
Runtime Programming through

Model-Preserving, Scalable Runtime Patches

Christoph M. Kirsch1, Luı́s Lopes2, Eduardo R.B. Marques2, and Ana Sokolova1

1 Department of Computer Sciences, University of Salzburg.

2 CRACS/INESC-Porto LA, Faculdade de Ciências, Universidade do Porto.

1 Introduction

We propose a methodology for flexible software design, runtime programming, by
means of incremental software modifications at runtime. Runtime programming ac-
knowledges that software designs are often incomplete, and require the flexibility of
change, e.g., fixing bugs or introducing new features, without disruption of their ser-
vice. This flexibility is much needed for critical software that generally needs to handle
uncertainty, e.g. cloud computing or cyber-physical systems, due to dynamic require-
ments of composition, service, or performance. Runtime modifications should be al-
lowed recurrently, and, thus, be handled as a common case of system functionality in
predictable and efficient manner, with proper understanding of inherent functional and
non-functional aspects. The work in many diverse research communities with related
concerns typically tends to take a partial and domain-specific view of the problem,
hence comprehensive and general methodologies are in order.

In this extended abstract, we make a summary of the runtime programming proposal
of [4]. The work follows up on a preliminary formulation of runtime programming [3],
and work on modular compilation of real-time programs [2].

2 Runtime programming through runtime patches

runtime patcher
(“controller”)

running program
(“plant”)

program
state

runtime
patches

Fig. 1. Runtime programming [4].

The runtime programming abstraction is illustrated in Fig. 1. A program (bottom)
is subject at runtime to recurrent incremental modifications, called runtime patches,
by an external program, a runtime patcher (top). A runtime patch determines a switch
between two program specifications and states of these programs, by replacing a com-
ponent in the source program. Runtime patches are applied by the patcher in congru-
ence with program state and the (evolving) program does not stop, instead it flows with

any introduced runtime patches. An obvious analogy exists with the “controller-plant”
formulation of control theory: the evolving program is the “plant”, the patcher is the
“controller”, and runtime patches define the “control”.

O N

P - O

N

P [! / N]

!

O

P

!

s " s'

! / N

programs

processes

quiescence initialization

Fig. 2. A runtime patch [4].

The transformation defined by a runtime patch, illustrated in Fig. 2, has well-defined
syntactic and semantic effects.

Syntactically, a patch σ/N over program P defines the substitution of a component
at “program path” σ, O = P[σ], by component N, yielding program P [σ/N]. Strict
component addition or removals are special instances of this effect, when O or N are
undefined respectively.

Semantically, the patch defines an instantaneous switch from a state s of P to a
state s

� of P [σ/N] such that: the processes of O terminate, according to a notion of
“quiescence” in place that expresses graceful conditions for doing so (e.g., inactivity,
or atomic instants that marks the end of a component’s “transaction”); the processes
of N start in a valid initial state; and the state of processes of other components P − O

is unaffected (s[P − O] = s
�[P − O]).

Thus, runtime programming assumes only a simple abstraction of component-based
software, comprised of a modular relation between (the syntax of) components and (the
semantics of) processes, plus built-in notions of initialization and quiescence.

3 Model preservation

We consider that runtime programming should be model-preserving. i.e., preserve the
programming model in place for programs in terms of program syntax, semantics, and
correctness properties. More precisely, model preservation is the guarantee that, in a
runtime programming system, a proper program is running at all times, and a corre-
sponding state for that program is observed that complies with correct operation. The
point is avoiding an “ad-hoc”, disruptive nature for runtime patches, and relying on no
particular abstraction level other than the one already in place for programs.

The concept of a runtime patch, described above, already provides relatively strong
model-preserving provisions. A runtime patch defines an atomic switch, and observes
proper quiescence, initialization, and isolation of replaced, new, and unchanged com-
ponents, respectively. This means that in a runtime programming system, a proper pro-
gram is running at all times, and a corresponding state of that program is observed, with
a safe continuous flow observed upon patch effect. Hence there are no transient “meta-
programs” or “meta-behavior” that are alien to the syntax or semantics of programs.

!/N

R
I

E

I
program
initialization

patch
effect

""

R
E

! "

standard
traces

patch-induced
traces

Fig. 3. Model preservation [4].

Additionally, we should expect a program that is “started” through patch effect be-
haves correctly. That is, its execution should conform to any particular properties of
correctness for the program, were it to execute from scratch. The problem, however, il-
lustrated in Fig. 3, is that a runtime patch σ/N over a given program P defines a partial,
“live” initialization of P [σ/N], rather than a whole-program initialization. So it could
happen that “patch-induced traces”, those with states RE resulting from effect E of σ/N
over the flow of P, do not conform to a certain expected property ψ of correctness that
holds for “standard traces” of P [σ/N], those with states RI resulting from overall ini-
tial conditions I. We say the patch is model-preserving if and only if RE is a subset of
the satisfiability state space of the correctness property ψ. Checking model preservation
should be an integral part of the process of patch compilation, described next.

4 Scalability

The complexity of a runtime programming system should ideally scale with the “size”
of runtime patches. Such complexity comes from patch compilation, the set of proce-
dures required to verify and integrate a patch, such as checking a model-preserving
nature for patches, and other aspects like code generation or re-linking. If patch com-
pilation does not scale in the general case, the practicality of runtime programming is
compromised.

P [! / N]

N

D
"
(P,N,!)

dependency
context

I(φ) = (ψφ,Dφ,Cφ)

P |= φ Dφ(P,N,σ) |= ψφ
P [σ/N] |= φ

Cφ(P,N,σ) = O
�
Dφ(P,N,σ) |= ψφ

�

Fig. 4. Scalability [4].

To characterize scalability of patch compilation, we propose the incremental compi-
lation framework illustrated in Fig. 4. The idea is that for a patch σ/N over program P,
compilation should be incremental to that of P, and scale appropriately in proportion to
the extent of the patch, as determined by P, σ and N. For each aspect of compilation φ
(e.g. code generation), an incremental strategy should be defined, I(φ) = (ψφ,Dφ,Cφ)

with the following rationale. For a patch σ/N over (the previously compiled) P, φ
should be dealt with for P [σ/N] by some incremental effort ψφ over a dependency
context of components Dφ(P,N,σ). The complexity of checking ψφ over Dφ(P,N,σ)
by some algorithm is expressed by Cφ(P,N,σ) = O

�
Dφ(P,N,σ) |= ψφ

�
, which we call

the compilation cost. In Fig. 4, it is shown (left) that the dependency contextDφ(P,N,σ)
is a set of components within P [σ/N], and, additionally, it may also include the “old”
component O = P [σ]. The inference rule on the right of the figure expresses the in-
crementality in compilation: under the assumption that P already verifies φ, it is just
required to verify ψφ overDφ(P,N,σ).

This formulation inherently characterizes incremental compilation and its scalabil-
ity, in the size (dependency context) and time (compilation cost) dimensions. Scalability
can be broken in one of the dimensions, e.g., when a patch requires the full program as
context, or if the incremental effort is intractable, as measured by the compilation cost.
A good degree of scalability corresponds to a small dependency context, and a tractable
incremental effort. To achieve it, the choice of compilation strategy may in some cases
represent a loss of precision. A strategy that scales well, and covers the more general
cases of valid patches reasonably, will be preferable to one that is more exact, but scales
poorly. This is important in particular when we are faced with the well-known “state ex-
plosion problem” incurred by an exact analysis.

5 Ongoing work

In [4] we provide a detailed description and formalization of runtime programming,
corresponding to the general overview given here. Additionally, we put the formulation
in perspective with a case-study instantiation of runtime programming for a component-
based language for distributed real-time systems, the Hierarchical Timing Language
(HTL) [2, 1]. In earlier work [3], some of these ideas and HTL runtime patching were
discussed in preliminary short form but mainly considering the specific context of real-
time systems and HTL. An incremental compilation framework was proposed for HTL
already in [2], which we generalized now for component-based systems in the context
of runtime programming.

Acknowledgements. This work has been supported by the EU ArtistDesign Network of Excel-
lence on Embedded Systems Design, the Austrian Science Funds P18913-N15 and V00125, and
Fundação para a Ciência e Tecnologia funds PTDC/EIA/71462/2006 and SFRH/BD/29461/2006.

References

1. Ghosal, A., Henzinger, T., Iercan, D., Kirsch, C., Sangiovanni-Vincentelli, A.: A hierarchical
coordination language for interacting real-time tasks. In: Proc. International Conference on
Embedded Software (EMSOFT). pp. 132–141. ACM (2006)

2. Henzinger, T., Kirsch, C., Marques, E., Sokolova, A.: Distributed, modular HTL. In: Proc.
Real-Time Systems Symposium (RTSS). pp. 171–180. IEEE (2009)

3. Kirsch, C., Lopes, L., Marques, E.: Semantics-Preserving and Incremental Runtime Patching
of Real-Time Programs. In: Online Proc. Workshop on Adaptive and Reconfigurable Embed-
ded Systems (APRES). pp. 3–7. ARTIST Network of Excellence (2008)

4. Kirsch, C., Lopes, L., Marques, E., Sokolova, A.: Runtime Programming through Model-
Preserving, Scalable Runtime Patches. Tech. Rep. 2010-08, Department of Computer Sci-
ences, University of Salzburg (2010)

