
Exemplaric Expressivity of Modal Logics

Bart Jacobs1 and Ana Sokolova2?

1 Institute for Computing and Information Sciences, Radboud University Nijmegen
P.O. Box 9010, 6500 GL Nijmegen, The Netherlands.

Email: B.Jacobs@cs.ru.nl
URL: http://www.cs.ru.nl/B.Jacobs

2 Department of Computer Sciences, University of Salzburg
Jakob-Haringer-Str. 2, 5020 Salzburg, Austria.

Email: Ana.Sokolova@cs.uni-salzburg.at
URL: http://www.cs.uni-salzburg.at/˜anas

May 22, 2008

Abstract. This paper investigates expressivity of modal logics for transition sys-
tems, multitransition systems, Markov chains, and Markov processes, as coal-
gebras of the powerset, finitely supported multiset, finitely supported distribu-
tion, and measure functor, respectively. Expressivity means that logically indis-
tinguishable states, satisfying the same formulas, are behaviourally indistinguish-
able. The investigation is based on the framework of dual adjunctions between
spaces and logics and focuses on a crucial injectivity property. The approach is
generic both in the choice of systems and modalities, and in the choice of a “base
logic”. Most of these expressivity results are already known, but the applicability
of the uniform setting of dual adjunctions to these particular examples is what
constitutes the contribution of the paper.

1 Introduction

During the last decade, coalgebra [30,17] has become accepted as an abstract frame-
work for describing state-based dynamic systems. Fairly quickly it was recognised, first
in [26], that modal logic is the natural logic for coalgebras and also that coalgebras pro-
vide obvious models for modal logics. Intuitively there is indeed a connection, because
modal operators can be interpreted in terms of next or previous states, with respect to
some transition system or, more abstractly, coalgebra. The last few years have shown
a rapid development in this (combined) area [23,16,27,22,24,5,31,32,29,7,19]. One of
the more interesting aspects is the use of dualities or dual adjunctions.

Here is a brief “historical” account of how the emergence of dual adjunctions in log-
ical settings can be understood. For reasoning about functors the idea of predicate lifting
was used already early in [14,15]. This involves the extension of a predicate (formula)
P ⊆ X to a lifted predicate P ⊆ TX , for an endofunctor T :Sets → Sets whose coal-
gebras X → TX we wish to study. The notion of invariant arises via such predicate

? Supported by the Austrian Science Fund (FWF) project P18913.

liftings. Liftings can be described as a function PX → PTX , or actually as a natural
transformation P ⇒ PT , for the contravariant powerset functor P:Setsop → Sets,
cf. [27]. With the introduction of polyadic modal operators [31,19] this natural transfor-
mation morphed into maps of the form

∐
n∈N(PX)n → PTX , or more abstractly via

a functor L into a natural transformation LP ⇒ PT . All this takes place in a situation:

T << Setsop
P

++
Sets

P
ll Lbb with LP σ=⇒ PT (1)

where we have a dual adjunction P a P . The category Sets on the left describes the
spaces on which we have coalgebra structures (of the functor T). Sets on the right
describes the logical universe, on which there is a functor L for modal operators.

The above dual adjunction thus provides the raw setting for considering coalgebras
and their (modal) logics. For specific kinds of coalgebras (given by particular functors
T) there may be more structure around. In this paper we shall study examples with
the categories Sets of sets and Meas of measure spaces on the left in (1), and the
categories BA of Boolean algebras and MSL of meet semilattices on the right. The latter
capture Boolean logic and logic with only finite conjunctions, respectively. Section 2
will describe the adjunctions involved. Similar adjunctions have been used in process
semantics (see e.g. [1]) or more generally in [18].

Section 3 will enrich these dual adjunctions with endofunctors like T and L in the
above diagram (1). It also contains two “folklore” results about the natural transforma-
tion involved (the σ in (1)). The most important one is Theorem 4 that relates a certain
injectivity condition to the fundamental property of expressivity of the logic—which
means that logically indistinguishable states are also behaviourally indistinguishable.
This theorem is known for some time already in the community and has appeared in
print in various places [19,20,7], in one form or another. We present a convenient for-
mulation (and proof) that is useful in our setting, but we do not claim it as our contri-
bution.

What we do claim as contribution appears in Section 4. There we use Theorem 4 to
prove expressivity for four concrete examples. In all these cases we describe appropriate
modalities, and prove expressivity by adding:

– Boolean logic for image-finite transition systems, as coalgebras of the finite pow-
erset functor on Sets;

– finite conjunctions logic for multitransition systems, as coalgebras of the finitely
supported multiset functor on Sets;

– finite conjunctions logic for Markov chains, as coalgebras of the finitely supported
discrete (sub)distribution functor on Sets;

– finite conjunctions for Markov processes, as coalgebras of the Giry functor on the
category of measure spaces.

The first point goes back to [13]. Here we cast it in the framework of dual adjunc-
tions, with an explicit description of the “modality” endofunctor L on the category
BA of Boolean algebras and its relevant properties. An expressivity result of graded
modal logic (based on Boolean logic) for multitransition systems already exists [31].

2

There is also already an expressivity result for Markov chains with the standard modal-
ities and Boolean logic (including negation), cf. [7,25]. Here, we give a proof that fi-
nite conjunctions suffice for expressivity for both multitransition systems and Markov
chains, just as they do for non-discrete probabilistic systems [10,8]. Then we refor-
mulate the expressivity result of [10,8] within our uniform setting of dual adjunctions.
Additionally we elaborate on the relation between the discrete and non-discrete Markov
chains/processes and show precisely how expressivity for Markov processes yields ex-
pressivity for Markov chains, resulting in alternative indirect proofs for the third point.

Finally, we should emphasise that we include neither atomic propositions nor action
labels in the logics and the systems, since we are interested in the essence of the expres-
sivity results. This way we wish to prepare the ground for arbitrary (possibly modular)
extensions in the setting of dual adjunctions.

2 Dual adjunctions

In this section we shall be interested in an adjoint situation of the form:

Cop
P

** A
F

kk with F a P (2)

We informally call this a dual adjunction because one of the categories involved occurs
naturally in opposite form. In the next section we shall extend such situations with
endofunctors, onC for systems as coalgebras and onA for logics, but at this preparatory
stage we only look at the adjunctions themselves.

Such situations (2) are familiar in duality-like settings, for instance with C = A =
Sets, and P = F = “contravariant powerset”, like in (1); with C = Sets, A =
PreOrd, P = “contravariant powerset”, F = “upsets”; or withC = “topological spaces”
andA = “frames”. Such situations are studied systematically in [18], and more recently
also in the context of coalgebras and modal logic [21,20,5,6,19]. Typically the functor
P describes predicates on spaces and the functor F theories of logical models.

In this situation it is important to keep track of the direction of arrows. To be ex-
plicit, the (components of the) unit and counit of the adjunction F a P are maps
ηA: A → PFA in A and εX :FPX → X in Cop, i.e. εX : X → FPX in C. The
familiar triangular identities are Pε ◦ ηP = id in A and εF ◦ Fη = id in Cop,
i.e. Fη ◦ εF = id in C.

2.1 Examples

The following three instances of the dual adjunction (2) will be used throughout the
paper.

3

Sets versus Boolean algebras

The first dual adjunction is between sets and Boolean algebras:

Setsop
P

++ BA
Fu

ll (3)

Here, BA is the category of Boolean algebras. The functor P is (contravariant) powerset
andFu sends a Boolean algebra A to the set of its ultrafilters. These ultrafilters are filters
(see below) α ⊆ A such that for each a ∈ A, either a ∈ α or ¬a ∈ α, but not both. The
unit ηA: A → PFu(A) for this adjunction is given by η(a) = {α ∈ Fu(A) | a ∈ α}.
The adjunction (3) amounts to the standard correspondence:

X
f // Fu(A) in Sets

====================
A g

// P(X) in BA
via

a ∈ f(x)
=======
x ∈ g(a)

Sets versus meet semilattices

The second example uses the category MSL of meet semilattices, in a situation:

Setsop
P

,,
MSL

F
ll (4)

The functor F sends a meet semilattice A to the set F(A) of its filters, i.e. to the upsets
α ⊆ A which are closed under finite meets: > ∈ α and x, y ∈ α ⇒ x ∧ y ∈ α. Here
the unit is as before, ηA(a) = {α ∈ F(A) | a ∈ α}, and the correspondence is also as
before.

Measure spaces versus meet semilattices

Our third example is less standard. It uses the category Meas of measure spaces, instead
of Sets. An object of Meas is a pair X = (X,SX) of a set X together with a σ-
algebra SX ⊆ P(X). The latter is a collection of “measurable” subsets closed under
∅, complements (negation), and countable unions. We shall use that it is closed, in
particular, under finite intersections. A morphism X → Y in Meas, from X = (X, SX)
to Y = (Y, SY), is any measurable function f : X → Y , i.e. a function satisfying
f−1(M) ∈ SX for each measurable set M ∈ SY .

Interestingly, in this case we also have an adjunction with meet semilattices:

Measop
S

,,
MSL

F
ll (5)

4

The functor S maps a measure space to its σ-algebra, i.e., for X = (X,SX), S(X) =
SX . The functor F is the filter functor from (4) that maps a meet semilattice to the set
of its filters, with a σ-algebra generated by the subsets η(a) ⊆ F(A), for a ∈ A. Again
we have a bijective correspondence

X f // F(A) in Meas
====================
A g

// S(X) in MSL
via

a ∈ f(x)
=======
x ∈ g(a)

– Given a measurable function f :X → F(A), we obtain f̂ : A → S(X) as:

f̂(a) = f−1(η(a)) = {x ∈ X | f(x) ∈ η(a)} = {x ∈ X | a ∈ f(x)}.

This f̂ is well-defined because f is a measurable function, so f−1(η(a)) ∈ S(X),
and it preserves finite meets >,∧ because η and f−1 do.

– Conversely, given g: A → S(X) in MSL one defines ĝ: X → F(A) as ĝ(x) =
{a ∈ A | x ∈ g(a)}. This yields a filter because g preserves finite meets. The
function ĝ is measurable since ĝ−1(η(a)) = {x ∈ X | a ∈ ĝ(x)} = g(a) ∈ S(X).

It is obvious that ̂̂
f = f and ̂̂g = g. The unit ηA:A → SF(A) of this adjunction is as

before: ηA(a) = {α ∈ F(A) | a ∈ α}.

Remark 1 In the end we notice that the adjunction Setsop ¿ MSL can be obtained
from the adjunction Measop ¿ MSL in the following manner. The forgetful functor
U : Meas → Sets, U(X) = X for X = (X,SX), has a left adjoint D which equips
a set X with the discrete σ-algebra P(X) in which all subsets are measurable. Then,
when we switch to opposite categories, the forgetful functor U : Measop → Setsop is
left adjoint to D. Hence the adjunction F a P between sets and meet semilattices can
be obtained as UF a SD by composition of adjoints in:

Measop

U

¨¨

S
++XXXXXXXXXXXXXXXX

MSL

Foo

F

gg

Setsop

P 33fffffffffffffffff

D

OO

3 Logical set-up

We now extend the adjunction (2) with endofunctors T and L as in:

T << Cop
P

** A
F

kk Lbb with F a P (6)

We shall be interested in coalgebras of the functor T , describing dynamic systems,
and in algebras of L, capturing logical models. These models typically contain certain

5

logical connectives, as incorporated in categories of Boolean algebras or of meet semi-
lattices; the functor L adds modal operators. Via a suitable relation between T and L
one can capture logics for dynamic systems in this set-up. But before doing so we recall
the following standard result.

Proposition 2 In the situation of the previous diagram we have a bijective correspon-
dence between natural transformations:

LP +3σ
PT

============
TF +3

τ FL
i.e.

Cop
LP

))

PT

55
ÂÂ ÂÂ
®¶ σ A

===================

A
FL

))

TF

55
ÂÂ ÂÂ
®¶ τ Cop

Proof. The correspondence is obtained as follows.

– For σ: LP ⇒ PT one puts:

σ
def=

(
TF

εTF +3 FPTF
FσF +3 FLPF

FLη +3 FL
)

– Conversely, for τ :TF ⇒ FL one similarly takes:

τ
def=

(
LP

ηLP +3 PFLP
PτP +3 PTFP

PTε +3 PT
)
. ♦

Assumption 3 In the situation (6) we shall assume the following.

– There is an “interpretation” natural transformation σ: LP ⇒ PT .
– The functor L:A → A has an initial algebra of “formulas”. We shall write it as

L(Form) ∼=→ Form.
– There is a factorisation system (M, E) on the category C with M ⊆ Monos and
E ⊆ Epis. We shall write the maps in M as ½ and those in E as ³, and call
them abstract monos and abstract epis, respectively. Hence every map in C factors
as abstract mono-epi ³½ and the “diagonal fill-in” property holds: if the outer
square

X

²²

// // Y

²²~~~
~

~
~

A // // B

commutes, then there exists a diagonal map making the two triangles commute.
– The functor T preserves the maps in M, i.e. m ∈M⇒ T (m) ∈M.

It is not hard to see that such a factorisation system lifts to the category CoAlg(T)

of coalgebras of the functor T . Given a coalgebra homomorphism (X c→ TX)
f−→

6

(Y d→ TY) we can factorise f = m ◦ e in C and obtain a coalgebra d′ by diagonal
fill-in, since T preserves abstract monos.

TX
T (e)

// TY ′ //
T (m)

// TY

X

c

OO

e // //

f

44Y ′ // m //

d′
OOÂ
Â
Â

Y

d

OO (7)

One can show that the diagonal fill-in property also holds in CoAlg(T), using that T
preserves abstract monos, and abstract monos are monos.

For an arbitrary coalgebra X
c→ TX by initiality of Form one obtains an interpre-

tation of formulas as predicates on the state space X as in:

L(Form)

∼=
²²

//______
L[[−]]

LPX
σX²²

PTX
Pc²²

Form //_______
[[−]]

PX

(8)

The adjunction F a P yields a theory map th: X → F (Form) corresponding to the
interpretation [[−]]: Form → PX . Intuitively, for a state x ∈ X we have a theory
th(x) ∈ F (Form) of formulas that hold in x. Two states x, y ∈ X will be called
logically indistinguishable, written as x ≡ y, if their theories are the same: th(x) =
th(y). In general, logical equivalence is the subobject of X ×X which is the following
equaliser in C,

≡ // // X ×X
th ◦ π1 --

th ◦ π2

11 F (Form)

We are interested in comparing logical indistinguishability to behavioural equivalence.
Two states x, y ∈ X of a coalgebra are behaviourally equivalent, notation x ≈ y, if
there exists a coalgebra homomorphism f with f(x) = f(y). With the above assump-
tions, using (7), we may assume that this f is an abstract epi.

Behavioural equivalence may also be formulated for two states x ∈ X, y ∈ Y of
two different coalgebras (of the same functor). One then requires that there exist coal-
gebra homomorphisms f and g with f(x) = g(y). This formulation is equivalent to the
previous one in categories with pushouts, see [28]. Behavioural equivalence coincides
with bisimilarity in case the functor involved preserves weak pullbacks. In the con-
text of expressivity of modal logics behavioural equivalence works better, as commonly
accepted in the community, and noted explicitly for probabilistic systems in [8].

It is known and not difficult to show that behavioural equivalence implies logical
indistinguishability. For the converse we now present our version of a “folklore” result
(see also [19]).

7

Theorem 4 In the context of Assumption 3, if the transpose σ: TF ⇒ FL of σ: LP ⇒
PT , according to Proposition 2, is componentwise abstract mono, then logically indis-
tinguishable elements are behaviourally equivalent.

Proof. One factors the theory map th:X → F (Form) as X
e³ X ′ m½ F (Form). Then

x ≡ y if and only if e(x) = e(y). The main point is to obtain a (quotient) coalgebra on
X ′ via the diagonal fill-in property of the factorisation in:

TX
T (e)

// TX ′ //
T (m)

// TF (Form) // σ // FL(Form)

X

c

OO

//
e

// X ′ //
m

//

OOÂ
Â
Â

F (Form)

∼=
OO

Logically indistinguishable elements are then equated by a coalgebra homomorphism
(namely e), and are thus behaviourly equivalent. ♦

The main technical part of applying Theorem 4 is showing that the natural transfor-
mation σ is mono. That will be the topic of the next section.

3.1 Examples
In the remainder of this section we extend the three adjunctions in the examples from
Section 2 with suitable coalgebra functors—the T in (6)—that we are interested in.
Moreover, we discuss that Assumption 3 holds in each case. We consider two base
categories, Sets and Meas. The category Sets has a standard factorisation system
given by monos (injections) and epis (surjections), with a diagonal fill-in property. We
discuss the factorisation system on Meas below in the section on Markov processes.

Transition systems
We shall write Pf :Sets → Sets for the finite powerset functor:

Pf(X) = {S ⊆ X | S is finite}.
A coalgebra X → Pf(X) is an image-finite unlabelled transition system. The functor
Pf preserves injections.

Multitransition systems
Next we consider the finitely supported multiset functor Mf :Sets → Sets. It is de-
scribed as follows.

Mf(X) = {ϕ: X → N | supp(ϕ) is finite}.
The support set of a multiset ϕ is defined as supp(ϕ) = {x | ϕ(x) 6= 0}. A function
f :X → Y is mapped to Mf(f):Mf(X) →Mf(Y) by

Mf(f)(ϕ) = λy ∈ Y.
∑

x∈f−1(y) ϕ(x).

A coalgebra X → Mf(X) is a multitransition system in which multiple non-labelled
transitions are possible between any two states. The functor Mf preserves injections.

8

Markov chains
The third endofunctor on Sets is the finitely supported discrete subdistribution functor
Df :Sets → Sets. It is described as follows.

Df(X) = {ϕ: X → [0, 1] | supp(ϕ) is finite and
∑

x∈X ϕ(x) ≤ 1}.
The support set of a subdistribution ϕ is defined, as before, as supp(ϕ) = {x | ϕ(x) 6=
0}. A function f : X → Y yields a mapping Df(f):Df(X) → Df(Y) by

Df(f)(ϕ) = λy ∈ Y.
∑

x∈f−1(y) ϕ(x).

A coalgebra X → Df(X) is a Markov chain [33,3]. In this context subdistributions
(with sum ≤ 1) are more common than distributions (with sum = 1), but the difference
does not really matter here. The functor Df preserves injections.

What subsets, multisets, and distributions have in common
Although they might seem different on first sight, the functors Pf , Df , and Mf are all
instances of the same generic functor. Let (M, +, 0,≤) be a partially ordered commu-
tative monoid with the property

x ≤ x + y for all x, y ∈ M. (9)

Let O be any downward-closed subset of M , O ⊆ M with x ∈ O whenever x ≤ y, y ∈
O. Let VO be the functor on Sets defined on objects as

VO(X) = {ϕ : X → O | supp(ϕ) is finite and
∑

x∈X ϕ(x) ∈ O}.
We will call the elements of VO(X) valuations with values in O. The support set of
a valuation is defined as before, supp(ϕ) = {x ∈ X | ϕ(x) 6= 0}. Since M is a
commutative monoid with the property (9) and O is downward-closed, any valuation
ϕ : X → O extends to a function P(X) → O, which we also denote by ϕ, by

ϕ(S) =
∑

x∈S ϕ(x).

Now, for a function f : X → Y , we define VO(f) : VO(X) → VO(Y) as

VO(f)(ϕ)(y) =
(
ϕ ◦ f−1

)
({y}) for ϕ ∈ VO(X), y ∈ Y.

We have:

– subsets are valuations, Pf = VO, for M = ({0, 1},∨, 0) with O = M .
– multisets are also valuations, Mf = VO for M = (N, +, 0) also with O = M ; and
– subdistributions are valuations as well, Df = VO for M = (R≥0, +, 0) and O =

[0, 1]. Notice that the requirement that the sum should be in O = [0, 1] automati-
cally implies that the sum is at most one, as was required explicitly in the earlier
description of Markov chains.

The difference between the functor Pf , on the one hand, and both functors Mf and Df ,
on the other hand, is that the latter are instances of VO for O ⊆ M of cancellative
monoids M , whereas M = ({0, 1},∨, 0) is not cancellative. This plays an important
role for expressivity of the conjunction fragment of suitable modal logics, as we demon-
strate below.

9

Markov processes

On the category Meas we consider the Giry functor (or monad) from [12]. It maps a
measure space X = (X, SX) to the space G(X) = (GX ,SG(X)) of subprobability
measures ϕ: SX → [0, 1], satisfying ϕ(∅) = 0 and ϕ(

⋃
i Mi) =

∑
i ϕ(Mi) for count-

able unions of pairwise disjoint subsets Mi ∈ SX . For each M ∈ SX there is an eval-
uation function evM :GX → [0, 1] given by ϕ 7→ ϕ(M). The set GX is equipped with
the smallest σ-algebra SG(X) making all these maps evM measurable. It is generated
by the collection:

{
Lr(M) | r ∈ Q ∩ [0, 1],M ∈ SX

}
where Lr(M) = {ϕ ∈ GX | ϕ(M) ≥ r}

= ev−1
M ([r, 1]).

These Lr’s will be used later as modalities, see (19).
Let X = (X, SX) and Y = (Y, SY) be measure spaces. On a measurable function

f :X → Y one defines G(f):G(X) → G(Y), i.e., G(f):GX → GY by:

G(f)
(
SX

ϕ→ [0, 1]
)

=
(
SY

f−1

→ SX
ϕ→ [0, 1]

)
.

This G(f) is a measurable function since for M ∈ SY one has G(f)−1(Lr(M)) =
Lr(f−1(M)), where f−1(M) ∈ SX .

A coalgebra X → G(X) is a Markov process, see [10].
As factorisation system on Meas we take as abstract monos the collectionM given

by morphisms f :X → Y for which: f , as function X → Y , is injective, and f−1, as
function SY → SX , is surjective. As abstract epis E we take those morphisms f :X →
Y for which f , as function X → Y , is surjective. Every morphism f :X → Y in
Meas factors as X

e³ f(X)
m½ Y where the image f(X) is given the σ-algebra

Sf(X) = {m−1(M) | M ∈ SY }. Clearly, m−1: SY → Sf(X) is surjective. It is not
hard to see that this factorisation system satisfies the diagonal fill-in property.

Finally we check that G preserves the maps in M. Given a measurable function
f :X → Y in M, so that f is injective and f−1:SY → SX is surjective, we claim that
also G(f) ∈M.

– The map G(f) is injective: Assume ϕ,ψ ∈ GX with G(f)(ϕ) = G(f)(ψ), i.e. ϕ ◦
f−1 = ψ ◦ f−1. Since f−1 is surjective, it can be canceled on the right and we get
ϕ = ψ.

– The map G(f)−1:SG(Y) → SG(X) is surjective: Let Lr(M) ∈ SG(X) be a
generator, where M ∈ SX and r ∈ Q ∩ [0, 1]. Since f−1 is surjective we can find
a measurable subset N ∈ SY with M = f−1(N). But then G(f)−1(Lr(N)) =
Lr(f−1(N)) = Lr(M). This is enough to conclude surjectivity of G(f)−1 since
all set operations are preserved by inverse images.

Remark 5 In Remark 1 we have used the (discrete) adjunction between sets and mea-
sure spaces in order to relate the adjunctions with meet semilattices. Here we shall also

10

relate the subdistribution functor Df and the Giry functor G, in the situation:

G <<

Df <<

Measop

U

¨¨

S
++XXXXXXXXXXXXXXXX

MSL

Foo

F

gg

Setsop

P 33fffffffffffffffff

D

OO

There is an obvious natural transformation ρ:DfU ⇒ UG with component on X =
(X, SX) ∈ Meas, ρX :Df(X) → GX given by:

[
ϕ ∈ Df(X) i.e. ϕ: X → [0, 1] with

supp(ϕ) finite and
∑

x∈X ϕ(x) ≤ 1

]
7−→

[
the measure SX → [0, 1] given by

M 7→ ϕ(M) =
∑

x∈M ϕ(x)

]

This ρ captures the standard way in which a discrete measure (on points) forms a proper
measure (on events/subsets). It plays an imporant role, later on in Section 4.4.

4 Expressivity results

The aim of this section is to show that the functors Pf , Mf , Df , and G given in the
examples of Section 3 have expressive logics via Theorem 4. Thus we shall define, for
each of them, an associated modality functor with interpretation natural transformation
σ whose transpose σ is componentwise (abstract) mono. We shall first describe the finite
powerset Pf case because it is already well-studied, see e.g. [13,21,7]. This will set the
scene for the other examples. Their expressivity is the main topic of this paper.

4.1 Boolean logic for image-finite transition systems

Expressivity of modal logic for image-finite transition systems has originally been
proved in [13]. Such transition systems can be captured as coalgebras of the finite
powerset functor Pf . Coalgebraic generalisations of this expressivity result have been
studied in e.g. [31,7].

Here we shall reproduce this expressivity result for Pf in the context of dual adjunc-
tions, following [7]. We do so not only in order to prepare for the more complicated
probabilistic examples Df and G later on, but also to indicate where the negations of
Boolean algebras are used. The main point of the latter examples Mf , Df , and G is that
they do not involve negation (nor disjunctions).

For a transition system c: X → Pf(X) as coalgebra, the familiar modal operator
¤(c) is described as:

¤(c)(S) = {x ∈ X | ∀y. x → y ⇒ y ∈ S}
= {x ∈ X | c(x) ⊆ S}
= c−1(¤S),

11

where ¤:P(X) → P(Pf(X)) is defined independently of the coalgebra c as:

¤(S) = {u ∈ Pf(X) | u ⊆ S}. (10)

It is not hard to see that ¤ preserves finite meets (intersections) and is thus a morphism
in the category MSL. This leads to the following more abstract description.

Proposition 6 There is an endofunctor L: BA → BA in a situation:

Pf << Setsop
P

++ BA
Fu

ll Lbb

which is an instance of (6), such that the definition of ¤ in (10) corresponds to an
interpretation natural transformation £: LP ⇒ PPf .

This shows that the familiar ¤ operator fits into the current framework of dual ad-
junctions, so that we can use Theorem 4. The details of the functor L are not so relevant,
but are given for reasons of completeness.

Proof. The construction of the functor L (and £) follows [21]. There is an obvious
forgetful functor V : BA → MSL, which has a left adjoint G. We write L = GV : BA →
BA for the resulting functor (actually comonad). By θ and ξ we denote the unit and
the counit of this adjunction, respectively. Notice that morphisms LA → B in BA
correspond, via the adjunction, to functions V A → V B that preserve finite meets. The
map ¤:P(X) → PPf(X) from (10) is formally such a map V P(X) → V PPf(X) in
the category MSL. Hence it corresponds to a map £: LP(X) → PPf(X) as claimed.♦

Remark 7 On first sight it might seem that it is enough to take for L the identity functor.
However, this is not the case since each component of the interpretation natural trans-
formation is required to be an arrow in BA, whereas the modality maps ¤ preserve
finite intersections only.

The Boolean algebras LA = GV A can be understood as models of Boolean logic
with a finite meet preserving modal operator ¥: We put ¥ = θV A ◦ V (ξA): V LA →
V LA. The unit θV A:V A → V LA of the adjunction G a V embeds elements (formu-
las) of a Boolean algebra A into its extension LA with ¥—which is illustrated after the
next result.

Lemma 8 The above defined finite meet preserving endofunction (or modal operator)
satisfies:

1. idempotency: ¥ ◦ ¥ = ¥;
2. naturality: V Lf ◦ ¥ = ¥ ◦ V Lf , for f : A → B in BA;
3. V f̂ ◦ ¥ = f ◦ V ξA for f :V A → V B finite meet preserving, with f̂ :LA → B as

corresponding transpose. ♦

12

This last point of Lemma 8 yields a relation between the three boxes, as expressed
by the following commuting diagram.

V LPX

V ξ
²²

¥ // V LPX

V £
²²

V PX
¤ // V PPfX

(11)

This diagram tells us that the ¥ operator is interpreted appropriately. This is best
illustrated for the initial algebra α: L(Form) ∼=→ Form with its interpretation map
[[−]]: Form → PX from (8), for a coalgebra c:X → TX . Consider an arbitrary for-
mula ϕ ∈ Form and map it into L(Form), formally by considering ϕ ∈ V (Form) and
applying θ(ϕ) ∈ V L(Form). Then we can apply ¥ and obtain ¥θ(ϕ) ∈ V L(Form),
which can be sent back to Form = V (Form) via the initial algebra α, resulting in
V (α)(¥θ(ϕ)) ∈ V (Form). For convenience, this formula may simply be written as ¥ϕ.
We have been very explicit about all the maps and (forgetful) functors involved, so that
we can check that this box-formula is interpreted appropriately:

[[¥ϕ]] =
(
V [[−]] ◦ V α ◦ ¥ ◦ θ

)
(ϕ)

=
(
V Pc ◦ V £ ◦ V L[[−]] ◦ ¥ ◦ θ

)
(ϕ) by (8)

=
(
V Pc ◦ V £ ◦ ¥ ◦ V L[[−]] ◦ θ

)
(ϕ) by Lemma 8.(2)

=
(
V Pc ◦ ¤ ◦ V (ξ) ◦ θ ◦ V [[−]]

)
(ϕ) by (11) and naturality

=
(
V Pc ◦ ¤ ◦ V [[−]]

)
(ϕ) by the triangular identities

= c−1(¤[[ϕ]])

= {x ∈ X | ∀y. x → y ⇒ y ∈ [[ϕ]]}.

The next result now gives a semantical reformulation, following [7], of the expres-
sivity result of [13]. It uses Theorem 4. The proof that we present is substantially more
complicated than the standard proof, but we include it in order to illustrate the general
method on a well-known example. In the other applications the proofs actually become
simpler than the original ones.

Theorem 9 The transpose £:PfFu ⇒ FuL of £ in Proposition 6, according to Propo-
sition 2, is componentwise mono. Hence Boolean modal logic with ¤ is expressive for
image-finite transition systems.

Proof. By unraveling the definition of £ given in the proof of Proposition 2 we see, for
finite S ⊆ FuA,

£(S) =
{

ϕ ∈ LA | S ∈ £
(
L(η)(ϕ)

)}
,

where η = λa. {α | a ∈ α} is the unit A → PFuA of the dual adjunction Fu a P .
In order to prove injectivity of £, assume S,M ∈ PfFu(A), S 6= M , say α ∈ S,

α /∈ M = {β1, . . . , βn} for ultrafilters α, βi ∈ Fu(A). Then α 6= βi, so there are

13

elements bi ∈ βi with bi 6∈ α. These bi exist because we work in a Boolean algebra,
with negation ¬, and each ultrafilter γ satisfies either a ∈ γ or ¬a ∈ γ, for each a ∈ A.

We can put these bi into LA as θ(bi), take their join and write a = ¥(
∨

i θ(bi)) ∈
LA. Then, for any set W ∈ PfFu(A),

a ∈ £(W) ⇐⇒ W ∈ £
(
L(η)(¥

∨
i θ(bi))

)

⇐⇒ W ∈ £
(

¥L(η)(
∨

i θ(bi))
)

by 2. in Lemma 8

⇐⇒ W ∈ £
(

¥
∨

i L(η)(θ(bi))
)

⇐⇒ W ∈ £
(

¥
∨

i θ(η(bi))
)

by naturality

⇐⇒ W ∈ ¤
(
V (ξ)

∨
i θ(η(bi))

)
via (11)

⇐⇒ W ∈ ¤
(⋃

i V (ξ)θ(η(bi))
)

since ξ is a map in BA

⇐⇒ W ∈ ¤
(⋃

i η(bi)
)

by the triangular equations

⇐⇒ W ⊆ ⋃
i η(bi)

⇐⇒ ∀α ∈ W.∃i. bi ∈ α.

Then a ∈ £(M), but a /∈ £(S), proving that £ is mono. ♦
Remark 10 As is well-known, the finite powerset Pf is a monad on Sets and hence
a comonad on Setsop. The functor L: BA → BA in Proposition 6 is a comonad by
construction. We do not use these comonad structures in this paper but we do like to
point out that they are related in the following sense: the functor P:Setsop → BA with
natural transformation £:LP ⇒ PPf is a morphism of comonads. Hence there is a
close connection between the two sides of the dual adjunction in Proposition 6.

The underlying reason is that the natural transformation ¤:P ⇒ PPf from (10)
commutes with the monad operations ι = {−}, µ =

⋃
of the monad Pf , in the sense

that the following diagram commutes (in MSL).

V P

oooooooooooooo

oooooooooooooo

¤
²²

¤ // V PPf

¤Pf

²²
V P V PPf

V Pι
oo

V Pµ
// V PP2

f

Hence, P with £ indeed constitutes a comonad morphism. As a consequence we get,
for example, the result:

LP
ξ

wwppppppppppppp

£
²²

P PPfPι
oo

since:
Pι ◦ £ = Pι ◦ ξ ◦ G(¤) = ξ ◦ GV Pι ◦ G(¤) = ξ.

Similarly for commutation of £ with (co)multiplications.

14

4.2 Finite-conjunctions logic for multitransition systems and Markov chains

The situation for the finitely supported multiset functor and the finitely supported dis-
tribution functor Df is similar, but a bit more complicated. We obtain an expressivity
result for finitely supported cancellative “valuation” systems and logic with the corre-
sponding modalities and only finite conjunctions. This result then directly instantiates
both to multitransition systems and to Markov chains.

It has been shown in [7] that Boolean logic together with probabilistic modalities
is expressive for Markov chains. That result also fits in the framework of dual adjunc-
tions [7]. Here we provide an expressivity result for a weaker logic, namely with finite
conjunctions only. It has also been shown that graded modal logic is expressive for mul-
titransition systems [31]. Now we show that finite conjunctions suffice in this case as
well.

We focus on the valuations functor VO for a subset O ⊆ M of an ordered cancella-
tive monoid (M, +, 0), with the property x ≤ x + y for all x, y ∈ M , as defined in
Section 3.1. A subset Ô ⊆ O is dense in O if between any two elements x, y ∈ O with
x ≤ y, there exists an element z ∈ Ô such that x ≤ z ≤ y. Note that O is dense in
itself.

For a dense subset Ô of O, we consider the “valuation modalities” ¤o:P(X) →
PVO(X), for o ∈ Ô, given as:

¤o(S) = {ϕ ∈ VO(X) | ∑
s∈S ϕ(x) ≥ o}, (12)

From (9) it follows that ¤o is a monotone function, and thus a map in the category
PoSets of posets and monotone functions. From these ¤o we get a modality functor
like in Proposition 6, bringing us in the framework of dual adjunctions.

Proposition 11 There is an endofunctor KÔ: MSL → MSL in a situation:

VO << Setsop
P

,,
MSL

F
ll KÔbb

which is an instance of (6), such that all ¤o in (12) correspond to an interpretation
natural transformation £:KÔP ⇒ PVO.

Proof. In order to construct KÔ, we now consider the forgetful functor V : MSL →
PoSets with its left adjoint H . As before, we denote the unit and the counit of this
adjunction by θ and ξ, respectively. We then define the functor KÔ: MSL → MSL as:

KÔ(A) =
∐

o∈Ô HV A

Here we use that the category MSL has arbitrary coproducts—which follows for
instance from Linton’s Theorem (see [2]), using that MSL is algebraic over Sets
(and thus cocomplete). A map KÔ(A) → B in MSL now corresponds to an Ô-
indexed family of (monotone) functions V A → V B in PoSets. The family of maps
¤o:P(X) → PVO(X) from (12) is formally such an Ô-indexed family of functions
V P(X) → V PVO(X) in PoSets. Hence, this family corresponds to a (natural) map
£: KÔP(X) → PVO(X). ♦

15

As before, the meet semilattices KÔ(A) can be seen as models of logic with only
finite conjunctions, with a family of order preserving modal operators ¥o:V KÔ(A) →
V KÔ(A), for o ∈ Ô, defined as composite:

V
(∐

o HV A
) V (∇)

// V HV A
V (ξA)

// V A
θV A // V HV A

V (κo)// V
(∐

o HV A
)

where κo is a coprojection and ∇ = [id]o is the cotuple of identities. These monotone
modal operators satisfy idempotency and naturality, and commute appropriately with ¤
and £. We do not elaborate on these ¥o’s because we do not need them (explicitly) in
the expressivity proof below.

Recall that the unit of the filter-powerset adjunction η:A → PF(A), given by
η(a) = {α ∈ FA | a ∈ α}, preserves finite meets. We define for an arbitrary subset
α ⊆ A the set of filters ↑α = {β ∈ FA | α ⊆ β} that contain α. This map ↑:P(A) →
PF(A) can be seen as free extension of η from A to the complete lattice (P(A),⊇),
since:

↑α = {β ∈ FA | ∀a ∈ α. a ∈ β} =
⋂
a∈α

η(a).

As a result α ⊆ α′ implies ↑α ⊇ ↑α′. We further note that:

↑{a1, . . . , an} = {β ∈ FA | a1, . . . , an ∈ β}
= {β ∈ FA | a1 ∧ · · · ∧ an ∈ β}
= η(a1 ∧ · · · ∧ an).

(13)

The next auxiliary property will be used for showing expressivity.

Lemma 12 Let X be a set, S ⊆ P(X), and let Sf ⊆ S be finite. Let ↑S α = {β ∈ S |
∀a ∈ α. a ∈ β}, for α ∈ P(X). Then for each α ∈ P(X) there is a finite αf ⊆ α with
Sf ∩ ↑S α = Sf ∩ ↑S αf .

Proof. Write Sf − ↑S α = {β1, . . . , βn}, where by construction α 6⊆ βi, say via el-
ements ai ∈ α, ai 6∈ βi. Take αf = {a1, . . . , an} ⊆ α. Then ↑S αf ⊇ ↑S α and so
Sf ∩ ↑S αf ⊇ Sf ∩ ↑S α. For the converse, assume β ∈ Sf ∩ ↑S αf . If β 6∈ ↑S α, there
must be an i with β = βi and thus ai 6∈ β. This contradicts β ∈ ↑S αf . ♦

We will apply the above lemma to semilattices A with S = F(A), in which case
↑S = ↑, as defined above. We next state and prove the expressivity result for logic with
finite conjunctions and finitely supported valuation systems. It uses Theorem 4.

Theorem 13 The transpose £:VOF ⇒ FKÔ of £ in Proposition 11, according to
Proposition 2, is componentwise mono. Hence modal logic with finite conjunctions and
valuation modalities is expressive for finitely supported valuation systems.

Proof. The transpose £:VOF(A) → FKÔ(A) is given on a valuation Φ:F(A) → O
on filters of A as:

£(Φ) =
{
ϕ ∈ KÔ(A) | Φ ∈ £F(A)

(
KÔ(η)(ϕ)

)}
.

16

We first note that for an element a ∈ V A we have θ(a) ∈ V HV A and thus
ao = V (κo)(θ(a)) ∈ V KÔ(A), for o ∈ Ô. For such elements ao we reason as fol-
lows, writing forgetful functors V : MSL → PoSets explicitly in order to justify all
manipulations.

ao = V (κo)(θ(a)) ∈ V (£)(Φ)

⇐⇒ Φ ∈ (
V (£ ◦ KÔ(η)) ◦ V (κo) ◦ θ

)
(a)

⇐⇒ Φ ∈ (
V ([ξ ◦ H(¤p)]p ◦ [κp ◦ HV (η)]p ◦ κo) ◦ θ

)
(a)

by definition of £ and KÔ

⇐⇒ Φ ∈ (
V ([ξ ◦ H(¤p)]p ◦ κo ◦ V HV (η) ◦ θ

)
(a)

⇐⇒ Φ ∈ (
V (ξ) ◦ V H(¤o) ◦ θ ◦ V (η)

)
(a)

⇐⇒ Φ ∈ (
V (ξ) ◦ θ ◦ ¤o ◦ V (η)

)
(a)

⇐⇒ Φ ∈ (
¤o ◦ V (η)

)
(a)

⇐⇒ ∑
α∈η(a) Φ(α) ≥ o

⇐⇒ Φ(η(a)) ≥ o.

Towards injectivity of £ assume £(Φ) = £(Ψ). By the reasoning above we then get
Φ(η(a)) ≥ o ⇔ Ψ(η(a)) ≥ o for all o ∈ Ô and all a ∈ A. This yields:

Φ(η(a)) = Ψ(η(a)). (14)

Namely, since Ô is dense in O, we have that for any x, y ∈ O, ∀o ∈ Ô.x ≥ o ⇐⇒ y ≥
o implies ∀o ∈ O.x ≥ o ⇐⇒ y ≥ o, which further implies (taking o = x and o = y)
that x = y.

Let Sf = supp(Φ) ∪ supp(Ψ) be the joined support of Φ and Ψ . Since Φ and Ψ
have finite support, Sf is also finite. We now reach our second conclusion: for all filters
α ∈ FA,

Φ(↑α) = Φ(Sf ∩ ↑α) since values outside Sf do not contribute to the sum

= Φ(Sf ∩ ↑αf) with αf ⊆ α finite, as in Lemma 12

= Φ(↑αf)

= Φ(η(
∧

αf)) by (13), since αf is finite

= Ψ(η(
∧

αf)) by (14)

= . . . as before

= Ψ(↑α).

(15)

If Φ 6= Ψ we can now construct a contradiction: let α be a maximal filter with
the property Φ(α) 6= Ψ(α). Such a maximal filter exists since Φ and Ψ have finite
support. Thus Φ(β) = Ψ(β) for β) α. But then, since the monoid is cancellative by

17

assumption, we get:
Φ(↑α) = Φ(α) +

∑
β)α Φ(β)

= Φ(α) +
∑

β)α Ψ(β)

6= Ψ(α) +
∑

β)α Ψ(β)

= Ψ(↑α),

(16)

contradicting (15). ♦

As a consequence we get expressivity for multitransition systems and Markov
chains, which we elaborate next. Recall that multitransition systems are VO-coalgebras
for M = O = N which is a cancellative monoid (with 0,+). The modalities ♦k of
graded modal logic, for k ∈ N, are given by

♦k(S) = {ϕ ∈Mf(X) | ∑
s∈S ϕ(x) ≥ k}, (17)

and are obviously the valuation modalities for Ô = O = N. Therefore we get the
following result.

Corollary 14 The conjunction fragment of graded modal logic is expressive for multi-
transition systems. ♦

Markov chains are VO-coalgebras for the cancellative monoid M = (R≥0,+, 0)
with O = [0, 1]. We consider the dense subset Ô = Q ∩ [0, 1] of O. The standard
probabilistic modalities Lr:P(X) → PDf(X) are defined as:

Lr(S) = {ϕ ∈ Df(X) | ∑
s∈S ϕ(x) ≥ r}, (18)

for r ∈ Q∩ [0, 1], so they coincide with the valuation modalities. Hence we get expres-
sivity for Markov chains.

Corollary 15 Finite conjunction modal logic with the standard probabilistic modalities
is expressive for Markov chains. ♦

Remark 16 In the expressivity proof of Theorem 13, a crucial point is the inequal-
ity (16), which fails for ordinary transition systems since the Boolean disjunction
monoid ({0, 1},∨, 0) is not cancellative.

4.3 Finite-conjunctions logic for Markov processes

We now present an expressivity result for general, non-discrete, probabilistic systems
and logic with the standard modalities and only finite conjunctions. This expressivity
result was first shown in [9,10] for Markov processes over analytic spaces, and re-
cently for general Markov processes over any measure space [8]. It is common in the
categorial treatment of non-discrete probabilistic systems (cf. [11,9,10]) to make the
detour through analytic or Polish spaces. The main reason is that bisimilarity (in terms
of spans) can not be described in general measure spaces, due to non-existence of pull-
backs. However, as we already noted before, behavioural equivalence can, which is also

18

one of the main points of [8] where an explicit characterisation of behavioural equiva-
lence under the name event bisimulation is given. Hence, we consider general measure
spaces.

We start from the general probabilistic modalities Lr:S(X) → SG(X), whereX =
(X, SX), for r ∈ Q ∩ [0, 1].

Lr(M) = {ϕ ∈ GX | ϕ(M) ≥ r}, (19)

Note that these modalities are well-defined i.e. Lr(M) ∈ SG(X) by definition.
These modalities are obviously monotone. Hence we can use the functor K =

KÔ =
∐

o∈Ô HV A for Ô = Q ∩ [0, 1] from Proposition 11. With this functor
K: MSL → MSL we transform these Lr:V S(X) → V SG(X) in PoSets into a natural
transformation £:KS ⇒ SG in the situation:

G << Measop
S

,,
MSL

F
ll Kbb

This means that £ satisfies V (£) ◦ V (κr) ◦ θ = Lr, where θ: Id ⇒ V H is the unit of
the adjunction between MSL and PoSets.

We can now present the expressivity result for logic with finite conjunctions and
finitely supported probabilistic systems (from [10,8]), using Theorem 4. It uses standard
measure theoretic results [4], just like the proof in [10] does.

Theorem 17 The transpose £:GF ⇒ FK of £ described above, according to Propo-
sition 2, is componentwise abstract mono. Hence modal logic with finite conjunctions
and probabilistic modalities is expressive for Markov processes.

Proof. The transpose £:GF(A) → FK(A) is given, on a measure Φ:F(A) → [0, 1]
on filters of A, as:

£(Φ) =
{
ϕ ∈ KA | Φ ∈ £F(A) (K(η)(ϕ))

}
.

As before, £(Φ) = £(Ψ) implies Φ(η(a)) = Ψ(η(a)) for all a ∈ A. Now we use [4,
Theorem 10.4]: Let ν1, ν2 be finite measures on a measure space (X,SX) with gen-
erated σ-algebra SX . If (1) the set of generators is closed under binary intersections,
(2) the whole space X is a countable union of generators, and (3) ν1 and ν2 coincide
on the generators, then ν1 = ν2. In our case Φ, Ψ are finite measures on F(A) with
its σ-algebra SF(A) generated by the sets η(a), for a ∈ A. The whole space F(A) is
η(>) since > is a top element in A which is contained in every filter. Moreover, Φ and
Ψ coincide on the generators. Hence, Φ = Ψ which shows that £ is a mono.

We still need to show that it satisfies the second condition for an abstract mono in
Meas, namely that £−1

: SFK(A) → SGF(A) is a surjective map. For a generator
Lr(N) ∈ SGF(A), where N ∈ SF(A), we need to find a measurable set M ∈ SFKA

with £−1
(M) = Lr(N). We shall do so first for generators N = η(a), for each r ∈

Q ∩ [0, 1].

19

Assume N = η(a) = {α ∈ F(A) | a ∈ α}, for some a ∈ A. We then take
ar = (κr ◦ θ)(a) ∈ KA, or more formally, ar = V (κr)

(
θV A(a)

) ∈ V KA as in:

a ∈ V A
θV A // V HV A

V (κr)// V
(∐

r∈Q∩[0,1] HV A
)

= V KA

The measurable set η(ar) ∈ SFKA does the job in this case:

£−1
(η(ar)) = {Φ | £(Φ) ∈ η(ar)}

= {Φ | ar ∈ £(Φ)}
= {Φ | Φ ∈ £

(
K(η)(ar)

)}
= £

(
K(η)((κr ◦ θ)(a))

)

= £
(
(κr ◦ θ)(η(a))

)
by naturality

= Lr(η(a)) by definition of £.

We will next show that the σ-algebra Σ0 generated by the sets Lr(η(a)) equals the
σ-algebra generated by Lr(M) for arbitrary M ∈ SFA, which we will denote simply
by Σ = SGFA. Clearly Σ0 ⊆ Σ. For the converse, we recall the original definition
of Σ: the smallest σ-algebra making the evaluation maps evM measurable. We aim
at showing that Σ0 also makes all evaluation maps measurable, which completes the
proof.

We start by defining the notion of λ-system. A collection of subsets Λ ⊆ P(X) is
called a λ-system if (1) X ∈ Λ, (2) M ∈ Λ =⇒ ¬M ∈ Λ, and (3)

⋃
n Mn ∈ Λ, for all

pairwise disjoint Mn ∈ Λ where n ∈ N.
We will further use the following result from [4, Theorem 3.2]. If N ⊆ P(X) is

closed with respect to binary intersections, then 〈N〉λ = 〈N〉σ , where 〈N〉λ and 〈N〉σ
are the smallest λ-system and the smallest σ-algebra containing N , respectively.

In our case, letN = {η(a) | a ∈ A}, which is closed under finite intersections, and
let

L = {M ∈ Σ = SFA | evM : (GFA, Σ0) → [0, 1] is measurable }.
Note that all evaluation maps evM are measurable on the measure space (GFA, Σ). In
L we gather those M such that evM are measurable on the “smaller” measure space
(GFA, Σ0). We have that η(a) ∈ L for all a ∈ A, and the following hold:

(1) FA = η(>) ∈ L;
(2) For M ∈ L, we have that ¬M = FA \M where M ⊆ FA and therefore ev¬M =

evFA − evM . Then ev¬M is a measurable map since measurable maps form a
vector space, cf. [4, Theorem 13.3]. Hence ¬M ∈ L.

(3) Let Mn ∈ L for n ∈ N be pairwise disjoint sets and let M =
⋃

n Mn. Then, by the
sigma-additivity of the measures, we have evM (ϕ) =

∑
n evMn(ϕ). We further

consider the functions evk
M =

∑
n≤k evMn , which are measurable since measur-

able functions form a vector space. This sequence of functions is pointwise conver-
gent, and therefore we can use [4, Theorem 13.4]: for any sequence of measurable
functions with a pointwise limit, the limit function is measurable, to conclude that
evM is a measurable function, and therefore M ∈ L.

20

Hence, the set L is a λ-system and it contains the set N = {η(a) | a ∈ A}. By the
above mentioned theorem we get that 〈N〉λ = 〈N〉σ = SFA. Since N ⊆ L and L is
a λ-system, we get that 〈N〉λ ⊆ L, which implies that L = SFA and completes the
proof. ♦

4.4 Relating Markov chains and Markov processes

In Remarks 1 and 5 we have already seen how the categories and functors for Markov
chains and for Markov processes are related. Here we elaborate further on these rela-
tions and complete the picture by showing how to obtain expressivity for chains from
expressivity for processes. This depends on auxiliary results which are of interest on
their own.

Recall that Markov chains and Markov processes are related via the natural trans-
formation ρ:DfU ⇒ UG given by ρ(ϕ) = λM.

∑
x∈M ϕ(x), where U is the forget-

ful functor Meas → Sets, with the discrete measure functor D:Sets → Meas as
left adjoint. Using ρ we can transform any Markov chain, i.e. a Df -coalgebra in Sets,
c:X → Df(X) into a UGD-coalgebra in Sets, by

(
X

c−→ Df(X) = DfUD(X)
)
7−→

(
X

c−→ DfUD(X)
ρDX−→ UGD(X)

)
.

The latter coalgebras are in one-one correspondence, via the adjunction D a U , with
G-coalgebras D(X) → GD(X) in Meas with carriers discrete measure spaces.

X // UGD(X) in Sets
========================
D(X) // GD(X) in Meas

(20)

We use the term discrete Markov process both for a G-coalgebra with carrier discrete
measure space in Meas, and for the corresponding UGD-coalgebra in Sets. The whole
picture is shown in the following diagram:

CoAlg(Df)
ρD ◦ −

//

""EE
EE

EE
EE

T
++

CoAlg(UGD)

zzvvv
vv

vv
vv (20)

// CoAlg(G)

²²
Sets

D // Meas

(21)

where the square on the right is a pullback of functors.
An important but non-trivial result, see Theorem 18 below, is that behavioural equiv-

alence on a Markov chain c and on the corresponding discrete Markov processes T (c)
coincide. Also the logical theories coincide. This leads to a direct proof of expressivity
for Markov chains from expressivity for Markov processes. We can also obtain expres-
sivity for Markov chains from expressivity for Markov processes in an indirect way,
using Theorem 4, without explicitly comparing behavioural equivalence. Both proofs
are presented below.

21

Behavioural equivalence coincides

The relationship between Markov chains and Markov processes is made explicit with
the following theorem. It states that Markov chains can be embedded in the class of
Markov processes, namely as discrete Markov processes.

Theorem 18 The translation functor (c: X → Df(X)) 7→ (T (c): D(X) → GD(X))
from (21) preserves and reflects behavioural equivalence: for two states x, x′ ∈ X we
have

x ≈ x′ in c ⇐⇒ x ≈ x′ in T (c).

The proof outlines the main steps and refers to auxiliary results in Appendix A.

Proof. The direction (⇒) is obvious, by functoriality. The reverse direction is done
in two steps. Lemma 24 tells that the functor ρD ◦ − in (21) reflects behavioural
equivalence, so it remains to show that the functor labeled with (20) does.

We use that the category Meas is cocomplete. Its colimits are constructed as in
Sets, with those subsets measurable that make the coprojections measurable functions,
see also [8]. These colimits are inherited by CoAlg(G). For an arbitrary coalgebra
c:X → G(X) we can consider all abstract epis h:X ³ Y with coalgebra d:Y → G(Y)
forming a homomorphism. Since such abstract epis are surjections, they correspond3 to
equivalence relations on the underlying set of X . Hence these pairs (h, d) form a proper
set, and so we can form their joint pushout in:

G(X)
G(π)

// G(X≈)

X
c

OO

π // // X≈

c≈
OO

Then ≈⊆ ker(π) = {(x, x′) | π(x) = π(x′)}, by construction.
If we apply this starting from a discrete Markov process c:D(X) → GD(X) we

also obtain such a homomorphism π: D(X) ³ Y with ≈⊆ ker(π). Lemma 25.3 says
that Y then “separates points”, and Lemma 27 that π is a homomorphism to a discrete
G-coalgebra on the carrier of Y . This completes the proof. ♦

Relating the logics and the expressivity results

We will now relate the logics for Markov chains and Markov processes, and show that
the expressivity result for chains follows from the expressivity result for processes. We
start by comparing the logic interpretations for Markov chains and Markov processes.
In order to disambiguate the two modal operators Lr for chains (18) and processes (19)
we shall now write them with additional superscripts, namely:

P(X) L
Df
r−→ PDf(X) is S 7−→ {ϕ ∈ Df(X) | ∑

x∈S ϕ(x) ≥ r}
S(X)

LGr−→ SG(X) is M 7−→ {ϕ ∈ G(X) | ϕ(M) ≥ r}.
3 To be precise, equivalence classes of surjections X ³ • correspond to equivalence relations

on X .

22

They give rise to natural transformations:

KP £Df−→ PDf and KS £G−→ SG

with transposes:

DfF £Df−→ FK and GF £G−→ FK

Lemma 19 For a set X , a distribution ϕ ∈ Df(X) and a subset S ∈ P(X) = S(DX),
where D(X) is the set X with the discrete σ-algebra P(X), one has:

ϕ ∈ L
Df
r (S) ⇐⇒ ρ(ϕ) ∈ LGr (S).

In a diagram:

V P(X)
L
Df
r // V PDf(X) V PDfUD(X)

V SD(X)
LGr // V SGD(X) Â Ä // V PUGD(X)

V P(ρDX)
OO

where V is the forgetful functor MSL → PoSets. As a result:

£Df = P(ρ) ◦ £G and £Df = U(£G) ◦ ρF ,

where the latter equation involves the diagram:

DfF £Df

// FK

DfUF
ρF // UGF U(£G)

// UFK

Proof. By unravelling the definitions we get:

ϕ ∈ L
Df
r (S) ⇐⇒ ρ(ϕ)(S) =

∑
x∈S ϕ(x) ≥ r

⇐⇒ ρ(ϕ) ∈ LGr (S).

Then:
£Df = [ξ ◦ H(LDf

r)]r
= [ξ ◦ H(V P(ρ) ◦ LGr)]r
= [P(ρ) ◦ ξ ◦ H(LGr)]r
= P(ρ) ◦ [ξ ◦ H(LGr)]r
= P(ρ) ◦ £G .

23

Now for Φ ∈ DfF(A),

(
U(£G) ◦ ρF(A)

)
(Φ) = {ψ ∈ KA | ρ(Φ) ∈ £G(K(η)(ψ))}

= {ψ ∈ KA | Φ ∈ ρ−1 £G (K(η)(ψ))}
= {ψ ∈ KA | Φ ∈ (P(ρ) ◦ £G(K(η)(ψ))

)}
= {ψ ∈ KA | Φ ∈ £Df (K(η)(ψ))}
= £Df (Φ). ♦

The next result shows that the translation functor does not change the theory maps.

Lemma 20 For a coalgebra c: X → Df(X) let [[−]]Df be the corresponding interpre-
tation map from (8) arising from £Df , and let [[−]]G correspond to T (c): D(X) →
G(D(X)) with £G . Then

[[−]]Df = [[−]]G and thDf = thG

where thDf and thG are the transposes of [[−]]Df and [[−]]G , obtained via the dual
adjunctions F a P from (4) and F a S from (5).

Proof. We obtain [[−]]Df = [[−]]G by initiality in:

K(Form)

∼=

²²

K([[−]]Df)
// KPX

£Df

²²

KSDX

£G
²²

PDfX

P(c)
²²

PDfUDX PUGDX
P(ρ)
oo SGDX? _oo

ST (c)
²²

Form
[[−]]Df

//

[[−]]G

22PX SDX

The upper-right square commutes by the previous lemma, and the lower-right one by
construction of T (c).

Hence also thDf = thG , formally as maps thDf : X → F(Form) in Sets and
thG :DX → F(Form) in Meas. ♦

Corollary 21 Expressivity of modal logic for Markov chains follows from expressivity
for Markov processes.

Proof. By the earlier results, using expressivity for Markov processes in (∗):

x ≈ x′ for X
c−→ Df(X) Thm. 18⇐⇒ x ≈ x′ for D(X)

T (c)−→ GD(X)
(∗)⇐⇒ thG(x) = thG(x′) for D(X)

T (c)−→ GD(X)
Lem. 20⇐⇒ thDf (x) = thDf (x′) for X

c−→ Df(X). ♦

24

We can also obtain expressivity for Markov chains from expressivity for Markov pro-
cesses in an indirect way, using Theorem 4, without explicitly comparing behavioural
and logical equivalence. It follows from the next property, the proof of which is in
Appendix B.

Lemma 22 The natural transformation ρF :DfUF ⇒ UGF is componentwise mono.

Corollary 23 Expressivity of modal logic for Markov chains follows from expressivity
for Markov processes, in the sense that £Df is componentwise mono because £G is.

Proof. By Theorem 17 we know that £G is componentwise mono. Hence so is U(£G),
because the forgetful functor U : Meas → Sets is a right adjoint (and thus preserves
monos). By Lemma 19 we know that £Df = U(£G) ◦ ρF . Lemma 22 shows that ρF
is componentwise mono. This completes the alternative proof. ♦

5 Conclusions

We have analysed the semantics and logic of four examples of possibilistic and proba-
bilistic state-based systems in a uniform categorical framework and proved expressivity
in each of these cases.

Acknowledgements

We thank Harald Woracek and the anonymous referee for many helpful suggestions that
lead to significant improvements of the paper. We also thank Alexander Kurz and Ernst
Erich Doberkat for providing some background information.

References

1. S. Abramsky. Domain theory in logical form. Ann. Pure & Appl. Logic, 51(1/2):1–77, 1991.
2. M. Barr and Ch. Wells. Toposes, Triples and Theories. Springer, Berlin, 1985. Revised and

corrected version available from URL:
www.cwru.edu/artsci/math/wells/pub/ttt.html.

3. F. Bartels, A. Sokolova, and E. de Vink. A hierarchy of probabilistic system types. Theor.
Comp. Sci., 327(1-2):3–22, 2004.

4. P. Billingsley. Probability and Measure. Wiley-Interscience, New York, 1995.
5. M. Bonsangue and A. Kurz. Duality for logics of transition systems. In V. Sassone, editor,

Foundations of Software Science and Computation Structures, number 3441 in Lect. Notes
Comp. Sci., pages 455–469. Springer, Berlin, 2006.

6. M. Bonsangue and A. Kurz. Presenting functors by operations and equations. In L. Aceto
and A. Ingólfsdóttir, editors, Foundations of Software Science and Computation Structures,
number 3921 in Lect. Notes Comp. Sci., pages 172–186. Springer, Berlin, 2006.

7. C. Cı̈rstea and D. Pattinson. Modular proof systems for coalgebraic logics. Theor. Comp.
Sci., 388:83–108, 2007.

8. V. Danos, J. Desharnais, F. Laviolette, and P. Panangaden. Bisimulation and cocongruence
for probabilistic systems. Inf. & Comp., 204:503–523, 2006.

25

9. J. Desharnais, A. Edalat, and P. Panangaden. A logical characterization of bisimulation for
labeled markov processes. In Logic in Computer Science, 1998.

10. J. Desharnais, A. Edalat, and P. Panangaden. Bisimulation for labeled Markov processes.
Inf. & Comp., 179(2):163–193, 2002.

11. E.-E. Doberkat. Eilenberg-Moore algebras for stochastic relations. Inf. & Comp.,
204(12):1756–1781, 2006.

12. M. Giry. A categorical approach to probability theory. In B. Banaschewski, editor, Cate-
gorical Aspects of Topology and Analysis, number 915 in Lect. Notes Math., pages 68–85.
Springer, Berlin, 1982.

13. M. Hennessy and R. Milner. On observing non-determinism and concurrency. In J.W.
de Bakker and J. van Leeuwen, editors, Mathematical Foundations of Computer Science,
number 85 in Lect. Notes Comp. Sci., pages 299–309. Springer, Berlin, 1980.

14. C. Hermida. Fibrations, Logical Predicates and Indeterminates. PhD thesis, Univ. Edin-
burgh, 1993. Techn. rep. LFCS-93-277. Also available as Aarhus Univ. DAIMI Techn. rep.
PB-462.

15. C. Hermida and B. Jacobs. Structural induction and coinduction in a fibrational setting. Inf.
& Comp., 145:107–152, 1998.

16. B. Jacobs. Many-sorted coalgebraic modal logic: a model-theoretic study. Inf. Théor. et
Appl., 35(1):31–59, 2001.

17. B. Jacobs and J. Rutten. A tutorial on (co)algebras and (co)induction. EATCS Bulletin,
62:222–259, 1997.

18. P.T. Johnstone. Stone Spaces. Number 3 in Cambridge Studies in Advanced Mathematics.
Cambridge Univ. Press, 1982.

19. B. Klin. Coalgebraic modal logic beyond sets. In M. Fiore, editor, Mathematical Founda-
tions of Programming Semantics, number 173 in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2007.

20. C. Kupke, A. Kurz, and D. Pattinson. Algebraic semantics for coalgebraic logics. In Coalge-
braic Methods in Computer Science, number 106 in Elect. Notes in Theor. Comp. Sci., pages
219–241. Elsevier, Amsterdam, 2004.

21. C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. In H.P. Gumm, editor, Coalgebraic
Methods in Computer Science, number 82(1) in Elect. Notes in Theor. Comp. Sci. Elsevier,
Amsterdam, 2003.

22. C. Kupke, A. Kurz, and Y. Venema. Stone coalgebras. Theor. Comp. Sci., 327(1-2):109–134,
2004.

23. A. Kurz. Specifying coalgebras with modal logic. Theor. Comp. Sci., 260(1-2):119–138,
2001.

24. A. Kurz and D. Pattinson. Coalgebraic modal logic of finite rank. Math. Struct. in Comp.
Sci., 15(3):453–473, 2005.

25. K.G. Larsen and A. Skou. Bisimulation through probabilistic testing. Inf. & Comp., 94:1–28,
1991.

26. L.S. Moss. Coalgebraic logic. Ann. Pure & Appl. Logic, 96(1-3):277–317, 1999. Erratum
in Ann. Pure & Appl. Logic, 99(1-3):241–259, 1999.

27. D. Pattinson. Coalgebraic modal logic: Soundness, completeness and decidability of local
consequence. Theor. Comp. Sci., 309(1-3):177–193, 2003.

28. D. Pattinson. An introduction to the theory of coalgebras. Course notes at the North Ameri-
can Summer School in Logic, Language and Information (NASSLLI), 2003.

29. D. Pavlović, M. Mislove, and J. Worrell. Testing semantics: Connecting processes and pro-
cess logics. In M. Johnson and V. Vene, editors, Algebraic Methods and Software Technology,
number 4019 in Lect. Notes Comp. Sci., pages 308–322. Springer, Berlin, 2006.

30. J. Rutten. Universal coalgebra: a theory of systems. Theor. Comp. Sci., 249:3–80, 2000.

26

31. L. Schröder. Expressivity of coalgebraic modal logic: The limits and beyond. In V. Sassone,
editor, Foundations of Software Science and Computation Structures, number 3441 in Lect.
Notes Comp. Sci., pages 440–454. Springer, Berlin, 2005.

32. L. Schröder. A finite model construction for coalgebraic modal logic. Journ. of Logic and
Algebraic Programming, 73:97–110, 2007.

33. E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition systems: a coal-
gebraic approach. Theor. Comp. Sci., 221:271–293, 1999.

Appendix

A Auxiliary results for the proof of Theorem 18

Lemma 24 The mapping (c: X → Df(X)) 7→ (ρDX ◦ c:X → UGD(X)) from (21)
preserves and reflects behavioural equivalence: for two states x, x′ ∈ X we have

x ≈ x′ in c ⇐⇒ x ≈ x′ in X → UGDX.

Proof. Behavioural equivalence preservation is direct by functoriality: if h(x) = h(x′)
for a homomorphism h: X → Y from c:X → Df(X) to d:Y → Df(Y), then h is also
a homomorphism from ρDX ◦ c to ρDY ◦ d, by naturality of ρ.

For the reflection, assume h(x) = h(x′) for a coalgebra homomorphism h from
ρDX ◦ c: X → UGD(X) to d:Y → Y GD(Y). As noted before, see (7), we may
assume that such an h is an abstract epi. Furthermore, the natural transformation
ρD:Df = DfUD ⇒ UGD is componentwise mono, resulting in the existence of the
dashed arrow d′ in:

UGD(X)
UGD(h)

// UGD(Y)

Df(X)
OO

ρDX

OO

Df(f)
// Df(Y)

OO
ρDY

OO

X
h // //

c

OO

Y

d′
OOÂ
Â
Â

d

[[

This d′ is obtained by diagonal fill-in. It proves that x ≈ x′ in c. ♦

For an arbitrary function f we write ker(f) = {(x, x′) | f(x) = f(x′)} for the
kernel equivalence relation. We recall that a measure space X = (X, SX) separates
points if for different x, x′ ∈ X , there exists M ∈ SX with x ∈ M, x′ 6∈ M .

Lemma 25 Let c:X → G(X) in Meas be a G-coalgebra, with X = (X, SX). Then

1. R(SX) ⊆ ker(c), where R(SX) = {(x, x′) | ∀M ∈ SX . (x ∈ M ⇔ x′ ∈ M)};
2. ker(c) ⊆≈c;

3. If ≈c⊆ ker(h) for a homomorphism
(X c→ G(X)

) h³
(Y d→ G(Y)

)
, then Y

separates points.

27

Proof. 1. Assume (x, x′) ∈ R(SX). For each M ∈ SX and r ∈ Q ∩ [0, 1], one has
Lr(M) = {ϕ ∈ G(X) | ϕ(M) ≥ r} ∈ SG(X) and so c−1(Lr(M)) ∈ SX , so that, by
definition of R(SX),

x ∈ c−1(Lr(M)) ⇔ x′ ∈ c−1(Lr(M)) i.e. c(x)(M) ≥ r ⇔ c(x′)(M) ≥ r.

The latter yields c(x) = c(x′), and thus (x, x′) ∈ ker(c).
2. The coalgebra map c:X → G(X), is a homomorphism from c to G(c) in:

G(X)
G(c)

// GG(X)

X

c

OO

c
// G(X)

G(c)
OO

This shows that ker(c) ⊆≈c.
3. Assume that h: X ³ Y is a homomorphism from c to d. By 1. it is enough to

show that d is injective. Hence assume d(y) = d(y′), and write y = h(x), y′ = h(x′)
for certain x, x′ ∈ X . Then:

(x, x′) ∈ (h× h)−1(ker(d)) by construction

⊆ (h× h)−1(≈d) by 2.

⊆ ≈c because h is a homomorphism

⊆ ker(h) by assumption.

Hence y = h(x) = h(x′) = y′. ♦

The final step (Lemma 27) uses some basic facts about measure spaces that separate
points, which we list first.

Lemma 26 Assume Y = (Y, SY) ∈ Meas separates points. Then

1. For each countable U ⊆ Y and y 6∈ U there is an N ∈ SY with U ⊆ N and
y 6∈ N .

2. For disjoint countable U, V ⊆ Y there is an N ∈ SY with U ⊆ N and V ⊆ ¬N .

Proof. 1. For each z ∈ U we have z 6= y so that there is an Nz ∈ SY with z ∈ Nz and
y 6∈ Nz . Hence we can take N =

⋃
z Nz ∈ SY .

2. For each y ∈ V there is, by 1., an Ny ∈ SY with U ⊆ Ny and y 6∈ Ny. Now we
can take N =

⋂
y Ny ∈ SY . ♦

Lemma 27 Assume a discrete G-coalgebra c: D(X) → GD(X) and a surjective ho-
momorphism h from c to some G-coalgebra d:Y → G(Y). If Y = (Y, SY) separates
points, then there exists a discrete G-coalgebra e: D(Y) → GD(Y) such that h is a
homomorphism from c to e.

28

Proof. We define e: D(Y) → GD(Y) as:

e(y) = c(x) ◦ h−1

where h−1 : P(Y) → P(X), y ∈ Y , and x ∈ X is such that h(x) = y. In order to
show that e is well-defined, we must show that:

c(x1) ◦ h−1 = c(x2) ◦ h−1

whenever h(x1) = h(x2). Note that if e is well-defined, then it is certainly measurable
and h is a homomorphism from c to e.

What we know is that if h(x1) = h(x2), then also (d ◦ h)(x1) = (d ◦ h)(x2) and
using that h is a homomorphism from c to d, we get:

(c(x1) ◦ h−1)(N) = (c(x2) ◦ h−1)(N)

for all N ∈ SY .
So, assume h(x1) = h(x2) and U ⊆ Y arbitrary. We will construct a subset N ∈

SY such that:
(c(xi) ◦ h−1)(U) = (c(xi) ◦ h−1)(N)

for i ∈ {1, 2} and this will complete the proof.
The subset S = {x ∈ X | c(x1)({x}) 6= 0 ∨ c(x2)({x}) 6= 0} is countable. Write:

U1 = h(S ∩ h−1(U)), U2 = h(S ∩ h−1(¬U)).

Clearly, U1, U2 ⊆ Y are countable since S is. Moreover, they are disjoint: if y ∈
U1 ∩ U2, then y = h(x1) = h(x2) for some x1 ∈ h−1(U) and x2 ∈ h−1(¬U),
which implies that y = h(x1) ∈ U and y = h(x2) ∈ ¬U , a contradiction. Hence, by
Lemma 26, there exists N ∈ SY such that U1 ⊆ N and U2 ⊆ ¬N . We are going to
show that

S ∩ h−1(U) = S ∩ h−1(N).

Indeed, if x ∈ S ∩ h−1(U), then h(x) ∈ U1 ⊆ N , so x ∈ h−1(N) and also x ∈
S ∩ h−1(N). For the reverse inclusion, if x ∈ S ∩ h−1(N), then we either have x ∈
h−1(U) or x ∈ h−1(¬U). But the latter is not possible since it implies that h(x) ∈ U2

so h(x) 6∈ N , a contradiction. Hence x ∈ h−1(U), and so x ∈ S ∩ h−1(U).
We have shown that S ∩ h−1(U) = S ∩ h−1(N). Now, for i ∈ {1, 2}, we have

c(xi)(h−1(U)) =
∑

x∈S∩h−1(U)

c(xi)({x})

=
∑

x∈S∩h−1(N)

c(xi)({x})

= c(xi)(h−1(N))

which completes the proof. ♦

29

B Proof of Lemma 22

For a meet semilattice A we need to show that the mapping ρF(A):DfF(A) → GF(A),
given by ρ(Φ) = λM ∈ SF(A). Φ(M) is injective—where, as before, Φ(M) =∑

α∈M Φ(α). Assume therefore Φ, Ψ ∈ DfF(A) satisfy ρ(Φ) = ρ(Ψ). In order to
show Φ = Ψ we assume an arbitrary α ∈ F(A) and wish to show Φ(α) = Ψ(α).

Let S = supp(Φ)∪supp(Ψ) be the join of the two (finite) supports. We may assume
α ∈ S, because otherwise Φ(α) = 0 = Ψ(α) and we are done. We form two subsets
B, C ⊆ A in the following way. For each β ∈ S − {α} we have β 6= α, so that either
∃b ∈ α. b 6∈ β or ∃c ∈ β. c 6∈ α. In the first case we choose such a b ∈ α− β and put it
in B, and in the second case we take a c ∈ β − α and put it in C. Since S is finite both
B and C are finite (and obtained in finitely many steps). We now define M ⊆ F(A) as:

M = {γ ∈ F(A) | B ⊆ γ and C ∩ γ = ∅}

=

(⋂

b∈B

η(b)

)
∩

(⋂

c∈C

¬η(c)

)
.

This second line describes M as finite intersection of measurable subsets. Hence M ∈
SF(A) so that Φ(M) = Ψ(M) since ρ(Φ) = ρ(Ψ).

Next we claim:
M ∩ S = {α}.

The inclusion (⊇) is obvious by construction of B, C. For (⊆) assume γ ∈ M ∩S, but
γ 6= α. Then we have constructed either:

– a b ∈ B with b ∈ α− γ; this is impossible since B ⊆ γ.
– a c ∈ C with c ∈ γ − α. But since C ∩ γ = ∅ this is also impossible.

Hence γ = α.
We now have Φ(α) = Φ({α}) = Φ(M ∩ S) = Φ(M) = Ψ(M) = Ψ(α), as

required. Thus ρF(A) is injective. ♦

30

