ VK , and let C be the class of ∼ which contains Y . Using (4.3), we
obtain

ϕΘ(Y ) = ϕΘ(Y (C)) ∩ dirY = ϕ(Y (C)) ∩ dirY,

showing (4.10). For (4.11), it is enough to note (again) that our definition of Θ
ensures

∀Y1, Y2 ∈ VK . {Y1, Y2} ∈ EΘ ⇒ Y1 ∼ Y2
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and

∀Y1, Y2 ∈ C. {Y1, Y2} ∈ EΘ ⇔
[

c̆oY1 + ϕ(Y (C))
]

∩ c̆oY2 6= ∅

which is easy to show unfolding the definitions.

Remark 4.12. Note that for any join-semilattice congruence ∼ with largest
element in every class (as in Theorem 4.11) there is at least one possible choice
for the assignment ϕ in Theorem 4.11. Namely, ϕ(Y (C)) = dirY (C) satisfies all
conditions.

We do not have a simple description of all join-semilattices congruences
which are admissible in the sense of Theorem 4.11. However, some examples
are easily obtained. Let K ⊆ Rn, |K| > 1, be a polytope, and let Y0 ⊆ extK.
Define an equivalence relation ∼ on VK by specifying its equivalence classes to
be

Cy :=
{

{y}
}

, y ∈ Y0, C0 := VK \
⋃

y∈Y0

Cy .

Clearly, each of these classes contains a largest element Y (C) (for C0 it is Y (C0) =
extK), and it is straightforward to verify that ∼ is a congruence of the join-
semilattice VK .

Let us now illustrate the results on a (toy) example. Another example describing
the congruences of the free absolutely convex algebra with two generators is
given in [PR90].

Example 4.13. Let Y := {0, 1} and K := coY in R. Then K = [0, 1] and K
is in CA. We will show, using Theorem 4.10 and Theorem 4.11, that there are
exactly five CA-congruences of K. These are:

Θ1 = ∆

Θ2 = {(0, 0), (1, 1)} ∪ (0, 1)× (0, 1)

Θ3 = {(0, 0)} ∪ (0, 1]× (0, 1]

Θ4 = [0, 1)× [0, 1) ∪ {(1, 1)}, and

Θ5 = [0, 1]× [0, 1].

We have VK = {{0}, {1}, {0, 1}}. To ease the notation we write

0 = {0}, 1 = {1}, 01 = {0, 1},

hence VK = {0,1,01}. Next we list all join-semilattice congruences of VK with
the property that each class has a largest element. There are four such, given
by their partitions:

VK/ ∼1 = {{0}, {1}, {01}}

VK/ ∼2 = {{0}, {1,01}}

VK/ ∼3 = {{1}, {0,01}}

VK/ ∼4 = {{0,1,01}}.

Note that R has only two vector subspaces, the trivial ones, SubR = {0,R}.
Furthermore, dir0 = 0, dir1 = 0, and dir01 = R.
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For each of the join-semilattice congruences we need to consider all monotone
maps ϕ mapping the largest elements of each class to SubR and satisfying the
conditions ϕ(Y (C)) ⊆ dirY (C) and

[

c̆oY + ϕ(Y (C))
]

∩ c̆oY (C) 6= ∅ for Y ∈ C.
Consider ∼1= ∆. The second condition here is always satisfied, and the

first implies that ϕ(0) = 0 and ϕ(1) = 0. Hence, there are two possibilities for
defining ϕ, namely

ϕ1 = (0 7→ 0,1 7→ 0,01 7→ 0) and ϕ2 = (0 7→ 0,1 7→ 0,01 7→ R) .

From (4.9) we then get two convex congruences on K and these are exactly
Θ1 and Θ2. Consider next ∼2. Due to the conditions on ϕ, there is a unique
possibility to define this map, namely

ϕ3 = (0 7→ 0,01 7→ R)

and (4.9) then gives Θ3. The case ∼3 is symmetric. Again there is a unique
possibility to define the map ϕ, leading to

ϕ4 = (1 7→ 0,01 7→ R)

and Θ4. Finally, consider ∼4. There is a unique map

ϕ4 = (01 7→ R)

which satisfies the conditions imposed on ϕ leading to Θ5. By Theorem 4.10,
there are no other convex congruences on K.

The order of the congruence lattice

Our third theorem shows that also the order relation on the congruence lat-
tice ConCA K can be characterised in terms of ϕΘ and GΘ. This is a simple
consequence of the representation (4.6).

Theorem 4.14. Let K be a polytope in Rn. If Θ1,Θ2 ∈ ConCA K, then

Θ1 ⊆ Θ2 ⇐⇒
(

EΘ1
⊆ EΘ2

∧ ϕΘ1
≤ ϕΘ2

)

where ≤ denotes the pointwise order by inclusion.

Proof. The implication “⇒” is immediate from the definition of EΘj
and ϕΘj

.
Conversely, assume that EΘ1

⊆ EΘ2
and ϕΘ1

≤ ϕΘ2
. The former implies that

each component C2 of GΘ2
is the union of components of GΘ1

. This implies that

Z(C2) =
⋃

C1 comp. of GΘ1
C1⊆C2

Z(C1).

Using this fact, the representation (4.6) for Θ1 and for Θ2, monotonicity of ϕΘ1
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and ϕΘ2
, and the assumption ϕΘ1

≤ ϕΘ2
, we compute

Θ1 =
⋃

C1 comp.
of GΘ1

{

(x1, x2) ∈ Z(C1)× Z(C1) : x2 − x1 ∈ ϕΘ1
(Y (C1))

}

⊆
⋃

C2 comp.
of GΘ2

[

⋃

C1 comp.
of GΘ1
C1⊆C2

{

(x1, x2) ∈ Z(C1)× Z(C1) : x2 − x1 ∈ ϕΘ2
(Y (C2))

}

]

⊆
⋃

C2 comp.
of GΘ2

{

(x1, x2) ∈ Z(C2)× Z(C2) : x2 − x1 ∈ ϕΘ2
(Y (C2))

}

= Θ2.

5 Finitely presentable (positively, absolutely)
convex algebras

We have already mentioned in the introduction that the free algebra Fn(CA)
with n generators is the standard (n−1)-simplex in Rn. Moreover, Fn(PCA) is
the n-dimensional simplex in Rn generated by the point 0 and the unit vectors
e1, . . . , en, cf. Example 2.8, and Fn(ACA) is the octahedron in Rn centered at
0 and having the 2n corners {±ei :, i = 1, . . . , n}, cf. Example 2.9. Hence,
all these free algebras are polytopes (with the CA, PCA, ACA vector operations,
respectively) whose congruences we have fully described. Using this description,
we can prove that all congruences of finitely generated algebras in CA,PCA, ACA
are finitely generated.

First, we recall the necessary notions: An algebra A in a variety V is finitely
generated if it is a quotient (under a congruence) of a free algebra Fn(V) with n
generators for some natural number n. Equivalently, A is finitely generated if it
has a finite number of generators, i.e., there is a finite subset X of the carrier A
with the property that every element of A can be expressed using the operations
on elements of X, notation A = 〈X〉V . A congruence Θ on an algebra A with
carrier A is finitely generated if there exists a finite subset R ⊆ A×A such that
Θ is the smallest congruence which contains R, notation Θ = 〈R〉.

Next, we recall a universal algebra property that the mentioned result relies
on.

Lemma 5.1. Let V be a variety of algebras. The following two statements are
equivalent:

(1) Every congruence of any finitely generated algebra in V is finitely gener-
ated.

(2) For any two congruences Θ1 and Θ2 of a free algebra Fn(V) with Θ1 ⊆ Θ2,
there exists a finite subset R ⊆ Θ2 with the property Θ2 = 〈Θ1 ∪R〉.

Proof. Assume (1) and let Θ1 and Θ2 be as in (2) with Fn(V) the free algebra in
V with n generators. Consider the canonical projection π : Fn(V) → Fn(V)/Θ1
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with kerπ = Θ1. Clearly, π is a surjective homomorpshism and π × π induces
an order isomorphism

π × π : {Θ ∈ ConV Fn(V) | Θ1 ⊆ Θ} → ConV(Fn(V)/Θ1).

As Fn(V)/Θ1 is finitely generated, by (1) there exists a finite set R ⊆
(Fn(V)/Θ1) × (Fn(V)/Θ1) such that (π × π)(Θ2) = 〈R〉. Choose R2 ⊆ Θ2

with |R2| = |R| and (π × π)(R2) = R. We will show that Θ2 = 〈Θ1 ∪ R2〉
showing (2). Let Θ ∈ ConV(Fn(V)) and let Θ1 ∪R2 ⊆ Θ. Then R ⊆ (π×π)(Θ)
and hence (π × π)(Θ2) ⊆ (π × π)(Θ). We will show that then also Θ2 ⊆ Θ.
Let (x1, x2) ∈ Θ2. Then (π × π)(x1, x2) ∈ (π × π)(Θ), so there exists a pair
(y1, y2) ∈ Θ with (π × π)(x1, x2) = (π × π)(y1, y2), i.e., π(x1) = π(y1) and
π(x2) = π(y2). Since kerπ = Θ1, we get (x1, y1) ∈ Θ1, (x2, y2) ∈ Θ1. Then

(x1, x2) ∈ Θ1 ◦Θ ◦Θ1 ⊆ Θ ◦Θ ◦Θ ⊆ Θ.

Assume now that (2) holds and let A be a finitely generated algebra in V with
carrier A and Θ ∈ ConV(A). Let π̂ : A → A/Θ be the corresponding surjective
homomorpshism with ker π̂ = Θ. Choose a positive natural number n and a
congruence Θ1 ∈ ConV(Fn(V)) such that A ∼= Fn(V)/Θ1. Let π : Fn(V) → A
be the corresponding surjective homomorphism with kerπ = Θ1. Let Θ2 =
(π × π)−1(Θ). We have the following situation

Fn(V)
π
→ Fn(V)/Θ1

π̂
→ (Fn(V)/Θ1)/Θ

and

(x1, x2) ∈ (π × π)−1(Θ) ⇔ (π × π)(x1, x2) ∈ Θ

⇔ π̂ ◦ π(x1) = π̂ ◦ π(x2)

⇔ (x1, x2) ∈ ker(π̂ ◦ π).

Hence, Θ2 = ker(π̂ ◦ π) and therefore Θ2 ∈ ConV(Fn(V)). Moreover,

Θ1 = kerπ ⊆ ker(π̂ ◦ π) = Θ2.

Choose, by (2), a finite subset R2 ⊆ Θ2 such that Θ2 = 〈Θ1 ∪ R2〉 and let
R = (π × π)(R2). Clearly, R is finite and R ⊆ Θ. If Θ̂ ∈ ConV(A) and
R ⊆ Θ̂, then Θ1 ∪ R2 ⊆ (π × π)−1(Θ̂) and hence, since as above (π × π)−1(Θ̂)
is a congruence, we get (π × π)−1(Θ) = Θ2 ⊆ (π × π)−1(Θ̂). Since π × π is
surjective, Θ ⊆ Θ̂. This proves that Θ = 〈R〉, i.e., (1) holds.

Lemma 5.2. Let K be a polytope in Rn and K the corresponding convex algebra
in CA. Let Θ1,Θ2 ∈ ConCA K and Θ1 ⊆ Θ2. Then there is a finite subset R ⊆ Θ2

such that Θ2 = 〈Θ1 ∪R〉.

Proof. Let K, Θ1, and Θ2 be as in the assertion of the lemma. We construct R
as follows:

(i) For each edge {Y1, Y2} ∈ EΘ2
\EΘ1

choose a pair (a, b) ∈ Θ2∩(c̆oY1×c̆oY2).
Take this pair into R.
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(ii) For each Y ∈ VK , choose pairs (ai, bi) ∈ Θ2 ∩ (c̆oY × c̆oY ), i =
1, . . . , dimϕΘ2

(Y )− dimϕΘ1
(Y ), such that

ϕΘ1
(Y )+ span{bi − ai | i = 1, . . . , dimϕΘ2

(Y )− dimϕΘ1
(Y )} = ϕΘ2

(Y ). (5.1)

Take these pairs into R.

The set R is finite, as the graph is finite and we work in a finite-dimensional
space. Let Θ ∈ ConCA K, and assume that Θ1 ∪ R ⊆ Θ. Then EΘ1

⊆ EΘ since
Θ1 ⊆ Θ (using Theorem 4.14), and EΘ2

\ EΘ1
⊆ EΘ, since R ⊆ Θ. Hence

EΘ2
⊆ EΘ.

Also, by Theorem 4.14 since Θ1 ⊆ Θ, we have ϕΘ1
(Y ) ⊆ ϕΘ(Y ), for all

Y ∈ VK , and since R contains the pairs with (5.1), also ϕΘ2
(Y ) ⊆ ϕΘ(Y ), for

all Y ∈ VK . By Theorem 4.14, Θ2 ⊆ Θ. Hence, Θ2 = 〈Θ1 ∪R〉.

Theorem 5.3. Let V be one of the equational classes CA, PCA, or ACA, and let
A ∈ V be finitely generated. Then every congruence on A is finitely generated.

Proof. Consider first CA. Let n ∈ N+. Fn(CA) is a polytope with the usual
vector operations. Let Θ1,Θ2 ∈ ConCA Fn(CA) with Θ1 ⊆ Θ2. By Lemma 5.2,
Θ2 = 〈Θ1 ∪ R〉 for a finite set R ⊆ Θ2. By Lemma 5.1, all congruences of all
finitely generated convex algebras are finitely generated.

Consider now PCA. Let A be a finitely generated algebra in PCA and Θ ∈
ConPCA A. It is important to note that UCA(A) is also finitely generated in
CA. Namely, if A = 〈X〉PCA for a finite set X, then UCA(A) = 〈X ∪ {0A}〉CA.
Moreover, from Lemma 3.8 we get that Θ ∈ ConCA UCA(A) and hence Θ is
finitely generated.

Similarly for ACA. Let A be a finitely generated algebra in ACA and Θ ∈
ConACA A. Again we remark that UPCA(A) is finitely generated in PCA: If A =
〈X〉ACA for a finite set X, then UPCA(A) = 〈X ∪ X̄〉PCA where X̄ = {(−1)x |
x ∈ X}. Now from Lemma 3.11, Θ ∈ ConPCA UPCA(A) and again Θ is finitely
generated.

Let us now recall the (algebraic) definition of a finitely presentable algebra, see,
e.g., [AR94, 3.10]. The connection to the categorical concept of presentability
is made in [AR94, Theorem 3.12], see also [ARV11, Corollary 11.33].

Definition 5.4. Let V be an equational class, and let A ∈ V. Let FX(V) be
the free algebra in V with the set X as free generators. A presentation of A is a
pair (X,RX) where X is a set and RX is a subset of FX(V)× FX(V) such that
A ∼= FX(V)/Θ where Θ = 〈RX〉.

An algebra A is finitely presentable if there exists a presentation (X,RX) of
A with both X and RX finite.

Obviously, an algebra is finitely generated if and only if there exists a presen-
tation (X,RX) with X finite. Hence, trivially, each finitely presentable algebra
is finitely generated. Having shown the previous theorem, we obtain as an
immediate consequence that for CA, PCA, and ACA also the converse holds.

Corollary 5.5. Let V be one of the equational classes CA, PCA, or ACA, and
let A ∈ V. If A is finitely generated, then A is also finitely presentable. Hence
a convex, positively convex, or absolutely convex algebra is finitely presentable
if and only if it is finitely generated.
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Remark 5.6. A sufficient condition in order that each finitely generated algebra
of an equational class is finitely presentable, appeared recently in a categorical
context. The condition is that the subclass of all finitely generated algebras
of the equational class is closed under kernel pairs, cf. [BMS13, Lemma 3.19].
Formulated algebraically, it means that each congruence of any finitely generated
algebra A is finitely generated as a subalgebra of A× A.

In the sequel we will compare this sufficient condition for “finitely generated
⇒ finitely presentable” with the sufficient condition that each congruence of a
free finitely generated algebra is finitely generated as a congruence. In general,
the condition that each congruence of a finitely generated algebra is finitely
generated as a subalgebra of the product algebra is at least as strong as the
condition that each congruence of a free finitely generated algebra is finitely
generated as a congruence. We state this fact in the next lemma. The proof is
direct by unfolding the definitions.

Lemma 5.7. Let A be an algebra in a variety V and Θ a congruence on A. If
Θ = 〈R〉V for a set R ⊆ Θ, then Θ = 〈R〉. Hence, if Θ is finitely generated as
a subalgebra of A× A, then Θ is finitely generated as a congruence.

Moreover, for V being any of CA, PCA, ACA, the condition of finitely generated
algebras being closed under kernel pairs is stronger than the condition that each
congruence of a free algebra with finitely many generators is finitely generated
as a congruence. Namely, for V being any of CA, PCA, ACA, the free algebras
Fn(V) for n ∈ N+ (except for F1(CA) which contains only one element) always
contain congruence relations which are not finitely generated as a subalgebra
of Fn(V)× Fn(V), see Example 5.10 below. This follows immediately from the
next proposition, where we characterise the congruences on a polytope K that
are finitely generated as subalgebras of K × K, showing that a “kernel pair
argument” cannot be applied in these equational classes. Before we can prove
this fact, we need an auxiliary result.

Lemma 5.8. Let K be a polytope in Rn, and let Θ ∈ ConCA K. Then

ClosΘ =
{

(x1, x2) ∈ K ×K : x2 − x1 ∈ ϕΘ(extK)
}

.

Proof. Denote the set on the right side of the desired equality as Θ0. By the
representation (4.6) and monotonicity of ϕΘ, we have Θ ⊆ Θ0.

It is easy to show that Θ0 is closed (the limit of any converging sequence of
elements of Θ0 is in Θ0) since K is closed and ϕΘ(extK) is closed as a linear
subspace.

Let (x1, x2) ∈ Θ0 be given. Choose a point z ∈ c̆o(extK). Then, since
x1, x2 ∈ co(extK), we obtain from Lemma 4.5 that Φz(s, x1),Φz(s, x2) ∈
c̆o(extK), s ∈ (0, 1), and we have

Φz(s, x2)− Φz(s, x1) = (1− s)(x2 − x1) ∈ ϕΘ(extK).

Now using (4.6), since extK is a vertex of GΘ and hence in some connected
component C, and ϕΘ is monotone, we get

(

Φz(s, x1),Φz(s, x2)
)

∈ Θ, s ∈ (0, 1).

Letting s tend to 0, Φz(s, x1) tends to x1 and Φz(s, x2) to x2 and it follows that
(x1, x2) ∈ ClosΘ. Hence Θ0 ⊆ ClosΘ and therefore ClosΘ = Θ0.
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This lemma tells us, in particular, that Θ is closed if and only if Θ = Θ0.

Proposition 5.9. Let V be one of CA,PCA,ACA. Let K be a polytope in Rn

such that K with the corresponding vector operations is in V. Let Θ ∈ ConV K.
Then Θ is finitely generated as a V-subalgebra of K×K if and only if Θ is closed
as a subset of Rn × Rn.

Proof. Assume that Θ = 〈R〉V for a finite set R ⊆ K ×K. We distinguish the
following cases:

• For V = CA, Θ = coR.

• For V = PCA, Θ = co(R ∪ {0K}).

• For V = ACA, Θ = co(R ∪ R̄).

where again R̄ = {(−1)r | r ∈ R}. In any case, Θ is a polytope in R2n and thus
in particular closed.

For the opposite direction, assume first that Θ ∈ ConCA K and that Θ is
closed as a subset of Rn ×Rn. We will now show that Θ is finitely generated as
a CA-subalgebra of K×K. Set d := n−dimϕΘ(extK), and choose a linear and
surjective map π : Rn → Rd with Kerπ = ϕΘ(extK). Note that this means

(x1, x2) ∈ kerπ ⇔ π(x1) = π(x2) ⇔ x2 − x1 ∈ {x | π(x) = 0}

⇔ x2 − x1 ∈ Kerπ ⇔ x2 − x1 ∈ ϕΘ(extK).

We denote by ∆ the diagonal in Rn ×Rn. Since Θ is closed, by Lemma 5.8 and
the above, we have

Θ = ClosΘ = (K ×K) ∩ kerπ = (K ×K) ∩ (π × π)−1(∆).

The set K × K is a compact (since K is compact) and convex subset of R2n,
and one can easily show unfolding the definition of an extremal point that

ext(K ×K) = extK × extK,

so ext(K ×K) is a finite set. Hence, K ×K is a polytope in R2n.
Now we will employ some non-trivial geometric arguments from [Grü03]. The

diagonal ∆ is a linear subspace, and hence can be written as a finite intersection
of halfspaces, i.e., it is a polyhedral set in the sense of [Grü03, §2.6]. Since (π×π)
is linear and surjective, the inverse image of a halfspace is again a halfspace.
Hence, (π × π)−1(∆) is again a polyhedral set.

As an intersection of a polytope with a polyhedral set, Θ is a polytope,
cf. [Grü03, §3.1]. Hence, Θ has only finitely many extremal points and Θ =
co(extΘ). This means that the finite set extΘ generates Θ as a CA-subalgebra
of K×K.

It remains to consider PCA and ACA. Assume first that K ∈ PCA. Assume
that Θ ∈ ConPCA K and is closed. Then, by Lemma 3.8 also Θ ∈ ConCA UCA(K),
and hence by what we have proven so far Θ is finitely generated as a CA-
subalgebra of UCA(K)× UCA(K). This means Θ = 〈R〉CA for a finite set R, and
we have Θ ⊆ 〈R〉PCA. Since Θ is a PCA-congruence on K, 〈R〉PCA ⊆ Θ. Hence Θ
is finitely generated as a PCA-subalgebra from K×K. Analogously, let K ∈ ACA

and assume that Θ is closed and Θ ∈ ConACA K. Then by Lemma 3.11 also
Θ ∈ ConCA UPCAUCA(K), and hence Θ is finitely generated as a CA-subalgebra
of UPCAUCA(K)×UPCAUCA(K). The same arguments as for PCA yield that Θ is
finitely generated as an ACA-subalgebra of K×K.
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Example 5.10. Let K ⊆ Rn be a polytope with | extK| ≥ 2, and let Y0 be a
nonempty and proper subset of extK. Consider the join-semilattice congruence
∼ on VK defined by specifying its equivalence classes to be

Cy :=
{

{y}
}

, y ∈ Y0, C0 := VK \
⋃

y∈Y0

Cy ,

and the map ϕ : {Y (C)|C class of ∼} → SubRn defined as

ϕ
(

Y (Cy)
)

:= {0}, y ∈ Y0, ϕ
(

Y (C0)
)

:= dir(extK) ,

cf. Remark 4.12. Applying Theorem 4.11, we obtain that the relation

Θ :=
{

(x, x) | x ∈ Y0

}

∪
{

(x1, x2) ∈ Z(C0)× Z(C0) | x2 − x1 ∈ dir(extK)
}

is a congruence of K, the convex algebra with carrier K and the usual vector
space operations of Rn.

Let y0 ∈ Y0. Since y0 is an extremal point, it cannot be an element of
Z(C0). However, it can be approximated by elements from Z(C0): Choose y ∈
(extK) \ Y0, and set xε := εy + (1− ε)y0, ε ∈ (0, 1]. Then one can check from
the definitions that (xε, y) ∈ Θ and limε↓0(xε, y) = (y0, y) 6∈ Θ, which shows
that Θ is not closed.

This example applies immediately to the free algebras Fn(CA), n ≥ 2, and
Fn(PCA), n ∈ N+, and shows that they contain congruences which are not
finitely generated as subalgebras. For Fn(ACA), choose Y0 symmetric around
the zero vector.

Remark 5.11. The question whether or not every finitely generated algebra
of an equational class if finitely presented is classical. Some previously known
examples where the answer is positive are

• commutative groups: Due to the classification of finitely generated com-
mutative groups.

• semimodules over a Noetherian semiring : Due to a “kernel pair argu-
ment”, cf. [BMS13, Proposition 2.6].

• commutative semigroups: This is essentially a particular case of the pre-
vious item (units can be adjoined easily), but has a longer history. It was
first shown by L.Redei, cf. [Re63, Satz 72] or [CP67, §9.3]. A short proof
based on Hilberts basis theorem (i.e., a “Noetherian” argument) is given
in [Fr68].

There are many equational classes where the answer is negative. For example,
the equational class of all groups: Not every finitely generated group is finitely
presented. In fact, there exist only countable many non-isomorphic finitely
presentable groups, but already 2ℵ0 non-isomorphic 2-generator groups. The
(probably) simplest example of a finitely generated but not finitely presented
group is the standard wreath product ZwrZ, cf. [Ro93, §14.1]. The question
whether a specific finitely generated group is finitely presented may be involved,
see for example [RS76], [KC97], or [GS97]. We also would like to draw the
readers attention to [PW04, Example 1.17], where an example of a Grothendieck
category (hence an abelian category) is presented which does not possess any
nontrivial finitely presented objects.
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6 Conclusion

We fully describe the congruence lattice of a polytope in finite-dimensional eu-
clidean space when considered as a convex algebra. The free finitely generated
convex algebras are polytopes, hence our results provide a description of all
congruences of free finitely generated convex algebras. As finitely generated
algebras are quotients (under congruences) of free finitely generated algebras,
we can describe the congruence lattice of finitely generated algebras in the va-
rieties of convex algebras. Moreover, we see that each finitely generated convex
algebra is finitely presented. The proofs are algebraic in their nature and use
the geometry of euclidean space.

We show that the equational classes of positively and absolutely convex
algebras (and their respective congruence lattices) are closely related with con-
vex algebras. Using this relation, similar structure results for these equational
classes follow.

As mentioned before, congruences of absolutely convex algebras (including
the infinitary case) were studied in [PR90]. The authors treat finitary and infini-
tary absolutely convex algebras with the same methods and provide interesting
results. On the other hand, [PR90] does not provide a full description of the
congruence lattice of absolutely convex algebras nor deals with the problem of
finite presentability. The main novelty in our approach is to formalize the con-
nection between facets of different dimensions using a graph. The finiteness of
this graph is crucial to our results, we do not see a direct way to extend our
approach to the infinitary case. It is an interesting direction for future work to
see if our methods can be combined with those of [PR90].

The problems of convex structures, discussed in this and other papers, have
since more than six decades arisen in many different fields: physics, chemistry,
probability theory, game theory, economics, and mathematics. Our personal
interest in convexity was awaken by the fact that convex algebras happen to
be the Eilenberg-Moore algebras of certain monads, used in the modelling of
probabilistic transition systems. In particular, we believe that the knowledge
that finitely generated and finitely presentable convex algebras coincide might
be helpful in solving some open problems about probabilistic transition systems.
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[Grü03] B.Grünbaum: Convex Polytopes, second edition, Graduate Texts in Math-
ematics 221, Springer, New York, 2003.

[GS97] V.Guba, M.Sapir: Diagram groups, Mem. Amer. Math. Soc. 130 (1997),
no. 620.

[Ja10] B. Jacobs: Convexity, Duality, and Effects, TCS 2010, IFIP Advances in
Information and Communication Technology 323, Springer Boston, p.1-19,
2010.

[Ja11] B. Jacobs: Probabilities, distribution monads, and convex categories, Theor.
Comput. Sci.412 (2011), no. 28, p.3323-3336.

[Ja13] B. Jacobs: Measurable Spaces and Their Effect Logic, LICS 2013, p.83-92.

[Ke98] R.Kemper: Positively convex spaces, Appl. Categ. Structures 6 (1998), no.
3, 333–344.

[Ke99] R.Kemper: p-Banach spaces and p-totally convex spaces, Appl. Categ. Struc-
tures 7 (1999), no. 3, 279–295.

[Ke00] R.Kemper: p-Banach spaces and p-totally convex spaces II, Appl. Categ.
Structures 8 (2000), no. 4, 579–593.

[KC97] S.Krstic, J.McCool: The non-finite presentability of IA(F3) and

GL2(Z[t, t
−1]), Invent. Math. 129 (1997), no. 3, 595–606.

[La98] S.Mac Lane: Categories for the Working Mathematician, second edition,
Graduate Texts in Mathematics 5, Springer, New York, 1998.

[PW04] M. Prest, R. Wisbauer: Finite presentation and purity in categories σ[M ],
Colloquium Mathematicum 99 (2004), no. 2, 189–202.

[Pu84] D.Pumplün: Regularly ordered Banach spaces and positively convex spaces,

Results Math. 7 (1984), no. 1, 85–112.

42



[Pu01a] D.Pumplün: Absolutely convex modules and Saks spaces, J. Pure Appl. Al-
gebra 155 (2001), no. 2-3, 257–270.

[Pu01b] D.Pumplün: The universal compactification of topological convex sets and

modules, J. Convex Anal. 8 (2001), no. 1, 255267.

[Pu03] D.Pumplün: Positively convex modules and ordered normed linear spaces,

J. Convex Anal. 10 (2003), no. 1, 109–127.

[PR84] D.Pumplün, H.Röhrl: Banach spaces and totally convex spaces. I, Comm.
Algebra 12 (1984), no. 7-8, 953–1019.
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[PR90] D.Pumplün, H.Röhrl: Congruence relations on totally convex spaces,

Comm. Algebra 18 (1990), no. 5, 1469–1496.
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