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Abstract

Trace semantics has been defined for various non-deterministic systems with dif-
ferent input/output types, or with different types of “non-determinism” such as
classical non-determinism (with a set of possible choices) vs. probabilistic non-
determinism. In this paper we claim that these various forms of “trace semantics”
are instances of a single categorical construction, namely coinduction in a Kleisli
category. This claim is based on our main technical result that an initial algebra in
the category of sets and functions yields a final coalgebra in the Kleisli category, for
monads with a suitable order structure. The proof relies on coincidence of limits
and colimits, like in the work of Smyth and Plotkin.

Key words: coalgebra, trace semantics, linear time semantics,
monad, Kleisli category, non-determinism, probability

1 Introduction

Trace semantics is a commonly used semantic relation for reasoning about non-
deterministic 1 systems [24]. The notion of traces has been defined for various
kinds of systems: for different input/output types, and more fundamentally
for different types of “non-determinism” such as classical non-determinism or
probabilistic non-determinism. Our claim in this paper is that those various
forms of “trace semantics” are instances of a general construction, namely
coinduction in a Kleisli category. Our point of view here is categorical, coal-
gebraic in particular: see [12,19] for preliminaries. Hence this paper demon-
strates the abstraction power of categorical/coalgebraic methods in computer
science, uncovering basic mathematical structures underlying various concrete
examples.

1 In this paper we use the terminology non-determinism in its broader sense. It in-
cludes: classical non-determinism where one has a set of possible choices; probabilistic
non-determinism where one has a probability distribution over possible choices; also sys-
tems with non-termination.

This paper is electronically published in
Electronic Notes in Theoretical Computer Science

URL: www.elsevier.nl/locate/entcs



Hasuo, Jacobs, Sokolova

The first observation in the coalgebraic exploration in computer science
was that a system is modelled as a coalgebra X → FX in Sets, and that the
principle of coinduction captures bisimilarity. In contrast, when we consider
trace semantics for non-deterministic systems, it is appropriate to model a
system as a coalgebra X → TFX in Sets, where

• a monad T on Sets specifies the type of non-determinism, with the help of
its monad structure;

• a functor F on Sets specifies the input/output type;

• a distributive law π : FT ⇒ TF distributes the effect of T over F .

Via the distributive law π the functor F is lifted to a functor Kℓ(F ) on the
Kleisli category Kℓ(T ): this allows us to move our base category from Sets
to Kℓ(T ). In Kℓ(T ) the system is just a (functor-)coalgebra X → Kℓ(F )X.
The following diagram of coinduction, now in Kℓ(T ) for Kℓ(F )-coalgebras,
captures trace semantics.

Kℓ(F )X
Kℓ(F )(trc)

Kℓ(F )A

X

c

trc
A

∼=

It is standard (see e.g. [7,17]) that in such a situation—where we have
a distributive law FT ⇒ TF—an initial F -algebra in Sets yields an initial
Kℓ(F )-algebra in Kℓ(T ). Our interest is in a final Kℓ(F )-coalgebra: in fact it
coincides with an initial Kℓ(F )-algebra for a wide variety of a functor F and
a monad T equipped with a suitable order structure. This is our main result.
A special case of this result for the powerset monad has been presented in [9]
and preliminary investigations for the probability subdistribution monad have
been reported in [8]. Here we generalize those results to monads with an order
structure. The coincidence of initial algebra and final coalgebra—surprising
at first sight—follows from the classic work [22] on limit-colimit coincidence.
Here it is adapted to the setting of DCpo-enriched Kleisli categories.

Many known non-deterministic systems are actually modelled as TF -coal-
gebras in Sets, with such T and F that our main result applies to. Then our
finality result assigns to a system X → TFX a function X → TA where A is
an initial F -algebra: we call this function the finite trace of the system. We
present several examples where this categorically characterized finite traces
coincide with a standard, concrete definition of (finite) traces.

As a monad T : Sets→ Sets we have three examples.

• The lift monad L = 1 + where 1 = {⊥}. It models systems with non-
termination (such as exceptions or deadlocks). Its monad structure is a
standard one induced by coproduct. For each set X, the set LX has a flat
order with bottom ⊥: for u, v ∈ X, u ≤ v if either u = v or u = ⊥.
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• The powerset monad P. It models systems with classical non-determinism.
Its unit takes a singleton, and its multiplication takes a union. A set PX
is ordered by inclusion.

• The subdistribution monad D. It models probabilistic systems, or systems
with probabilistic non-determinism: see Example 5.3. Its action is: for a
set X and a function f : X → Y ,

DX = {d : X → [0, 1] |
∑

x∈X

d(x) ≤ 1} , (Df)(d) = λy.
∑

x∈f−1({y})

d(x) ,

where d ∈ DX. Hence the set DX consists of probability distributions on
X, with sum ≤ 1, instead of = 1. Its unit and multiplication is as follows.

ηX(x) = λx′.

{

1 if x′ = x,

0 otherwise.
µX(ξ) = λx.

∑

d∈DX

ξ(d) · d(x)

A set DX has a pointwise order: d ≤ e if for each x ∈ X we have d(x) ≤
e(x).

The distribution monad D=1 is such that D=1X consists of distributions
whose sum is equal to 1. We are not interested in it because it only carries
a trivial order structure: for d, e ∈ D=1X, d ≤ e only if d = e.

The paper is organized as follows. In Section 2 we present some preliminar-
ies: construction of initial algebra (final coalgebra) via initial (final) sequence,
distributive laws which allow us to work in a Kleisli category, and the basic
result in [22] on limit-colimit coincidence. We prove our main technical result
in Section 3. To get an intuition about a finite trace map induced by finality,
in Section 4 we take a closer look at its construction. Finally, in Section 5 we
instantiate the general result and present concrete examples.

2 Preliminaries

2.1 Initial/final sequence

Here we recall the standard construction [2] of initial algebras (or final coal-
gebras) via the initial (or final) sequence. The construction will be heavily
utilized throughout the paper: notice that the base category need not be Sets.

Let C be a category with initial object 0, and F : C→ C an endofunctor.
The initial sequence 2 of F is a diagram

0
¡

F0
F ¡

· · ·
F n−1 ¡

F n0
F n ¡

· · ·

where ¡ : 0→ X is the unique arrow.

Now assume that:

2 In this paper we consider only initial/final sequences of length ω.
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• the initial sequence has an ω-colimit 3 (αn : F n0→ A)n<ω;

• the functor F preserves that ω-colimit.

Then we have two cocones (αn)n<ω and (Fαn−1)n<ω over the initial sequence.
Moreover, the latter is again a colimit: hence we have mediating isomorphisms
between these cones.

A

α−1∼=· · · F n0

αn

Fαn−1

F n ¡
F n+10

αn+1

Fαn

· · ·

FA

α

Proposition 2.1 The F -algebra α : FA
∼=→ A is initial.

Proof. For future reference we prove the dual result: see Proposition 2.2. 2

The dual of this construction yields a final F -coalgebra. Assume that the
base category C has a terminal object 1. The final sequence of F is

1 ! F1 F ! · · · F n−1 ! F n1 F n ! · · · ,

where ! : X → 1 is the unique arrow. Assume that it has a ωop-limit (ζn :
Z → F n1)n<ω, and also that F preserves that ωop-limit. We have the following
situation.

Z

ζ−1 ∼=· · · F n1

ζn

Fζn−1

F n !
F n+11

ζn+1

Fζn

· · ·

FZ

ζ

Proposition 2.2 The coalgebra ζ : Z
∼=→ FZ is final.

Proof. Any F -coalgebra c : X → FX induces a cone (βn : X → F n1)n<ω

over the final sequence in the following way.

β0 = ! : X → 1 , βn+1 = Fβn ◦ c .

Now we can prove the following: for an arrow f : X → Z, f is a morphism
of coalgebras from c to ζ if and only if f is a mediating arrow from the cone
(βn)n<ω to the limit (ζn)n<ω. Hence such a morphism of coalgebras uniquely
exists. 2

3 An ω-colimit is a colimit of a diagram whose shape is the ordinal ω.
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2.2 Distributive laws and Kleisli categories

In this section we recall some basic facts on monads, Kleisli categories and
distributive laws. A distributive law allows us to move our base category from
Sets to Kℓ(T ), by lifting a functor F . This shift, first exploited in [18], plays a
central role in this paper’s study about trace semantics for non-deterministic
systems.

Although some material applies to more general settings, here we restrict
our base category to Sets for the sake of simplicity.

Let F be an endofunctor and T be a monad, both on Sets. A distributive
law π : FT ⇒ TF is a natural transformation which is compatible with the
structure of the monad 〈T, η, µ〉. That is, π ◦ Fη = ηF and π ◦ Fµ = µF ◦
Tπ ◦ πT .

Such a distributive law induces a lifting of the functor F : Sets→ Sets to
a functor Kℓ(F ) : Kℓ(T )→ Kℓ(T ) on the Kleisli category of the monad T by:

Kℓ(F )(X) = FX and Kℓ(F )
(

X
f
−→ TY

)

=
(

FX
π◦Ff
−→ TFY

)

.

We thus have a situation:

Sets

F J
⊥
K

Kℓ(T )

Kℓ(F )

where J ⊣ K is the standard adjunction associated with a Kleisli construction.
For further reference we explicitly note that JX = X for any set X and
Jf = ηY ◦ f for a map f : X → Y .

The functor Kℓ(F ) is indeed a “lifting” of F , in the following sense.

Lemma 2.3 The following diagram commutes.

Kℓ(T )
Kℓ(F )

Kℓ(T )

Sets

J

F
Sets

J

2

We shall now investigate the condition under which this distributive law
π : FT ⇒ TF is available. For the case T = P, we have the following
construction via relation lifting.

Lemma 2.4 (From [11]) Let F : Sets → Sets be a functor that preserves
weak pullbacks. Then there exists a “power law” π : FP ⇒ PF that forms a
distributive law between F and the powerset monad P.

The map πX : F (PX)→ P(FX) is defined as

πX(u) = {v ∈ FX | (v, u) ∈ Rel(F )(∈)},
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where Rel(F )(R) ⊆ FX × FY , for a relation R ⊆ X × Y , is the relation
lifting associated with F . In the above definition of πX it is applied to the
membership relation ∈ →֒ X × PX.

We would like to generalize this result to other monads than powerset. If
the monad is commutative and the functor is in the inductively defined family
of shapely functors, we can construct a distributive law in an inductive manner.
These classes of monads and functors are so wide that all the examples in this
paper fall in there. However our main result may still hold for monads that are
not commutative and functors that are not shapely—we just require existence
of a distributive law.

Definition 2.5 (Shapely functors, [13]) The family of shapely functors on
Sets is defined inductively by the following BNF notation:

F, G, Fi ::= id | Σ | F ×G |
∐

i∈IFi ,

where Σ denotes the constant functor into an arbitrary set Σ.

Notice that we do not allow taking infinite products—hence exponentials
FΣ with Σ infinite—in an inductive construction. Due to this choice every
shapely functor preserves ω-colimits and ωop-limits: hence we can use the
construction in Propositions 2.1 and 2.2.

Lemma 2.6 Every shapely functor F : Sets→ Sets has both an initial alge-
bra and a final coalgebra. 2

We recall (see e.g. [10]) that each monad T on Sets is strong, i.e. it comes
with a natural transformation st : X × TY → T (X × Y ) that commutes ap-
propriately with the monad’s unit and multiplication.

Then there are two “obvious” maps TX × TY ⇉ T (X × Y ):

TX × TY
stTX,Y

stTY,X

T (TX × Y )
T stY,X

T 2(X × Y )

µX×Y

T (X × TY )
T stX,Y

T 2(X × Y ) µX×Y
T (X × Y )

where isomorphisms X×Y
∼=→ Y×X are used implicitly. The monad T is called

commutative if these two maps are identical. In that case we call the resulting
map the double strength of T and denote by dstX,Y : TX × TY → T (X × Y ).
This definition is due to [15].

Lemma 2.7 Let T : Sets→ Sets be a commutative monad, and F : Sets→
Sets a shapely functor. Then there is a distributive law π : FT ⇒ TF .

Proof. By induction on the structure of F .

• If F is the identity functor, then the π is simply the identity natural trans-
formation T ⇒ T .
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• If F is a constant functor, say X 7→ Σ, then π is the unit ηΣ : Σ → TΣ at
Σ ∈ Sets.

• If F = F1×F2 we use induction in the form of distributive laws πFi : FiT ⇒
TFi for i ∈ {1, 2} to form the composite:

F1(TX)× F2(TX)π
F1 × πF2

T (F1X)× T (F2X) dst T (F1X × F2X) .

• If F is a coproduct
∐

i∈I Fi then we use laws πFi : FiT ⇒ TFi for i ∈ I in:

∐

i∈I Fi(TX)
[T (κi) ◦ πFi]i∈I T (

∐

i∈I FiX) .
2

It is not hard to see that a distributive law FP ⇒ PF arising from this
inductive construction is a power law as described in Lemma 2.4.

Example 2.8 The three monads L,P and D mentioned in the introduction
are easily shown to be commutative. Their double strengths are as follows.

dst
L
X,Y (u, v) =

{

(u, v) if u ∈ X, v ∈ Y,

⊥ if u = ⊥ or v = ⊥,
for u ∈ LX and v ∈ LY ,

dst
P
X,Y (X ′, Y ′) = X ′ × Y ′ , for X ′ ∈ PX and Y ′ ∈ PY ,

dst
D
X,Y (d, e) = λ(x, y). d(x) · e(y) , for d ∈ DX and e ∈ DY .

2.3 Limit-colimit coincidence

We review the relevant notions and results from [22]. The idea is that in
a suitable order-enriched setting, a (co)limit is equivalently described in the
order-theoretic terms. Due to the duality inherent in those alternative order-
theoretic notions, we obtain also the duality between limits and colimits. This
yields so-called limit-colimit coincidence.

We denote by DCpo the category which has as objects directed cpo’s
(dcpo’s in short), and (Scott-)continuous maps as arrows. For more details
the reader is referred to [1].

Throughout this section we assume that our base category C—later instan-
tiated with Kℓ(T )—is DCpo-enriched. Spelling out the definition of enriched
categories (see e.g. [14,5]), this means that each homset C(X, Y ) carries a
partial order ≤ in such a way that each directed collection (fi)i∈I of maps
fi : X → Y in C has a join

∨

i∈I fi : X → Y . Additionally, composition pre-
serves such joins:

g ◦
(
∨

i∈I fi

)

=
∨

i∈I(g ◦ fi) and
(
∨

i∈I fi

)

◦ h =
∨

i∈I(fi ◦ h).

Definition 2.9 (Embedding-projection pairs) A pair (e : X → Y, p :
Y → X) of arrows in C is said to be an embedding-projection pair if both
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p ◦ e = id and e ◦ p ≤ id hold. Here ≤ is the order in C(Y, Y ) which is
available due to DCpo-enrichedness. Diagramatically presented,

X
e

id

Y

p id

≤
X e Y.

Proposition 2.10 Let (e, p), (e′, p′) : X ⇄ Y be two embedding-projection
pairs with the same (co)domains. Then e ≤ e′ holds if and only if p′ ≤ p.

As a consequence, one component of an embedding-projection pair deter-
mines the other. 2

This proposition justifies the notation eP for the projection corresponding
to a given embedding e, and pE for the embedding corresponding to a given
projection p. It is easy to check: (e ◦ f)P = fP ◦ eP and (p ◦ q)E = qE ◦ pE .

Definition 2.11 (O-(co)limits) Let X0
f0

→ X1
f1

→ · · · be an ω-chain in C.
A cocone (σn : Xn → C)n<ω over this chain is said to be an O-colimit if:

• each σn is an embedding;

• the sequence of arrows (C
σP

n Xn
σn C )n<ω is increasing. Moreover its

join taken in the dcpo C(C, C) is idC .

Dually, a cone (γn : C → Yn)n<ω over an ωop-chain Y0
g0

← Y1
g1

← · · · is an
O-limit if: each γn is a projection, and the sequence (γE

n ◦ γn : C → C)n<ω is
increasing and its join is idC .

The following proposition establishes the equivalence between (co)limits
and O-(co)limits. For its full proof the reader is referred to [22].

Proposition 2.12 (Proposition A, B, C, D in [22]) Let X0
e0→ X1

e1→ · · ·
be an ω-chain where each en is an embedding.

(i) Let (σn : Xn → C)n<ω be a colimit over the chain. Then each σn is also
an embedding. Moreover, (σn)n<ω is an O-colimit.

(ii) Conversely, an O-colimit (σn : Xn → C)n<ω over the chain is a colimit.

Dually, let X0
p0

← X1
p1

← · · · be an ωop-chain where each pn is a projection.

(i) Let (τn : D → Xn)n<ω be a limit over the chain. Then each τn is also a
projection. Moreover (τn)n<ω is an O-limit.

(ii) Conversely, an O-limit (τn : D → Xn)n<ω over the chain is a limit.

Proof. For later reference we present the proof of the dual statement of (ii).

Let (βn : B → Xn)n<ω be an arbitrary cone over the chain X0
p0

← X1
p1

← · · · .
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First we prove the uniqueness of a mediating map f : B → D.

f = idD ◦ f =
(
∨

n<ω(τE
n ◦ τn)

)

◦ f ((τn)n<ω is an O-limit)

=
∨

n<ω(τE
n ◦ τn ◦ f) (Composition is continuous)

=
∨

n<ω(τE
n ◦ βn) . (f is mediating)

We conclude the proof by showing that the sequence (τE
n ◦ βn)n<ω is increas-

ing, hence such f indeed exists.

τE
n ◦ βn = τE

n ◦ pn ◦ βn+1 = τE
n+1 ◦ pE

n ◦ pn ◦ βn+1 ≤ τE
n+1 ◦ βn+1 . 2

Theorem 2.13 (Limit-colimit coincidence) Let X0
e0→ X1

e1→ · · · be an
ω-chain where each en is an embedding, and (σn : Xn → C)n<ω be a colimit
over the chain. Then each σn is an embedding, and the cone (σP

n : C → Xn)n<ω

is a limit over the ωop-chain X0

eP

0← X1

eP

1← · · · .

Dually, a limit of an ωop-chain of projections consists of projections. By
taking the corresponding embeddings we obtain a colimit of an ω-chain of em-
beddings.

Proof. We prove the first statement. By Proposition 2.12 each σn is an
embedding, and moreover (σn)n<ω is an O-colimit. Now obviously (σP

n )n<ω is

a cone over X0
eP

0← X1
eP

1← · · · . The condition that (σn)n<ω is an O-colimit is
exactly the same as that (σP

n )n<ω is an O-limit. We use Proposition 2.12 to
conclude the proof. 2

3 Final coalgebra in the Kleisli category

In this section we present our main technical result: for a monad T with a
suitable order structure, an initial algebra in Sets yields a final coalgebra in
Kℓ(T ).

In the remainder of this paper we assume the following.

(i) A monad 〈T, η, µ〉 on Sets is such that the associated Kleisli category
Kℓ(T ) is DCpo⊥-enriched with composition being left-strict. This means
that Kℓ(T ) is DCpo-enriched (the same condition as in the previous
section), plus the following conditions about bottom elements:
• each homset Kℓ(T )(X, Y )—that is, Sets(X, TY )—is a dcpo with the

bottom element ⊥X,Y ;
• composition of arrows is left-strict, i.e., for each arrow f : X → Y in
Kℓ(T ), ⊥Y,Z ◦ f = ⊥X,Z . In particular this implies that composition
preserves bottoms: ⊥Y,Z ◦ ⊥X,Y = ⊥X,Z in Kℓ(T ).

(ii) A functor F : Sets→ Sets that comes with a distributive law π : FT ⇒
TF . Hence we have a lifting Kℓ(F ) of F , as in Section 2.2.

(iii) The lifted functor Kℓ(F ) : Kℓ(T ) → Kℓ(T ) is locally monotone. More
precisely, Kℓ(F )’s action on arrows is a monotone map of dcpo’s: for
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f, g : X ⇉ Y in Kℓ(T ) with f ≤ g, we have Kℓ(F )(f) ≤ Kℓ(F )(g). We
do not need local continuity of Kℓ(F ): see Remark 3.6.

(iv) The functor F : Sets → Sets preserves ω-colimits. By Proposition 2.1
we construct an initial F -algebra α : FA

∼=→ A in Sets, via the initial
sequence.

In order to emphasize that certain property holds under these global assump-
tions, we mark the lemmas and the theorems that depend on them by ∗.

We start by the main line of the proof of our main result. The details are
provided in the form of subsequent lemmas.

Theorem 3.1 (Main theorem) ∗ An initial F -algebra α : FA
∼=→ A yields

in Kℓ(T ) both an initial Kℓ(F )-algebra and a final Kℓ(F )-coalgebra as follows.

Kℓ(F )A

Jα = ηA ◦ α ∼=

A

Kℓ(F )A

(Jα)−1 = J(α−1) = ηFA ◦ α−1 ∼=

A

Here J : Sets→ Kℓ(T ) is the standard left-adjoint in a Kleisli construction.

Proof. By the global assumption (iv) we obtain the initial algebra via the
initial sequence in Sets.

In Sets A

α−1∼=· · ·
Fn−1 ¡

Fn0

αn

Fαn−1

Fn+10

αn+1

Fαn

· · ·

FA

α (1)

We apply the functor J : Sets→ Kℓ(T ) to the whole diagram. Since J is a left
adjoint it preserves colimits: hence the two cocones in the following diagram
are both colimits again.

In Kℓ(T ) A

Jα
−1∼=· · ·

JFn−1 ¡
Fn0

Jαn

JFαn−1

Fn+10

Jαn+1

JFαn

· · ·

FA

Jα
(2)

The ω-chain in the diagram is the initial sequence for the functor Kℓ(F )
(Lemma 3.2): note for example that a left adjoint J preserves initial objects.
Moreover the lower cone is the image of the upper cone under Kℓ(F ) (Lemma
2.3).

Hence Diagram (2) is equal to the following one, where ¡ denotes the
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unique arrow ¡ : 0→ F0 in Kℓ(T ).

In Kℓ(T ) A

Jα−1∼=· · ·
Kℓ(F )n−1 ¡

Fn0

Jαn

Kℓ(F )Jαn−1

Fn+10

Jαn+1

Kℓ(F )Jαn

· · ·

FA

Jα (3)

Thus Proposition 2.1 yields that Jα : FA
∼=→ A is an initial Kℓ(F )-algebra.

To prove the second statement of the theorem, we shall transform the
diagram (3) to a diagram of final sequence and its limits.

We notice (Lemma 3.4) that each arrow Kℓ(F )n ¡ in the initial sequence
is an embedding. Hence the limit-colimit coincidence Theorem 2.13 says that
every arrow in the diagram is an embedding. Note that Jα and Jα−1, inverse
to each other, form an embedding-projection pair.

By taking the corresponding projections we obtain the following diagram:
the limit-colimit coincidence Theorem 2.13 says that the two resulting cones
are both limits. It is also obvious that the whole diagram commutes.

In Kℓ(T ) A

(Jα−1)P∼=· · ·
(Kℓ(F )n−1 ¡ )P

Fn0

(Jαn)P

(Kℓ(F )Jαn−1)
P

Fn+10

(Jαn+1)
P

(Kℓ(F )Jαn)P

· · ·

FA

(Jα)P (4)

The ωop-chain here is indeed a final sequence: Lemma 3.3 shows—using our
global assumption (i) on left-strictness—that 0 is also final in Kℓ(T ), and
according to Lemma 3.4 we have (Kℓ(F )n ¡ )P = Kℓ(F )n ! . As to the lower

cone we have
(

Kℓ(F )Jαn

)P
= Kℓ(F )

(

(Jαn)P
)

by Lemma 3.5.

Hence Diagram (4) is equal to the following one, showing the final sequence
for Kℓ(F ), its limit (the upper one) and that limit mapped by Kℓ(F ) (the lower
one) which is again a limit.

In Kℓ(T ) A

Jα∼=· · ·
Kℓ(F )n−1 !

Fn0

(Jαn)P

Kℓ(F )(Jαn−1)
P

Fn+10

(Jαn+1)
P

Kℓ(F )(Jαn)P

· · ·

FA

Jα
−1 (5)

By Proposition 2.2 we conclude that Jα−1 is a final Kℓ(F )-coalgebra. 2
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In the remainder of this section those lemmas used in the above proof are
presented.

Lemma 3.2 ∗ The ω-chain in Diagram (2) is indeed the initial sequence for
Kℓ(F ). That is, we have for each n < ω,

JF n
(

¡ Sets

F0

)

= Kℓ(F )n
(

¡
Kℓ(T )
F0

)

,

where ¡ Sets

F0 : 0→ F0 in Sets and ¡
Kℓ(T )
F0 : 0→ F0 in Kℓ(T ) denote the unique

maps.

Proof. By induction on n. For n = 0 the two maps are equal due to the
initiality of J0 = 0 in Kℓ(T ). For the step case we use Lemma 2.3. 2

Lemma 3.3 ∗ The empty set 0 is both an initial and a final object in Kℓ(T ).
Therefore the object T0 is final in Sets.

Proof. The functor J : Sets→ Kℓ(T ) preserves initial objects since it is a left
adjoint. Therefore 0 = J0 is initial in Kℓ(T ). Finality follows from the left-
strictness assumption. For an arbitrary set X, there always exists the bottom
map ⊥X,0 : X → 0 in Kℓ(T ), which is the bottom in the poset Kℓ(T )(X, 0).
Assume there exist two arrows f, g : X → 0 in Kℓ(T ). Note that the bottom
map ⊥0,0 : 0→ 0 is also the identity arrow in Kℓ(T ) because of initiality. We
get

f = id ◦ f = ⊥0,0 ◦ f
(∗)
= ⊥X,0

(∗)
= ⊥0,0 ◦ g = g

where the compositions are taken in Kℓ(T ) and the equalities marked by (∗)
hold by the left-strictness of the composition.

The second point holds because the right adjoint K in the standard ad-
junction J ⊣ K preserves final objects. 2

Lemma 3.4 ∗ Each arrow Kℓ(F )n ¡ in the initial sequence for Kℓ(F ), as in
Diagram (3), is an embedding. Its corresponding projection is given by

(

Kℓ(F )n( ¡ )
)P

= Kℓ(F )n( ! ) ,

where ! denotes the unique arrow from F0 to the final object 0 in Kℓ(T ) (cf.
Lemma 3.3).

Proof. We show that
(

Kℓ(F )n( ¡ ), Kℓ(F )n( ! )
)

is an embedding-projection
pair for all n < ω. Showing Kℓ(F )n( ! ) ◦ Kℓ(F )n( ¡ ) = id is easy. For the
other half we have

Kℓ(F )n( ¡ ) ◦ Kℓ(F )n( ! ) = Kℓ(F )n( ¡ ◦ ! )

= Kℓ(F )n(⊥0,F0 ◦ ! ) (Initiality of 0 in Kℓ(T ))

= Kℓ(F )n(⊥F0,F0) (Composition is left-strict)

≤ Kℓ(F )n(id) = id . (Kℓ(F ) is locally monotone)
2
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Lemma 3.5 ∗ We have
(

Kℓ(F )Jαn

)P
= Kℓ(F )

(

(Jαn)P
)

. Hence the lower
cone in Diagram (4) is the image of the upper cone under Kℓ(F ).

Proof. It is easy to check that
(

Kℓ(F )Jαn, Kℓ(F )
(

(Jαn)P
) )

indeed form an
embedding-projection pair. Therein we use the monotonicity of Kℓ(F )’s action
on arrows. 2

Remark 3.6 The limit-colimit coincidence result of [22] is often applied to
a (co)algebraic setting (see [20]). There it is common to assume the local
continuity of a functor, such as Kℓ(F )(

∨

i fi) =
∨

i

(

Kℓ(F )fi

)

. For our main
Theorem 3.1 we do not need that local continuity: the principal reason is that
in Diagram (1) the lower cocone is already a colimit.

4 Finite traces for coalgebras

The previous section gives a combined initiality/finality result. The finality
part is most interesting, and has already been exploited in [9] for the special
case where the monad T is the powerset one P. Here we shall investigate this
situation more systematically. In particular we observe a concrete construction
of the unique arrow (which we call the “finite trace”) induced by the finality
result in the previous section. This construction, together with the examples
in the following section, shall clarify the computational meaning of the arrow
and justify its name.

Corollary 4.1 ∗ Let α : FA
∼=→ A be an initial F -algebra in Sets. Given a

coalgebra

X c Kℓ(F )X in Kℓ(T ), that is, X c TFX in Sets,

there exists a unique map trc which makes the following diagram in Kℓ(T )
commute.

In Kℓ(T ), equivalently in Sets,

Kℓ(F )X
Kℓ(F )(trc)

Kℓ(F )A

X

c

trc
A

Jα−1∼=

,

TFX
TF trc

TFTA
TπA

T 2FA
µFA

TFA
∼= Tα−1

X

c

trc
TA .

The map trc is called the finite trace of the coalgebra c.

Proof. The statement is the finality Theorem 3.1 itself. Translation of the
diagram in Kℓ(T ) to that in Sets, and vice versa, is straightforward. 2
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More concretely, we shall construct the finite trace trc : X → TA as
the supremum of “n-th trace” tr

n
c . Let us explain the intuition for the case

T = P. The set tr
n
c (x) consists of “possible behaviors from state x ∈ X which

terminate within n steps”. Therefore its supremum trc(x) is the set of “possible
behaviors from state x which eventually terminate within a finite number of
steps”, hence its name “finite trace”. For other monads we suitably substitute
the word “set” above: for T = D that will be “probability distribution”.

Definition 4.2 (n-fold iteration of coalgebras) Let c : X → TFX in
Sets, i.e. c : X → Kℓ(F )X in Kℓ(T ), be a coalgebra. Its n-fold iteration

X cn

Kℓ(F )nX in Kℓ(T ), that is, X cn

TF nX in Sets,

is defined inductively as c0 def
= id and cn+1 def

= Kℓ(F )cn ◦ c in Kℓ(T ).

The idea is that one transition of cn corresponds to n successive transitions
of the original coalgebra c. Note that the use of the distributive law π—implicit
in Kℓ(F )—is crucial here.

Definition 4.3 ∗(n-th trace of coalgebras) For a coalgebra c : X → TFX
in Sets, we define its n-th trace

X
tr

n
c TA in Sets

as follows:

X
cn

tr
n
c

Kℓ(F )nX

Kℓ(F )n( ! )

Kℓ(F )n0

Jαn

In Kℓ(T ) A

that is,

X
cn

tr
n
c

TF nX
TF n( ! )

TF n( ¡ )

TF nT0

Tπn

T 2F n0
µ

TF n0
Tαn

In Sets TA

,

where the first ! is to the final object 0 in Kℓ(T ); the second ! is to the final
object T0 ∼= 1 in Sets; and ¡ is the unique arrow 0 → X in Sets. The map
TF n( ¡ ) here is just the name we give to the composite µ ◦ Tπn ◦ TF n( ! ).

Proposition 4.4 ∗ The finite trace map trc : X → TA is the supremum of
n-th traces trc =

∨

n<ω tr
n
c taken in the dcpo Kℓ(T )(X, A).

Proof. By the proof of Proposition 2.2 we know that trc is the mediating
arrow from the cone (βn : X → Kℓ(F )n0)n<ω, induced by c : X → Kℓ(F )X,
to the limit

(

(Jαn)P : A → Kℓ(F )n0
)

n<ω
, where everything is in Kℓ(T ). By

the proof of Theorem 3.1 the limit
(

(Jαn)P
)

n<ω
is an O-limit: hence by the
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proof of Proposition 2.12 the mediating arrow trc is described as

trc =
∨

n<ω Jαn ◦ βn .

We show Jαn ◦ βn = tr
n
c by proving βn = Kℓ(F )n( ! ) ◦ cn in Kℓ(T ). By

induction: for n = 0 it is obvious due to the finality of 0. For the step case,

βn+1 = Kℓ(F )βn ◦ c (Definition of βn)

= Kℓ(F )
(

Kℓ(F )n( ! ) ◦ cn
)

◦ c (Induction hypothesis)

= Kℓ(F )n+1( ! ) ◦ cn+1 . (Definition of cn) 2

5 Examples

5.1 Satisfaction of order-theoretic assumptions

In this section we check that the monads T = L,P,D and shapely functors
F indeed satisfy the global assumptions ∗ in Section 3, so that we can apply
our main technical result.

Proposition 5.1 For T ∈ {L,P,D}, the Kleisli category Kℓ(T ) is DCpo⊥-
enriched with composition being left-strict.

Proof. The dcpo structure of the homsets Kℓ(T )(X, Y ) comes from those of
TY in a pointwise manner. It remains to show that composition in Kℓ(T )
is continuous and left-strict: this is laborious but straightforward. Notice
that for T = D, composition in Kℓ(D) is described concretely as follows. For

X
f
→ Y

g
→ Z,

(g ◦ f)(x)(z) =
∑

y∈Y f(x)(y) · g(y)(z) . 2

For our main technical result in Section 3 it is enough to assume that
Kℓ(F ) is locally monotone. However we can prove the following stronger
statement, which says that the endofunctor Kℓ(F ) on the DCpo⊥-enriched
category Kℓ(T ) is indeed an DCpo⊥-enriched functor.

Proposition 5.2 The lifting Kℓ(F ) of a shapely functor F to Kℓ(T ) for T ∈
{L,P,D} is locally continuous. That is, the action of Kℓ(F ) on a homset is
continuous. Moreover it is strict, i.e., preserves bottom elements.

Proof. The proof is by induction on the construction of the shapely functor.

• F = id, the identity functor. Then Kℓ(F ) = id which satisfies the condition.

• F = Σ, a constant functor. Then Kℓ(F ) maps every arrow to the identity
map on Σ in Kℓ(T ). This is obviously continuous and strict.

• F = F1×F2. First notice that, for f : X → TY in Sets, we obtain Kℓ(F )f
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as the following composite in Sets.

F1X × F2X
Kℓ(F1)f ×Kℓ(F2)f

Kℓ(F )f

TF1Y × TF2Y

dstF1Y,F2Y

T (F1Y × F2Y )

Because the order in Kℓ(T )(FX, FY ) is a pointwise one, it suffices to show
the following: dst : TX×TY → T (X×Y ), as a map of dcpo’s, is continuous
and strict. It is easy to check that this is indeed the case: see Example 2.8.

• F =
∐

j∈J Fj . For f : X → TY in Sets, we obtain the map Kℓ(F )f
as the composite [Tκj]j∈J ◦

∐

j∈J Kℓ(Fj)(f) in Sets. Since the order on
the homsets is pointwise, it suffices to show that each Tκj : TFjY →
T (

∐

j∈J FjY ) is continuous and strict. This is easy. 2

5.2 Concrete examples

Many known concrete dynamic systems are in fact TF -coalgebras for F shapely
and T ∈ {L,P,D}, to which we can apply our finality result. For example,

• LTS’s with explicit termination (see e.g. [4,3]) are TF -coalgebras for T = P
and F = 1 + Σ× ;

• generative probabilistic transition systems [25,23] are TF -coalgebras for
T = D and F = 1 + Σ× .

In this section we take a step further ahead from the previous section to
instantiate a shapely functor F , principally with 1 + Σ× . Then we observe
that the finite trace map induced by our finality result coincides with the usual
or natural notion of (finite) traces defined for those familiar types of systems.

Example 5.3 (Generative probabilistic systems) Let T = D and F =
1+Σ× , where 1 = {X}. The initial F -algebra [nil, cons] : 1+Σ×Σ∗ ∼=→ Σ∗

in Sets consists of the lists over Σ.

The following is an example of a coalgebra c : X → DFX.

x
(a, 1

3
)

(a, 1
3
)

2
9

y
1
2

(a, 1
2
)

z(b, 1) X

c(x) =







X 7→ 2/9

(a, y) 7→ 1/3

(a, z) 7→ 1/3







The behavior of the state x is: it transits to y outputting a with the probability
of 1/3, the same to z, and it terminates with the probability of 2/9. The
remaining 1/9 is best understood as the probability that x gets into deadlock.

Now the commutation of the diagram in Corollary 4.1—which defines the
finite trace map trc : X → D(Σ∗)—is equivalent to the following equation.
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For x ∈ X, a ∈ Σ and σ ∈ Σ∗,

trc(x)(〈〉) = c(x)(X) , trc(x)(a · σ) =
∑

y∈X c(x)(a, y) · trc(y)(σ) .

In fact, for the above concrete example the distribution trc(x) is such that:
〈〉 7→ 2/9 and an 7→ 1/(3 ·2n). Out of the remaining 4/9, 1/9 is the probability
that x gets into deadlock at the first transition, and 1/3 is the probability that
x goes to z and keeps outputting b without termination (livelock).

Example 5.4 (Deterministic systems with termination and deadlock)
Let us take T = L = 1 + and F = 1 + Σ × , where ⊥ (deadlock) resides
in the former 1 while X (successful termination) resides in the latter 1. For a
TF -coalgebra

X c {⊥}+ {X}+ Σ×X ,

the diagramatic definition of the finite trace trc : X → {⊥}+Σ∗ is spelled out
as the following equation:

trc(x) =











⊥ if c(x) = ⊥,

〈〉 if c(x) = X,

a ⋆ trc(y) if c(x) = (a, y),

where a ⋆ u is the concatenation if u ∈ Σ∗, and a ⋆⊥ = ⊥.

The following two examples are investigated in the previous paper [9], to
which we refer for more details.

Example 5.5 (LTS’s with explicit termination) Let us take T = P and
F = 1 + Σ × . Then a TF -coalgebra is an LTS with explicit termination:
it is also called a non-deterministic automaton. The finite trace map of this
type of coalgebra gives its accepted languages.

Example 5.6 (Context-free grammar/languages) When T = P and
F = (Σ + )∗, a TF -coalgebra is a context-free grammar (without finiteness
assumptions). Its finite trace map gives the set of generated parse trees.

Remark 5.7 (LTS’s without explicit termination) An LTS (without ex-
plicit termination) is a TF -coalgebra for T = P and F = Σ × . Its finite
trace map is not interesting because the initial F -algebra is 0; the finite trace
is always trivial.

The result in [11]—a final coalgebra in Sets yields a weakly final coalgebra
in Kℓ(P)—assigns a (possibly infinite) trace X → PΣω to an LTS X → PFX.
However a (possibly infinite) trace is not uniquely determined categorically.

We will now show another possible application of our main result, as an
instantiation of Example 5.5. Namely, the finality result allows defining oper-
ations on P(Σ∗) by coinduction.
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Example 5.8 (Parallel composition of languages) Let Σ be an alphabet.
Given two languages u, v ∈ P(Σ∗) we want to define a language u ‖ v called
the (shuffle) parallel composition of all possible interleavings, such that:

〈〉 ∈ u ‖ v
def
⇐⇒ 〈〉 ∈ u and 〈〉 ∈ v ,

a · w ∈ u ‖ v
def
⇐⇒ w ∈ ∂au ‖ v or w ∈ u ‖ ∂av .

Here ∂au = {w ∈ Σ∗ | a ·w ∈ u} is the so-called Brzozowski derivative [6]. For
example, {a, ab} ‖ {〈〉, c} = {a, ab, ac, ca, cab, acb, abc}. Then the operation ‖
is a map

P(Σ∗)×P(Σ∗) P(Σ∗) in Sets, i.e. P(Σ∗)× P(Σ∗) Σ∗ in Kℓ(P).

We obtain the map ‖ via coinduction (Theorem 3.1), by defining a suitable
P(1 + Σ× )-coalgebra structure on P(Σ∗)×P(Σ∗).

P(Σ∗)× P(Σ∗) P
(

1 + Σ×
(

P(Σ∗)× P(Σ∗)
))

(u, v)







{X | 〈〉 ∈ u ∩ v}

∪
{ (

a, (∂au, v)
)

| a ∈ Σ
}

∪
{ (

a, (u, ∂av)
)

| a ∈ Σ
}







The following equations can be proved by coinduction, for languages u, v ∈
P(Σ∗), the empty language 0 = ∅ and the unit language 1 = {〈〉}.

u ‖ 0 = 0

u ‖ 1 = u
u ‖ v = v ‖ u

u ‖ (v ∪ w) = (u ‖ v) ∪ (u ‖ w)

u ‖ (v ‖ w) = (u ‖ v) ‖ w

For example, in order to prove associativity of parallel composition, consider
the relation on PΣ∗,

R = { ( u ‖ (v ‖ w) , (u ‖ v) ‖ w ) | u, v, w ∈ P(Σ∗)}

together with the coalgebra structure R→ P(1 + Σ× R) given by

(x, y) 7→

[

{X | 〈〉 ∈ x , which is equivalent to 〈〉 ∈ y}

∪
{ (

a, ( ∂a(x) , ∂a(y) )
)

| a ∈ Σ
}

]

.

One can then show that both projections r1, r2 : R → P(Σ∗) are homomorp-
shisms in Kℓ(P) from R to the final Kℓ(1+Σ× )-coalgebra Σ∗. 4 By finality
we have r1 = r2: this proves the associativity of the parallel composition.

The case of “probabilistic languages” is more complex: defining parallel
composition of probabilistic languages u, v ∈ D(Σ∗) and investigating their
properties is a topic of our current research.

4 A nice characterisation of Kℓ(1 + Σ× )-colagebra homomorphisms is presented in [18].
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6 Conclusion and future work

In this paper we re-examine the finite trace semantics of [9] and put the subject
in a wider perspective. The paper:

• extends the approach used for the powerset monad P to other monads with
suitable order structure,

• identifies the Smyth-Plotkin style limit-colimit coincidence in Kleisli cate-
gories as the relevant underlying structure.

A next challange to this approach is to apply it to combined monads, produc-
ing trace semantics for suitably combined computational behaviours. An inter-
esting example is combining classical and probabilistic non-determinism [27,21].
It has been shown (see [26]) that the simple composition PD has no monad
structure: to make it a monad the authors propose to take the so-called
indexed-valuation monad instead of the subdistribution monad. Another ex-
ample are the F -automata [16] where the combination of type PP is used.
Describing finite traces of such combined monads is a non-trivial matter which
we postpone to a follow-up paper.

Acknowledgements Thanks are due to Jǐŕı Adámek, Stefan Milius and
Tarmo Uustalu for helpful discussions.
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