
Probabilistic automata: system types, parallel
composition and comparison

A. Sokolova1, E.P. de Vink1,2

1 Department of Mathematics and Computer Science,
TU/e, Eindhoven

2 LIACS, Leiden University
a.sokolova@tue.nl, evink@win.tue.nl

Abstract. We survey various notions of probabilistic automata and
probabilistic bisimulation, accumulating in an expressiveness hierarchy of
probabilistic system types. The aim of this paper is twofold: On the one
hand it provides an overview of existing types of probabilistic systems
and, on the other hand, it explains the relationship between these models.
We overview probabilistic systems with discrete probabilities only. The
expressiveness order used to built the hierarchy is defined via the exis-
tence of mappings between the corresponding system types that preserve
and reflect bisimilarity. Additionally, we discuss parallel composition for
the presented types of systems, augmenting the map of probabilistic au-
tomata with closedness under this compositional operator.

Keywords: probabilistic automata (transition systems), probabilistic bisim-
ulation, preservation and reflection of bisimulation, non-determinism, parallel
composition.

1 Introduction

The notion of a state machine has proved useful in many modelling situations,
amongst others, the area of validation of stochastic systems. In the literature
up to now, a great variety of types of probabilistic automata has been proposed
and many of these have been actually used for verification purposes. In this
paper we discuss a number of probabilistic automata with discrete probability
distributions. For continuous-time probabilistic systems the interested reader is
referred to [BDEP97,DEP98,D’A99,BHHK00,Hil94,Alf98]. Models of stochastic
systems that are not represented by transition systems can also be found in
[BLFG95] and [PA91].

Due to the variety of proposed models it is often the case that results have
to be interpreted from one type of systems to another. Therefore we compare
the considered types of probabilistic automata in terms of their expressiveness.
The comparison is achieved by placing a partial order on the classes of such
automata, where one class is less then another if each automaton in the class
can be translated to an automaton of the other class such that translations

both reflect and preserve the respective notions of bisimilarity. Hence, bisim-
ulation and bisimilarity are central notions in this overview. Other compari-
son criteria are important as well, e.g. logical properties, logical characteriza-
tion of bisimulation [LS91], complexity of algorithms for deciding bisimulation
[Bai98,BEMC99,CY95,Sto02a] and so on. We choose the comparison criterion
formulated in terms of strong bisimulation because of its simplicity and because
we work with transition labelled systems, for which bisimulation semantics arises
naturally from the step-by-step behavior.

A major distinction of probabilistic automata is that between fully probabilis-
tic vs. non-deterministic ones. In a fully probabilistic automaton every choice is
governed by a probability distribution (over set of states or states combined with
actions). The probability distribution captures the uncertainty about the next
state. If we abstract away from the actions in a fully probabilistic automaton,
we are left with a discrete time Markov chain. Subsequently, standard tech-
niques can be applied to analyze the resulting Markov chains. Sometimes, the
incomplete knowledge about the system behavior can not be represented proba-
bilistically. In these cases we should consider more than one transition possible.
We speak in this case of a non-deterministic probabilistic automaton. Most of
the models that we consider include some form of non-determinism and hence
fall in the category of non-deterministic probabilistic automata. As pointed out
by various authors, e.g. [Hoa85,Seg95,Alf97,Sto02b] non-determinism is essential
for modelling scheduling freedom, implementation freedom, the external environ-
ment and incomplete information. Furthermore, non-determinism is essential for
the definition of an asynchronous parallel composition operator that allows in-
terleaving. Often two kinds of non-deterministic choices are mentioned in the
literature (see for e.g. [Sto02b]), external non-deterministic choices influenced
by the environment, specified by having several transitions with different labels
leaving from the same state, and internal non-determinism, exhibited by having
several transitions with the same label leaving from a state. We use the term
non-determinism for full non-determinism including both internal and external
non-deterministic choices.

We introduce several classes of automata, ranging from the simplest models
to more complex ones. The questions that we will address for each individual
class are:

– the definition of the type of automaton and the respective notion of strong
bisimulation;

– the relation of the model with other models;
– presence and form of non-determinism;
– the notion of a product or parallel composition in the model.

The set-up of the paper is as follows: Section 2 presents the necessary notions
considering probability theory, automata (transition systems), and concurrency
theory, in particular compositional operators. In section 3 we focus on the var-
ious definitions of probabilistic automata in isolation with their corresponding
notions of bisimulation. In section 4 the operators of parallel composition are

discussed. We address the interrelationship between the introduced types of au-
tomata in section 5. Section 6 wraps up with some conclusions.

Acknowledgements. We would like to thank Holger Hermanns for editorial
support and for the plentitude of useful ideas and directions, as well as the
other organizers of VOSS GI/Dagstuhl 2002 for initiating and organizing this
nice event. We are in dept to the referees for various remarks. Special thanks
go to Falk Bartels for his major contribution regarding the hierarchy of proba-
bilistic systems, as well as for numerous comments, suggestions and his friendly
cooperation.

2 Basic ingredients

2.1 Probability distributions

Let Ω be a set. A function µ : Ω → [0, 1] is called a discrete probability distribu-
tion, or distribution for short, on Ω if {x ∈ Ω| µ(x) > 0} is finite or countably
infinite and

∑
x∈Ω µ(x) = 1. The set {x ∈ Ω| µ(x) > 0} is called the support

of µ and is denoted by spt(µ). If x ∈ Ω, then µ1
x denotes the unique probability

distribution with µ1
x(x) = 1, also known as the Dirac distribution for x. When

µ is a distribution on Ω we use the notation µ[X] for
∑

x∈X µ(x) where X ⊆ Ω.
By D(Ω) we denote the set of all discrete probability distributions on the set
Ω. If µ is a distribution with finite support {s1, . . . , sn} , we sometimes write
{s1 $→ µ(s1), . . . , sn $→ µ(sn)}. With this notation, µ1

x = {x $→ 1}.
Let µ1 ∈ D(S) and µ2 ∈ D(T). The product µ1 × µ2 of µ1 and µ2 is a

distribution on S×T defined by (µ1×µ2)(s, t) = µ1(s) ·µ2(t), for 〈s, t〉 ∈ S×T .
If µ ∈ D(S × T), we use the notation µ[s, T] for µ[{s} × T] and µ[S, t] for

µ[S × {t}]. We adopt from [JL91] the lifting of a relation between two sets to a
relation between distributions on these sets.

Definition 1. Let R ⊆ S × T be a relation between the sets S and T . let µ ∈
D(S) and µ′ ∈ D(T) be distributions. Define µ ≡R µ′ if and only if there exists
a distribution ν ∈ D(S × T) such that

1. ν[s, T] = µ(s) for any s ∈ S
2. ν[S, t] = µ′(t) for any t ∈ T
3. ν(s, t))= 0 if and only if 〈s, t〉 ∈ R.

The lifting of a relation R preserves the characteristic properties of preorders
and equivalences (cf. [JLY01]). For the special case of an equivalence relation
there is a simpler way to define the lifting (cf. [JLY01,Sto02b,Bai98]).

Proposition 1. Let R be an equivalence relation on the set S and let µ, µ′ ∈
D(S). Then µ ≡R µ′ if and only if µ[C] = µ′[C] for all equivalence classes
C ∈ S/R. !

Lifting of an equivalence relation on a set S to a relation ≡R,A on the set
D(A× S), for a fixed set A, will also be needed.

Definition 2. Let R be an equivalence relation on a set S, A a set, and let
µ, µ′ ∈ D(A× S). Define

µ ≡R,A µ′ ⇐⇒ ∀C ∈ S/R,∀a ∈ A : µ[a,C] = µ′[a,C]

2.2 Non-probabilistic automata, Markov chains, bisimilarity

Throughout the paper we will use the terms automaton, transition system or
just system as synonyms.

Non-probabilistic automata

Definition 3. A transition system, TS for short, is a pair 〈S,α〉 where

1. S is a set of states
2. α : S → P(S) is a transition function, where P denotes the powerset of S.

If 〈S,α〉 is a transition system such that s, s′ ∈ S and s′ ∈ α(s) we write
s→ s′ and call it a transition.

Often in the literature a TS is given as a triple, including besides the set of
states and the transition function also a subset of initial states, or a single initial
state. In this paper we will consider no initial states and therefore they are not
present in the definition. Instead of a transition function one could equivalently
consider a transition relation as a subset of S × S. Our choice here is to always
present the transitions via a transition function.

A way of representing a TS is via its transition diagram. For example, the sys-
tem 〈S,α〉 where S = {s1, s2, s3, s4} and α(s1) = {s2, s3}, α(s2) = {s4}, α(s3) =
α(s4) = ∅, is represented as follows:

•s1

!!!!
!!

!!

"""
""

""
"

•s2

##

•s3

•s4

The states s3 and s4 are terminating states, with no outgoing transitions.
It is often of use to model the phenomenon that a change of state in a

system happens as a result of executing an action. Therefore, labelled transition
systems evolve from transition systems. There are two ways to incorporate labels
in a TS: by labelling the states (usually with some values of variables, or a set of
propositions true in a state), or by explicitly labelling the transitions with actions
or action names. In this paper we focus on transition labelled systems.

Definition 4. A labelled transition system (LTS) (or a non-deterministic au-
tomaton) is a triple 〈S,A,α〉 where

1. S is a set of states

2. A is a set of actions
3. α : S → P(A× S) is a transition function.

When 〈S,A,α〉 is a LTS, then the transition function α can equivalently be
considered as a function from S to P(S)A, the collection of functions from A
to P(S). As in the case of TSs, for any state s ∈ S of a LTS, every element
〈a, s′〉 ∈ α(s) determines a transition which is denoted by s

a→ s′.
The class of non-deterministic automata (LTSs) is denoted by NA. Deter-

ministic automata, given by the next definition, form a subclass of NA.

Definition 5. A deterministic automaton is a triple 〈S,A,α〉 where

1. S is a set of states
2. A is a set of actions
3. α : S → (S + 1)A is a transition function.

Notation 1 We denote by + the disjoint union of two sets. The set 1 is a
singleton set containing the special element ∗, i.e. 1 = {∗}. We assume that
∗ /∈ S. The notation (S + 1)A stands for the collection of all functions from A
to S + 1.

The special set 1 and the disjoint union construction allow us to write par-
tial functions as functions. Hence, in a deterministic automaton each state s is
assigned a partial function α(s) : A → S + 1 from the set of actions to the set of
states, meaning that whenever α(s)(a) = s′ for some s′ ∈ S, i.e. α(s))= ∗, then
there is a transition s

a→ s′ enabled in S. We denote the class of all deterministic
automata by DA.

We note that the class of automata DA exhibits external non-determinism,
while in NA there is full non-determinism.

•
b

"""
""

""
"

a

!!!!
!!

!!

• •

•
b

"""
""

""
"

a

!!!!
!!

!!
a
##

• • •
external non-determinism full non-determinism

Markov chains The simplest class of fully probabilistic automata is the class
of discrete time Markov chains. The theory of Markov chains is rich and huge
(see, e.g., [KS76,How71,BH01,Hav01]) and we only provide a simple definition
of a discrete time Markov chain here.

Definition 6. A Markov chain is a pair 〈S,α 〉 where

1. S is a set of states
2. α : S → D(S) is a transition function.

Markov chains evolve from transition systems, when probability is added to
each transition such that for any state the sum of the probabilities of all outgoing
transitions equals 1. The class of all Markov chains is denoted by MC. If s ∈ S
and α(s) = µ with µ(s′) = p>0 then the Markov chain 〈S,α 〉 is said to go from
a state s with probability p to a state s′. Notation: s ! µ and s

p
! s′.

Example 1.
•s0

1
2!!

!"
!"
!"

1
2

""
#$

#$
#$

•s1

1
$$
"!

"!
"!

•s2
1

%% %& %& %& %& %&

S = {s0, s1, s2}
α(s0) = {s0 $→ 0, s1 $→ 1

2 , s2 $→ 1
2}

α(s1) = µ1
s0

α(s2) = µ1
s1

Bisimulation and bisimilarity Different semantics or notions of behavior can
be given to labelled transition systems. We work with the bisimulation semantics
(Milner [Mil83,Mil89]) stating that two states in a system represented by LTSs
are equivalent whenever there exists a bisimulation relation that relates them.
A bisimulation relation compares the one-step behavior of two states and has a
nice extension to the probabilistic case (as explored in [LS91]). In [JS90] prob-
abilistic extensions of a number of other well known process equivalences have
been studied like probability trace, completed trace, failure and ready equiva-
lence. Other probabilistic process equivalences are probabilistic simulation and
bisimulation by Segala and Lynch [SL94,Seg95], Yi and Larsen’s testing equiv-
alence [YL92], and CSP equivalences of Morgan et al. [MMSS96], Lowe [Low95]
and Seidel [Sei95]. An overview of several probabilistic process equivalences can
be found in [LN03].

Definition 7. Let 〈S,A,α〉 and 〈T,A,α〉 be two LTSs. A relation R ⊆ S × T
is a bisimulation relation if for all 〈s, t〉 ∈ R and all a ∈ A the following holds

if s
a→ s′ then there exists t′ ∈ T such that t

a→ t′ and 〈s′, t′〉 ∈ R, and
if t

a→ t′ then there exists s′ ∈ S such that s
a→ s′ and 〈s′, t′〉 ∈ R.

Let s ∈ S and t ∈ T . The states s and t are called bisimilar, denoted by s ≈ t
if there exists a bisimulation relation R with 〈s, t〉 ∈ R.

Example 2. For the following LTSs we have, for example, s0 ≈ t0 since R =
{〈s0, t0〉, 〈s0, t2〉, 〈s1, t1〉, 〈s1, t3〉} is a bisimulation.

•s0

!"#$a%&
&&

b

##

•t0

a

##

b && •t1

•s1 •t2

!"#$a%&
&& b && •t3

Remark 1. Instead of comparing states in two systems 〈S,A,α〉 and 〈T,A,β〉 we
can always consider one joined system 〈S + T,A, γ〉 with γ(s) = α(s) for s ∈ S
and γ(t) = β(t) for t ∈ T . Therefore bisimulation can be defined as a relation on
the set of states of a system. Furthermore, if R ⊆ S×S is a bisimulation, then it
is reflexive and symmetric, and the transitive closure of R is also a bisimulation.
Hence bisimilarity ≈ is not affected by the choice of defining bisimulation as an
equivalence.

Definition 8. An equivalence relation R on a set of states S of a LTS is an
equivalence bisimulation if for all 〈s, t〉 ∈ R and all a ∈ A

if s
a→ s′ then ∃t′ ∈ S : t

a→ t′, 〈s′, t′〉 ∈ R

The states s and t are called bisimilar, denoted by s ≈e t if there exists an
equivalence bisimulation R with 〈s, t〉 ∈ R.

By Remark 1, the following proposition holds.

Proposition 2. Let 〈S,A,α〉 and 〈T,A,β〉 be two LTSs, and let s ∈ S, t ∈ T .
Then s ≈ t if and only if s ≈e t.

!
Bisimulation on DA is defined exactly the same as for NA i.e. with Defini-

tion 8.
The standard notion of probabilistic bisimulation is the one introduced by

Larsen and Skou [LS91] originally formulated for reactive systems (see next sub-
section). An early reference to probabilistic bisimulation can be found in [BM89].
In the case of Markov chains, bisimulation corresponds to ordinary lumpability
of Markov chains [KS76,Her98,Buc94]. In [VR99,Vin98] it is shown that the
concrete notion of bismulation for Markov-chains coincides with a general coal-
gebraic notion of bisimulation [Mos99,JR96,Rut00,Mac71].

The idea behind probabilistic bisimulation is as follows. Since bisimilar states
are considered ”the same”, it does not matter which element within a bisimu-
lation class is reached. Hence, a bisimulation relation should compare the prob-
ability to reach an equivalence class and not the probability to reach a single
state. In order to define bisimulation for Markov chains the lifting of a relation
on a state S to a relation on D(S), as defined in Definition 1 and explained with
Proposition 1, is used. Note that the comments of Remark 1 are in place here
as well.

Definition 9. An equivalence relation R on a set of states S of a Markov chain
〈S,α〉 is a bisimulation if and only if for all 〈s, t〉 ∈ R

if s ! µ then there is a transition t ! µ′ with µ ≡R µ′.

The states s and t are called bisimilar, denoted by s ≈ t, if there exists a bisim-
ulation R with 〈s, t〉 ∈ R.

Definition 9 will be used, with some variations, for defining bisimulation
relations for all types of probabilistic automata that we consider in this overview.
However, note that in the case of Markov chains any two states of any two
Markov chains are bisimilar, according to the given definition, since ∇ = S × S
is a bisimulation on the state set of any Markov chain 〈S,α〉. Namely, let 〈S,α〉 be
a Markov chain and s, t ∈ S, such that α(s) = µ,α(t) = µ′, i.e., s ! µ, t ! µ′.
Then for the only equivalence class of ∇, S, we have µ[S] = 1 = µ′[S] i.e.
µ ≡R µ′ which makes s ≈ t. This phenomenon can be explained with the fact

that bisimilarity compares the observable behavior of two states in a system
and the Markov chains are very simple systems in which there is not much to
observe. Therefore the need comes to enrich Markov chains with actions or at
least termination.

Notation In Section 3 we will introduce ten other types of probabilistic au-
tomata, with corresponding notions of bisimulation. In order to avoid repetition
we collect the following.

– A type of automata will always be a triple 〈S,A,α〉 where S is a set of states,
A is a set of actions and α is a transition function. The difference between
the system types is expressed with the difference in the codomains of the
corresponding transition functions.

– A bisimulation relation will always be defined as an equivalence on the set
of states of a system. Depending on the type of systems the “transfer condi-
tions” in the definition of bisimulation vary.

– For a particular type of system, the bisimilarity relation, denoted by ≈ is
defined by: s ≈ t if and only if there exists a bisimulation R that relates s
and t, i.e. 〈s, t〉 ∈ R. Although we use the same notation ≈ for bisimilarity
in different types of systems, it should be clear that for each type of systems,
≈ is a different relation.

2.3 Parallel composition of LTSs and MCs

Compositional operators serve the need of modular specification and verifica-
tion of systems. They arise from process calculi, such as CCS ([Mil89]), CSP
([Hoa85]) and ACP ([BK85]), where process terms (models of processes) are
built from atomic process terms with the use of compositional operators. Usually
a model of a process calculi is a suitable class of transition systems. Therefore
it is often the case that process terms are identified with their corresponding
transition systems, and the compositional operators of the process calculus can
be considered as operators for combining transition systems. In this overview we
focus on the parallel composition operator. The definition of parallel composi-
tion varies a lot throughout different process calculi. In this section we consider
the non-probabilistic case (LTSs) in order to explain variants of different parallel
compositions, and the parallel composition of Markov chains in order to present
the basics of probabilistic parallel composition.

Labelled transition systems A major distinction between different paral-
lel composition operators is whether they are synchronous, where the compo-
nents are forced to synchronize whenever they can, or asynchronous where the
components can either synchronize or act independently. Furthermore, differ-
ent approaches for synchronization exist. The result of the parallel composi-
tion of two automata A1 = 〈S1, A,α1〉 and A2 = 〈S2, A,α2〉 is an automaton
A1‖A2 = 〈S1 × S2, A,α〉 where the definition of α varies. Instead of a pair

〈s, t〉 ∈ S1×S2 we will write s‖t for a state in the composed automaton. Through-
out this subsection we will use as running example, the parallel composition of
the following two automata.

s0'(%&
a

#$ &&

t0
a

!!!!
!!

!!
ā
##

b

"""
""

""
"

t1 t2 t3

a
##

t4
CCS style: The set of actions in this case contains compatible actions a, ā ∈ A
and a special idle or internal action τ ∈ A. If one of the automata in state s
can perform an action a changing to a state s′ and the other one in state t
can perform a’s compatible action ā moving to state t′ then the composite
automaton in state s‖t can perform the idle action τ and move to state s′‖t′.
Furthermore, independent behavior of each of the automata is possible within
the composed automaton.

s‖t a→ s′‖t′ if and only if

1. s
b→ s′, t

b̄→ t′, a = τ , for b
and b̄ compatible actions, or

2. s
a→ s′ and t′ = t, or

3. t
a→ t′ and s′ = s.

s0‖t0
#$!"a'(

%%

a

''########
τ

##
ā

##

b

(($
$$$$$$$

s0‖t1'(%&
a

#$ && s0‖t2'(%&
a

#$ && s0‖t3
#$!"a'(

%%

a

##
s0‖t4%& '(

a

!"%%

The presented CCS parallel composition is asynchronous. A synchronous variant
(SCCS [Mil83]) is defined by omitting clauses 2. and 3. in the definition above.

CSP style: Communication or synchronization in a CSP style parallel compo-
sition occurs on a set of synchronizing actions. Thus actions that are intended
to synchronize are listed in a set L ⊆ A and the rest of the actions can be
performed independently.

s‖Lt
a→ s′‖t′ if and only if

1. s
a→ s′ and t

a→ t′ and a ∈ L, or
2. s

a→ s′, t = t′ and a /∈ L, or
3. t

a→ t′, s = s′ and a /∈ L.

L = {a} s0‖t0
a

))%%%%%%%%%
ā

##

b

(($
$$$$$$$

s0‖t1 s0‖t2 s0‖t3

a

##
s0‖t4

This type of parallel composition operator is synchronous for L = A, expresses
only interleaving (shuffling) composition if L = ∅ and is never fully asynchronous

with both independent behavior and communication allowed. An asynchronous
CSP style parallel composition can be defined by omitting the clause “a /∈ L”
in clauses 2. and 3. above. In case of different action sets A1 and A2, of the two
component automata, L is taken to be a subset of A1 ∩A2. If L = A1 ∩A2 then
we say that synchronization on common actions occurs.

ACP style: In ACP, parallel composition is fully asynchronous, allowing both
interleaving (independent behavior) and synchronization via a communication
function. A communication function is a commutative and associative partial
function γ : A×A ↪→ A. Instead of γ(a, b) we will write ab.

s‖t a→ s′‖t′ if and only if

1. s
b→ s′ and t

c→ t′ with
bc = a defined, or

2. s
a→ s′, t = t′, or

3. t
a→ t′, s = s′.

aa = c; ab = a s0‖t0
#$!"a'(

%%

a

**&&&&&&&&&&

c
**&&&&&&&&&&

ā

##
a

(($
$$$$$$$

b

(($
$$$$$$$

s0‖t1'(%&
a

#$ && s0‖t2'(%&
a

#$ && s0‖t3
#$!"a'(

%%

a

##
c

##
s0‖t4%& '(

a

!"%%

Note that if A contains compatible actions and an idle action τ , and if aā = τ
for any compatible a, ā ∈ A and undefined otherwise, then the ACP parallel
composition operator specializes to the CCS parallel composition operator. On
the other hand, for aa = a, (a ∈ L ⊆ A) we get the asynchronous variant of
the CSP parallel composition operator. If clauses 2. and 3. are dropped from
the definition, we get a synchronous variant of the ACP parallel composition
operator called communication merge.

Markov chains Let M1 = 〈S1,α1〉,M2 = 〈S2,α2〉 be two Markov chains.
Their parallel product is the Markov chain M1‖M2 = 〈S1 × S2,α〉, where
α(s‖t) = α1(s)×α2(t), × denoting the product of distributions. Hence s‖t ! µ
if and only if s ! µ1, t ! µ2 and µ = µ1 × µ2.

s01
2

++
'(
'(

1
2

,,
)*
)*

s1 s2

t01
3

!! !"
!"

2
3

""#$
#$

t1 t2

s0‖t01
6

-- +,
+, +,

+, +,
+,

1
6

.. -.
-.
-.

1
3

///0
/0

/0
1
3

0012
1212

1212
12

s1‖t1 s2‖t1 s1‖t2 s2‖t2

Note that the parallel composition of two Markov chains is synchronous, since
each step in the composed automaton consists of independent steps performed
by each of the components. The way of defining the product of two distribu-
tions goes in favor of the interpretation that when put in parallel, each of the
automata independently chooses its transition that contributes to a transition
in the composed automaton.

3 Probabilistic models

This section defines the advanced types of probabilistic automata. The automata
types are grouped in several subsections reflecting their common properties.
Basically, every type of probabilistic automata arises from the plain definition of
a transition system with or without labels. Probabilities can then be added either
to every transition, or to transitions labelled with the same action, or there can
be a distinction between probabilistic and ordinary (non-deterministic) states,
where only the former ones include probabilistic information, or the transition
function can be equipped with structure that provides both non-determinism
and probability distributions.

Each kind of probabilistic automata comes equipped with a notion of bisimu-
lation, and all these notions, frequently only subtly different, will also find their
way in this section.

3.1 Reactive, generative and I/O probabilistic automata

Two classical extensions of LTSs with probabilities are the reactive and
the generative model. Throughout the years a large amount of research
has been devoted to reactive and generative probabilistic systems. It
is hard to note who introduced these systems first, but the reactive
model was treated e.g. in [LS91,LS92,GSST90,GSS95], the generative in
e.g. [GSST90,GSS95,Har02,HV02,CSZ92,Chr90,CC91], and the classification
of these systems together with a so-called stratified model was proposed in
[GSS95,GSST90].

The way these models arise from LTSs, by changing the transition function,
can be explained with the following figure, where α denotes the transition func-
tion of a LTS, αr and αg the transition function of a reactive and a generative
system, respectively.

αr : S → (D(S) + 1)A)* +,-. /0 α : S → P(S)A11)* +,

-. /0

P → D + 1

22
P → D + 1

33

α : S → P(A× S) 44 αg : S → D(A× S) + 1)* +,-. /0

Definition 10. A reactive probabilistic automaton is a triple 〈S,A,α〉 where the
transition function is given by

α : S → (D(S) + 1)A.

If s ∈ S and α(s)(a) = µa then we write s
a→! µa. More specifically, if

s′ ∈ spt(µa), µa(s′) = p we write s
a[p]
! s′.

A generative probabilistic automaton is a triple 〈S,A,α〉 with a transition
function

α : S → D(A× S) + 1.

When s ∈ S and α(s) = µ ∈ D(A× S) then we write s ! µ. More particularly,

if 〈a, s′〉 ∈ spt(µ) with µ(〈a, s′〉) = p we write s
a[p]
! s′. We use s)! to denote

that α(s) = ∗.

Remark 2. In Definition 10 both uses of the special singleton set 1 appear. The
first one, as in Definition 5 helps expressing partial functions. The second one,
in the definition of generative transition function, expresses the possibility of
termination. If s is a state in a generative system with α(s) = ∗ then s is a
terminating state allowing no transition. For LTSs, termination is allowed by
the fact that ∅ ∈ P(A×S). Hence, when changing from subsets to distributions,
∗ is added to play the role of the ∅.

•

a[23]

34

##
34

a[13]

++ '(
'(
'(
'(
'(

b[1]

,,)*
)*

)*
)*

)*

•

b[1]

34
34
34
34

• •

a[1]

34
34
34
34

• •

•

a[14]

34

##
34

a[12]

++ '(
'(
'(
'(
'(

b[14]

,,)*
)*

)*
)*

)*

• •

c[1]

34
34
34
34

•

c[1]

34
34
34
34

• •
Reactive system Generative system

In a reactive system probabilities are distributed over the outgoing transi-
tions labelled with the same action, while in a generative system probabilities
are distributed over all outgoing transitions from a state. A motivation for mak-
ing this distinction is the different treatment of actions. In a reactive system
actions are treated as input actions being provided by the environment. When
a reactive system receives input from the environment then it acts probabilisti-
cally by choosing the next state according to a probability distribution assigned
to this input. There are no probabilistic assumptions about the behavior of the
environment. On the other hand, in a generative system, as the name suggests,
actions are treated as output generated by the system. When a generative sys-
tem is in a state s it chooses the next transition according to the probability
distribution α(s) assigned to s. The transition being chosen, the system moves
to another state while generating the output action which labels this transition.
Note that in a generative system there is no non-determinism present, while in a
reactive system there is only external non-determinism, as in DA. We denote by
React and Gen the classes of reactive and generative probabilistic automata,
respectively.

Definition 11. An equivalence relation R on S is a bisimulation on the reactive
probabilistic automaton 〈S,A,α〉 if for all 〈s, t〉 ∈ R and for all actions a ∈ A:

if s
a→! µ then there exists a distribution µ′ with t

a→! µ′ and µ ≡R µ′.

In order to state the definition of bisimulation for generative systems, the
lifting from Definition 2 is used.

Definition 12. An equivalence relation R on S is a bisimulation on the gener-
ative probabilistic automaton 〈S,A,α〉 if for all 〈s, t〉 ∈ R:

if s!µ then there exists a distribution µ′ with t ! µ′ and µ ≡R,A µ′.

Example 3. The equivalence relation R generated by the pairs 〈C,D〉, 〈H, 1〉,
〈H, 3〉, 〈H, 5〉, 〈T, 2〉, 〈T, 4〉, 〈T, 6〉 is a bisimulation for the probabilistic automa-
ton given below. Hence, C ≈ D. Note that this particular automaton belongs to
both React and Gen.

•C

a[12]

!! !"
!"
!"
!"
!"

a[12]

""#$
#$

#$
#$

#$

•D

a[16]
!! !"
!"
!"
!"
!"

a[16]
56 56

56

** 56
56 56

a[16]

55 78 78
78 78

78 78
78 78

78 78
78 78

78

a[16]
""#$

#$
#$
#$
#$

a[16]
9:9:

9:

669:
9:9:

a[16]

77;<;<
;<;<

;<;<
;<;<

;<;<
;<;<

;<

•H •T •1 •3 •5 •2 •4 •6

An intuitive interpretation of this example is obtained by adding meaning “flip”
to the action a in the left sub-automaton and a meaning “roll” to the action a
in the right sub-automaton. Then the state C represents flipping of a fair coin,
and the state D represents rolling a fair dice. The bisimilarity of the states C
and D shows that it is the same whether one flips a fair coin or rolls a fair dice
being interested only in whether the outcome is odd or even.

I/O probabilistic automata The model of input/output probabilistic au-
tomata, introduced by Wu, Smolka and Stark in [WSS97], exploiting the in-
put/output automata by Lynch and Tuttle, (cf. [LT87]), presents a combination
of the reactive and the generative model.

Definition 13. An input/output probabilistic automaton is a triple 〈S,A,α〉
where

1. the set of actions A is divided into input and output actions, A = Ain+Aout;
2. α : S → D(S)Ain × (D(Aout × S) + 1)× R≥0 is the transition function.

The third component in the transition function assigns an output delay rate to
each state. If s ∈ S, then α(s) = 〈f in, µout, δs〉. We have that δs = 0 iff µout = ∗
i.e. delay is assigned only to states that generate output.

Denote the class of I/O automata by IO. We use a similar notation for
transitions as in the reactive and the generative model. If s ∈ S with α(s) =
〈f in, µout, δs〉 then

– if a ∈ Ain with f in(a) = µa we write s
a→! µa, furthermore, if s′ ∈ spt(µa)

with µa(s′) = p we write s
a[p]
! s′.

– if µout)= ∗ we write s ! µout and if µout(a, s′) = p > 0 we write s
a[p]
! s′.

•
a[1]

-- +,
+, +,

+, +,
+, +,

+, +,
+, +,

b[14]
=>
=>

88 =>
=>

b[34]

34

##
34

c[13]
?@

?@

99?@
?@

d[23]

0012
1212

1212
1212

1212
1212

• • • • •
transitions from a state in an I/O probabilistic automaton

Ain = {a, b}, Aout = {c, d}

In an I/O automaton for every input action there is a reactive transition.
Note that f in is always a function and not a partial function as in the reactive
model. Hence each input action is enabled in each state of an I/O probabilistic
automaton. The output actions are treated generatively. At most one generative
probabilistic transition gives the output behavior of each state. The delay rate
parameter δs is an aspect from continuous-time systems, and its meaning will
become clear in section 4 when we discuss compositions of I/O automata.

The I/O automata will not be compared and placed in the hierarchy of
section 5 since they involve a continuous element. It is obvious that, when ig-
noring the 0 delays, for Aout = ∅ one gets the reactive model (with all actions
enabled) and for Ain = ∅ one gets the generative model with a delay rate as-
signed to each state. A connection exists between I/O automata and some models
with structured transition relation (section 3.3). Combined systems similar to
I/O automata appear as models of process terms in the process algebra EMPA
[Ber99,BG98].

Since we do not compare I/O automata in Section 4, we do not need a notion
of bisimulation for them, although it can be defined by combining the transfer
conditions for reactive and generative bisimulation, and taking care of the delay
rate. In [WSS97] no notion of bisimulation is introduced, instead a different
notion of behavior of I/O automata is considered. A definition of bisumulation
for I/O automata can be found in [SCS03].

3.2 Automata with distinction between states

So far we have seen some types of automata that allow modelling of proba-
bilistic behavior, but none of those has the capability of also modelling full
non-determinism. The types of systems introduced in a minute allow full non-
determinism while making a distinction between probabilistic states with out-
going probabilistic transitions, and non-deterministic states with action labelled
transitions.

Stratified probabilistic automata The simplest system with a distinction
on states appears under the name of stratified probabilistic automaton, and is
discussed in [GSS95,GSST90,SS90,HV98]. Stratified automata do not yet allow
any form of non-determinism although there is a distinction on states.

Definition 14. A stratified probabilistic automaton is a triple 〈S,A,α〉 where
the transition function α is given by

α : S → D(S) + (A× S) + 1

The class of all stratified automata we denote by Str. Due to the disjoint
union in the codomain of the transition function, there are three types of states
in a stratified automaton: probabilistic states consisting of s ∈ S such that
α(s) ∈ D(S), deterministic states s ∈ S for which α(s) = 〈a, s′〉 allowing a single
action labelled transition and terminating states s ∈ S with α(s) = ∗.

Definition 15. An equivalence relation R on S is a bisimulation on the strati-
fied probabilistic automaton 〈S,A,α〉 if for all 〈s, t〉 ∈ R:

1. if s!µ then there exists a distribution µ′ with t ! µ′ and µ ≡R µ′;
2. if s

a→ s′ then there exists t′ such that t
a→ t′ and 〈s′, t′〉 ∈ R.

Vardi probabilistic automata One of the earliest models of probabilistic
automata was introduced by Vardi in [Var85] under the name concurrent Markov
chains. The original definition of a concurrent Markov chain was given in terms of
state labelled transition systems, for purposes of verification of logical properties.
Therefore we slightly modify the definition, calling this class of automata Vardi
probabilistic automata.

Definition 16. A Vardi probabilistic automaton is a triple 〈S,A,α〉 where the
transition function α is given by

α : S → D(A× S) ∪ P(A× S)

◦
a[14]

!!
!"
!"
!" b[34]

""
#$

#$
#$

•
b
##

a

!!!!
!!

!!
◦

a[12]
##
34
34 a[12]

""
#$

#$
#$

• • • •
Vardi probabilistic automaton

Remark 3. Note that ∪ is used in Definition 16 rather than +. One could consider
the union disjoint, but it is of more use to identify µ1

〈a,s′〉 with the singleton

{〈a, s′〉}, i.e. a state with a transition s
a[1]
! s′ can be identified with a state

allowing only one transition s
a→ s′.

In Vardi automata, the probabilistic states are of a generative kind, while
the other states are non-deterministic with full non-determinism, as in an LTS.
Therefore, the definition of bisimulation is a combination of Definition 8 and
Definition 12.

Definition 17. An equivalence relation R on S is a bisimulation on the Vardi
probabilistic automaton 〈S,A,α〉 if for all 〈s, t〉 ∈ R:

1. if s!µ then there exists a distribution µ′ with t ! µ′ and µ ≡R,A µ′;
2. if s

a→ s′ then there exists t′ such that t
a→ t′ and 〈s′, t′〉 ∈ R.

Remark 4. We note that in the literature, in particular in [Var85], there is no
definition of bisimulation. However, the current understanding of probabilistic
bisimulation, and the concept of a general coalgebraic definition of bisimulation
allows us to state the previous definition.

We denote the class of Vardi probabilistic automata by Var.

The alternating models of Hansson Another model that treats separately
(purely) probabilistic and non-deterministic states is the alternating model in-
troduced by Hansson, see for example [Han91,HJ94]. We present the class of
alternating probabilistic automata Alt, its subclass of strictly alternating prob-
abilistic automata SA and, in turn, two subclasses of SA, denoted by SAn and
SAp.

Definition 18. An alternating probabilistic automaton is a triple 〈S,A,α〉
where

α : S → D(S) + P(A× S).

The class of alternating automata is denoted by Alt. Denote by N and P the
subsets of S containing non-deterministic and probabilistic states, respectively.

A strictly alternating automaton is an alternating automaton where for all s ∈ S
the following holds:

1. if s ∈ P with α(s) = µ ∈ D(S) then spt(µ) ⊆ N ;
2. if s ∈ N then for all 〈a, s′〉 ∈ α(s), s′ ∈ P .

The class of all strictly alternating automata is denoted by SA.

An automaton of SA belongs to SAn if and only if

∀s ∈ S : (∀s′ ∈ S,∀a ∈ A,∀p ∈ [0, 1] : s′
p

)! s ∧ s′
a
)→ s) ⇒ s ∈ N. (1)

An automaton of SA belongs to SAp if and only if

∀s ∈ S : (∀s′ ∈ S,∀a ∈ A,∀p ∈ [0, 1] : s′
p

)! s ∧ s′
a
)→ s) ⇒ s ∈ P. (2)

The well known of these classes are the class SA [Han91,HJ94] and the
class SAn [And99,And02], but we have chosen for presenting all these classes
structurally. The class Alt is a slight generalization of the class SA and is very
much similar to the stratified and Vardi models. Therefore it deserves its place
in this overview. In an alternating automaton only a distinction on states is
imposed. In the strictly alternating model it is required that all successors of
a non-deterministic state are probabilistic states and vice versa. Furthermore,
the two subclasses SAn and SAp take care that any “initial state” is non-
deterministic (1) and probabilistic (2), respectively. We define the subclasses
SAn and SAp in order to make a precise comparison of the class SA with some
of the other models (section 5).

◦
1
4

!!
!"
!"
!" 3

4

""
#$

#$
#$

•
b
##

a

!!!!
!!

!!
◦

1
2
##
34
34

1
2

""
#$

#$
#$

• • • •

•
a

!!!!
!!

!! b

"""
""

""
"

◦
1
4
##
34
34

3
4

!!
!"
!"
!"

◦
1
2
##
34
34

1
2

""
#$

#$
#$

• • • •
alternating probabilistic automaton strictly alternating automaton (SAn)

One definition of bisimulation fits all the introduced classes of alternating
automata, where the transfer conditions are exactly the same as for the stratified
model, given in Definition 15.

3.3 Probabilistic automata with structured transition function

In this subsection we focus on three types of probabilistic automata that pro-
vide orthogonal coexistence of full non-determinism and probabilities without
distinguishing between states.

Segala and simple Segala probabilistic automata Two types of prob-
abilistic automata were introduced by Segala and Lynch in [SL94,Seg95].
We call them Segala probabilistic automata and simple Segala proba-
bilistic automata. An extensive overview of the simple Segala model is
given in [Sto02a,Sto02b] and they have been used for verification pur-
poses and developing theoretical results in several situations as reported in
[SV99,SV03,BS00,Bai96,BEMC99,BK00,BK97,JY02,KN98].

Definition 19. A Segala probabilistic automaton is a triple 〈S,A,α〉 where

α : S → P(D(A× S))

If s ∈ S such that µ ∈ α(s) we write s →! µ, and if 〈a, s′〉 ∈ spt(µ) with

µ(a, s′) = p then we write s→a[p]
! s′.

A simple Segala probabilistic automaton 1 is a triple 〈S,A,α〉 for a transition
function

α : S → P(A×D(S))

If s ∈ S with 〈a, µ〉 ∈ α(s) then we write s
a→! µ, and if s′ ∈ spt(µ) we write

s
a→ p

! s′.

The simple Segala type of systems arise from NA by changing the target
state with a distribution over possible target states. A transition in a simple
Segala automaton and in a Segala automaton is shown in the next figure.

1 Segala and Lynch call these models probabilistic automaton (PA) and simple prob-
abilistic automaton, while Stoelinga calls them general PA and PA, respectively.

•
a

##
1
2

:: AB
AB
AB
AB
AB

1
4
##
34
34
34 1

4

;;CD
CD

CD
CD

CD

• • •

•

##

a[14]

88 =>
=>
=>
=>
=>

a[12]

##
34
34
34 b[14]

99?@
?@

?@
?@

?@

• • •
simple Segala transition Segala transition

There can be more then one transition available in a state and that is
where non-determinism occurs. Hence, the non-deterministic choices exist be-
tween transitions, while the probabilities are specified within a transition. In
the original definition by Segala and Lynch distributions over an extended set
A×S +1 (or over S +1 in the simple case) were treated i.e. substochastic distri-
butions, where the probability assigned to the special symbol ∗ was interpreted
as the deadlock probability. We choose not to include this in the definition for
two reasons: it disturbs the comparison (Section 4) since the other models do not
include substochastic distributions, and it can be imitated by adding an extra
deadlock state to a system.

We denote the class of Segala probabilistic automata by Seg and the class
of simple Segala automata by SSeg.

The simple Segala automaton is a generalization towards full non-
determinism of the reactive model and of the purely probabilistic automata of
Rabin [Rab63]. A deterministic version of the simple Segala automaton equiva-
lent to the reactive model is known as Markov decision process ([Der70]), while
the name probabilistic transition system is used for this model in [JLY01] and
for a state labelled version in [DJJL01,DJJL02]. A comparison of SAn and the
simple Segala model can be found in [BS01].

Bisimulation for the simple Segala systems is defined with the same transfer
conditions as for reactive systems given in Definition 11, while for the Segala
systems the transfer conditions for bisimulation of Definition 12 for generative
systems apply, when changing ! to →!.

A great novelty introduced with both types of Segala systems was the defi-
nition of a stronger probabilistic bisimulation relation that identifies states that
have matching “combined transitions”. For more information on this topic the
interested reader is referred to [SL94,Seg95,Sto02a,Sto02b,BS00].

Bundle probabilistic automata Another way to include both non-
determinism and probability is to consider distributions over sets of transitions
as in the bundle model, introduced in [DHK98]. (Recall that Segala systems have
sets of distributions over transitions.)

Definition 20. A bundle probabilistic automaton is a triple 〈S,A,α〉 where

α : S → D(P(A× S)) + 1

When s ∈ S and α(s) = µ we write s ! µ, furthermore, if T ⊆ A× S, µ(T) =
p > 0 we write s

p
! T and if 〈a, t〉 ∈ T then s

p
!

a→ t.

The bundle model can be considered as generative, since probabilities are
also distributed over actions. Therefore the bundle model offers a solution to
the absence of non-determinism in the generative setting. Note that the original
definition is even slightly more general, namely the codomain of the transition
function is D(M(A × S)) where M(X) denotes all the (finite) multi-subsets
of a set X. Hence it is possible to have multiple transitions from one state to
another with the same action within one bundle. Since it is not essential for
the material presented here, we will not add multi-sets in the bundle model.
The class of bundle probabilistic automata is denoted by Bun. A typical bundle
probabilistic automaton is depicted below:

•
1
4

++
'(
'(
'(

3
4

,,
)*

)*
)*

a
##

a

++''
''

'' b

,,(
((

((
(

a
##

b

,,(
((

((
(

• • • • •
bundle probabilistic automaton

In the literature, in particular in [DHK98], there is no definition of bisimu-
lation on bundle probabilistic automata, instead they are transformed to gener-
ative systems and then compared with generative bisimulation. We give here a
definition of bisimulation for the bundle probabilistic automata that is deduced
from the general coalgebraic definition of bisimulation (cf. [JR96,Rut00,Mos99]).
A justification for doing so is that all previously stated definitions of bisimulation
which were based on the probabilistic bisimulation of Larsen and Skou [LS91]
coincide with the general coalgebraic definition of bisimulation for the particu-
lar type of systems. In the non-probabilistic case this coincidence is well known
(see e.g. [Rut00]). For Markov chains it was proven in [VR99], for the Segala
probabilistic automata in [BSV03] and the same proof technique extends to all
other cases.

Prior to stating the definition we need a way to lift a relation on a set S to
a relation on the set P(A× S).

Definition 21. Let R be a relation on S and let X, Y ∈ P(A × S). Define
X ≡R,P Y if and only if for all a ∈ A:

1. if 〈a, x〉 ∈ X then there exists 〈a, y〉 ∈ Y with 〈x, y〉 ∈ R;
2. if 〈a, y〉 ∈ Y then there exists 〈a, x〉 ∈ X with 〈x, y〉 ∈ R.

It holds that, if R is an equivalence on S, then ≡R,P is an equivalence on
P(A× S).

Definition 22. An equivalence relation R is a bisimulation on the state set of
a bundle probabilistic automaton 〈S,A,α〉 if for all 〈s, t〉 ∈ R it holds

if s ! µ then there exists µ′ such that t ! µ′ and µ ≡≡R,P µ′

where ≡≡R,P denotes the lifting of the relation ≡R,P to distributions on P(A×S)
as defined by Definition 1.

3.4 Complex models - Pnueli-Zuck and general probabilistic
automata

An early model including probabilities and a structured transition relation was
proposed by Pnueli and Zuck [PZ86,PZ93] under the name finite-state probabilis-
tic programs and later used in [BA95]. We call this type of automata Pnueli-Zuck
probabilistic automata, and denote the class of all such by PZ2. The model of
Pnueli and Zuck has the most complex transition function, it adds one more
power set to the bundle model and so allows two types of non-determinism,
both between the probabilistic transitions and inside the transitions. However,
in order to get a top element for our hierarchy (section 5) we expand the model
a bit further and define one most general type of probabilistic automata. The
class of such will be denoted by MG.

Definition 23. A Pnueli-Zuck automaton is a triple 〈S,A,α〉 where

α : S → P(D(P(A× S)))

When s ∈ S and µ ∈ α(s) we write s →! µ, further on, if T ⊆ A× S, µ(T) =
p > 0 we write s→ p

! T and if 〈a, t〉 ∈ T then s→ p
!

a→ t. A general probabilistic
automaton is a triple 〈S,A,α〉 where

α : S → P(D(P(A× S + S)))

The notation for Pnueli-Zuck automata is also used for general automata. Fur-
thermore, if s ∈ S, µ ∈ α(s), T ⊆ A× S + S with µ(T) = p > 0 and t ∈ T , then
we write s → p

!→ t.
•

<<))
))

))

==*
**

**
*

1
4

>>
EF
EF
EF

3
4
##
34
34 1

3
##
34
34

2
3

??
GH
GH
GH

a

<<))
))

))
b
##

b
##

a
##

a
##

b

==*
**

**
*

• • • • • •

•

==*
**

**
*

<<))
))

))

1
4

>>
EF
EF
EF

3
4
##
34
34 1

3
##
34
34

2
3

??
GH
GH
GH

<<))
))

))
b
##

a
##

b

==*
**

**
*

• • • • • •
Pnueli-Zuck system most general system

The unlabelled transitions which appear in the right figure (most general
system) correspond to pure probabilistic transitions in Markov chains or alter-
nating systems, where a change of state can happen with certain probability
without performing an action.

As for bundle systems, there is no notion of bisimulation for Pnueli-Zuck
systems in the literature. A bisimulation definition can be formulated out of the
general coalgebraic definition, and it leads the same transfer conditions as in
Definition 22 when changing ! to →!. A small modification is needed for the
general probabilistic automata.
2 Like Vardi’s model, these automata appear in the literature in a state labelled version

for model checking purposes. Therefore we change the definition towards transition
labels.

4 Composing probabilistic systems in parallel

Having introduced the probabilistic models, we consider possible definitions of
the parallel composition operator for these extended systems. Lots of results on
this topic exist in the literature. For a broad overview the reader is referred
to [DHK98,Bai98]. An overview of probabilistic process algebras covering other
probabilistic operators as well is presented in [LN03].

For the classes MC and IO there is a unique parallel composition defined.
In MC this operation is purely synchronous given by the product of distribu-
tions (cf. Section 2.3), whereas in IO the definition of the parallel composition
operation strongly relies on the specific structure of the systems (cf. Section 4.3
below). For all other classes it is meaningful to consider various definitions of
parallel composition. Such operations might be synchronous or asynchronous in
nature and moreover might be based upon the styles CCS, CSP and ACP de-
scribed in Section 2. The style CSP plays a special role in this respect since it
is by its definition partly synchronous and partly asynchronous and hence gives
rise to a somehow mixed variant of parallel composition.

The classes of (probabilistic) systems can be divided into three groups depen-
dent on whether they show reactive, generative or alternating behavior. Classes
belonging to the same of these groups allow in essence similar definition and
investigation of parallel composition.

Instead of going through all, obviously quite numerous, variants of parallel
composition for each single class of systems, we shall in the subsequent sections
4.1, 4.2 and 4.4. discuss a couple of instructive cases in some detail. However,
let us give a complete scheme of possible (and/or already studied) definitions of
parallel composition operator by means of a comprehensive table. In the table
below each column is dedicated to one class of probabilistic automata, and each
row to one of the introduced styles of parallel composition. In the intersecting
cells a symbol representing the definability status of the corresponding parallel
composition operator in the corresponding class is placed. Neighboring cells con-
taining the same symbol within one column are merged. We use the following
symbols:

+++ : defined in the literature or straightforward
+: definable but not carried out
−: not definable
p: defined in the literature with parameters
p: parameterized version definable, but not carried out
n: normalized version definable, but not carried out
+/n: “+” for total communication function, “n” otherwise

Table 1 presents the overall situation concerning definability of parallel com-
position on probabilistic automata. A brief analysis of these summary results
shows that allowing full non-determinism enables definition of any type of par-
allel composition.

- - - - - generative - - - - -

- - - reactive - - - - - - alternating - - -

DA NA React SSeg Gen Seg Bun PZ MG Var Alt,SA, .. Str

sy
n
c CCS −

+++
−

+++
n n

+++ + +
n

+++ +++CSP +++ +++ n n n
ACP − − +++/n +/n +/n

CSP − +++ − +++ p p +++ + + p +++ −

as
y
n
c CCS

− +++ − +++ p p +++ + + p +++ −CSP
ACP

Table 1. Definability of ‖

4.1 Parallel composition in the reactive setting

Systems with reactive behavior are systems in the classes React and SSeg,
as well as NA and DA in the non-probabilistic case. Any parallel compo-
sition operator on LTS (Section 2.3.) nicely extends to the class SSeg. Let
A1 = 〈S1, A,α1〉,A2 = 〈S2, A,α2〉 be in SSeg. Then A1‖A2 = 〈S1 × S2, A,α〉
where α is defined as follows:

[CCS style]: s‖t a→! µ if and only if

1. a = τ , s
b→! µ1, t

b̄→! µ2 and µ = µ1 × µ2, or
2. s

a→! µ1 and µ = µ1 × µ1
t , or

3. t
a→! µ2 and µ = µ1

s × µ2.

[CSP style]: s‖Lt
a→! µ if and only if

1. a ∈ L, s
a→! µ1, t

a→! µ2 and µ = µ1 × µ2, or
2. a /∈ L, s

a→! µ1 and µ = µ1 × µ1
t , or

3. a /∈ L, t
a→! µ2 and µ = µ1

s × µ2.

[ACP style]: s‖t a→! µ if and only if

1. a = bc defined, s
b→! µ1, t

c→! µ2 and µ = µ1 × µ2, or
2. s

a→! µ1 and µ = µ1 × µ1
t , or

3. t
a→! µ2 and µ = µ1

s × µ2.

The definition of any of these operators is problematic for the class React.
For A1,A2 ∈ React it might happen that A1‖A2 /∈ React in any variant of
parallel composition. Even in the synchronous CCS style, multiple transitions
labelled with τ may appear. In the CSP style, 2. and 3. may introduce internal
non-determinism. However, if L contains all the common actions of A1 and
A2, then this problem disappears. In case of ACP all of 1., 2. and 3. introduce

internal non-determinism, hence React is not closed under this operator for
any arbitrary communication function γ3. For example, if ab = ac = a then the
ACP parallel product of the following two automata

s0

a[1]
##
34
34

s1

t0
b[1]

:: AB
AB
AB
AB

a[1]
##
34
34 c[1]

;;CD
CD

CD
CD

t1 t2 t3

is not defined in React, since the definition yields: s0‖t0
a→ !µ1

x for x ∈
{s1‖t0, s0‖t2, s1‖t1, s1‖t3} i.e. more than one transition corresponds to the ac-
tion a, which is prohibited in React.

An asynchronous parallel composition in CCS style on simple Segala sys-
tems was defined in [BK00], a synchronous parallel composition in CCS style
on reactive systems was defined in [GSST90,GSS95,JLY01], the last reference
working with simple Segala systems. A synchronous CSP style parallel composi-
tion is defined for reactive systems in [JY02,Nor97], while an asynchronous CSP
style parallel composition with synchronization on common actions is used in
[SL94,Seg95,Sto02a] for simple Segala systems.

4.2 Parallel composition in the generative setting

Systems with generative behavior belong to the classes Gen, Var, Seg, Bun,
PZ and MG. The Vardi systems express also alternating behavior and they
will be discussed with the alternating systems. A common property of the gen-
erative systems is that always probability distributions over actions and states
appear. This leads to difficulties in defining parallel composition operators (see
[Han91,CSZ92,Seg95,DHK98]), especially in the asynchronous case. Namely, a
generative type system defines in each state a probability distribution over a set
of enabled actions, offered by the environment. When two such systems are com-
posed in parallel it is not clear how the common set of enabled actions should
be defined, nor how the two probability distributions should be composed into
one (cf. [JLY01]). In this section we explain several approaches for solving this
problem.

Let A1 = 〈S1, A,α1〉,A2 = 〈S2, A,α2〉 be two generative systems. Their
parallel composition in all cases will be denoted by A1‖A2 = 〈S1 × S2, A,α〉,
possibly with parameters.

Synchronous CCS, CSP, ACP style parallel composition can be defined on
generative systems, as done in [GSST90,GSS95,DHK98] by:

s
a[p]
! s′, t

b[q]
! t′ ⇐⇒ s‖t ab[pq]

! s′‖t′

3 The same problems arise in the class DA opposed to NA, namely parallel compo-
sition introduces internal non-determinism, and therefore DA is not closed under
‖.

where the set of actions is assumed to form a commutative semigroup (PCCS,
[GJS90]) and ab stands for the product of a and b in A(·).

The following figure presents an example of synchronous parallel composition
of two generative systems.

s0
a[12]

88
=>
=>

b[12]

99
?@

?@

s1 s2

t0
a[13]

++
'(
'(c[23]

,,
)*
)*

t1 t2

s1‖t1 s0‖t0
aa[16]
%% %&

ba[16])) IJ
IJ
IJ

ac[13] @@KL
KL

KL

bc[13]
&&&% s2‖t2

s2‖t1 s1‖t2
A1 A2 A1‖A2

In order to capture possible asynchronous behavior, several parallel compo-
sition operators were defined in the literature that use bias factors. In most
of the cases the composition is not symmetric. Namely, the main problem in
defining asynchronous parallel composition is that any definition introduces
non-determinism. In the proposed solutions, these non-deterministic choices are
changed to probabilistic ones, by specifying parameters of the parallel composi-
tion.

An ACP style parallel composition operator for generative systems was
defined in [BBS95]. The definition follows the non-probabilistic definition of
the ACP parallel operator, while changing the non-deterministic choices intro-
duced by interleaving and/or communication into corresponding probabilistic
choices. The operator is parameterized with two parameters σ and θ, denoted
by A1‖σ,θA2. In the product state s‖σ,θt, synchronization between s and t can
occur with probability 1−θ and an autonomous action of either s or t with prob-
ability θ. Furthermore, given that an autonomous move occurs, then it comes
from s with probability σ and from t with probability 1− σ. For definability of
A1‖σ,θA2 it is necessary that the communication function is a total function.

We define s‖σ,θt
a[P]
! s′‖σ,θt′ if and only if

1. s
b[p]
! s′ and t

c[q]
! t′, bc = a and P = (1− θ)pq, or

2. s
a[p]
! s′, t = t′, and P = pθσ, or

3. t
a[q]
! t′, s = s′ and P = qθ(1− σ), or

4. s
a[p]
! s′, t)!, t = t′ and P = p, or

5. s)!, t
a[q]
! t′, s = s′ and P = q.

Note that by this definition we might get two transitions s‖σ,θt
a[p1]
! s′‖σ,θt′

and s‖σ,θt
a[p2]
! s′‖σ,θt′, which then are replaced by one transition s‖σ,θt

a[p1+p2]
!

s′‖σ,θt′.
For A1 and A2 as in the previous figure, we get A1‖σ,θA2 which looks like:

s1‖σ,θt0

s1‖σ,θt1 s1‖σ,θt2

s0‖σ,θt1 s0‖σ,θt0

a[12 θσ]
43
43

AA
43
43

b[12 θσ]

34
34

##
34
34

a[13 θ(1−σ)] %&%% %& c[23 θ(1−σ)]&% &&&%
aa[16 (1−θ)]

BB
:9 :9 :9

ba[16 (1−θ)]

** 56
56 56

ac[13 (1−θ)]

CC
656565

bc[13 (1−θ)]

669:
9:9:

s0‖σ,θt2

s2‖σ,θt1 s2‖σ,θt2

s2‖σ,θt0

Another two biased, parameterized, parallel composition operators are
defined in [DHK98], one asynchronous CCS style operator, denoted by Aθ

1‖σA2

and one CSP-style operator, denoted by A1‖σLA2. Denote by s
a[p]
! the clause

(∃s′)s a[p]
! s′. We present the definition of A1‖σLA2 first:

s‖σLt
a[P]
! s′‖σLt′ if and only if one of the following is satisfied:

1. s
a[p]
! s′, t

b[q]
! , a, b /∈ L, t′ = t and P = pqσ

ν(s,t,L) ;

2. s
b[p]
! , t

a[q]
! t′, a, b /∈ L, s′ = s and P = pq(1−σ)

ν(s,t,L) ;

3. s
a[p]
! s′, t

b[q]
! , a /∈ L, b ∈ L, t′ = t and P = pq

ν(s,t,L) ;

4. s
b[p]
! , t

a[q]
! t′, a /∈ L, b ∈ L, s′ = s and P = pq

ν(s,t,L) ;

5. s
a[p]
! s′, t)!, a /∈ L, t′ = t and P = p

ν′(s,L) ;

6. s)!, t
a[q]
! t′, a /∈ L, s′ = s and P = q

ν′(t,L) ;

7. s
a[p]
! s′, t

a[q]
! t′, a ∈ L and P = pq

ν(s,t,L) .

Where the normalization factors are calculated by

ν′(s, L) = 1−
∑

s
a[p]
! , a∈L

p, ν(s, t, L) = 1−
∑

s
a[p]
! , t

b[q]
! , a,b∈L, a(=b

pq.

For this CSP style operator only one parameter is needed since the only non-
determinism occurs if both systems autonomously decide to perform actions not
in the synchronizing set L. In s‖σLt, the parameter σ denotes the probability
that s performs an autonomous action, given that both s and t have decided not
to synchronize. Furthermore, normalization factors are used to determine the
actual probability of every transition. These normalization factors redistribute
the probability mass that is due to autonomous decisions of both processes that
would otherwise lead to deadlock.

For the asynchronous CCS parallel composition Aθ
1‖σA2 the interpretation of

the probabilistic parameters θ,σ ∈ (0, 1) is similar to the ACP approach. They

provide the relevant information that an adversary needs in order to resolve non-
determinism that arises when composing two systems. In sθ‖σt, σ denotes the
probability that s performs an autonomous action given that both s and t do
not want to synchronize, and θ denotes the probability that some autonomous
action occurs, given that synchronization is possible. Hence, if synchronization
is possible, it will take place with probability 1− θ.

The earliest biased parallel composition operator for generative systems was
defined in [CSZ92] and treated in detail in [LN03]. There the parallel composition
A1‖ρA2 = 〈S1×S2, A,α〉 uses one bias parameter ρ. A state s‖ρt in the composed
automaton can either do an action a with a certain probability if both s and t in
their components can do an action a (CSP style), or can do a τ action if either s
or t can do a τ action. However, whether a τ action from s or from t is chosen is
biased with the bias factor ρ. The probability of the synchronous execution of a
is calculated via a normalization function ν : S1 × S2 → [0, 1]. Basically, ν(s, t)
sums up the probabilities of the possible outgoing transitions of the new state
which would be obtained if asynchronous behavior introduced non-determinism.
Then ν(s, t) is used to calculate the actual (conditional) probabilities of the
distribution assigned to s‖ρt.

Finally, a completely different solution of the problem of defining a paral-
lel composition operator in the generative setting is provided in [DHK98], the
introduction of the class of bundle systems Bun. The bundle systems possess
non-determinism, which allows for an elegant definition of any asynchronous
parallel composition operator, as follows.

Let A1 = 〈S1, A,α1 〉,A2 = 〈S2, A,α2 〉 ∈ Bun. Then A1‖A2 = 〈S1 ×
S2, A,α 〉 where, for s ∈ S1, t ∈ S2,

s‖t ! µ = P (µ1, µ2) ⇐⇒ s ! µ1, t ! µ2

and P (µ1, µ2) denotes a specific product of distributions, defined as follows: For
µ1 ∈ D(P(A× S1)), µ2 ∈ D(P(A× S2)), µ = P (µ1, µ2) ∈ D(P(A× (S1 × S2)))
where for all Bs ∈ spt(µ1), Bt ∈ spt(µ2), µ(Bs ⊗Bt) = µ1(Bs) · µ2(Bt) and

Bs ⊗Bt =
{〈 a, 〈 s′, t 〉 〉 | 〈 a, s′ 〉 ∈ Bs} ∪
{〈 b, 〈 s, t′ 〉 〉 | 〈 b, t′ 〉 ∈ Bt} ∪
{〈 ab, 〈 s′, t′ 〉 〉 | 〈 a, s′ 〉 ∈ Bs, 〈 b, t′ 〉 ∈ Bt}

Furthermore, P (µ, ∗) = P (∗, µ) = µ and P (∗, ∗) = ∗.
Note that the defined parallel composition for bundle systems is ACP style.

By a slight modification of the definition of ⊗, all the other variants can be
obtained. In a similar manner asynchronous parallel composition can be defined
on the classes PZ and MG. In the literature there is no definition of a parallel
composition operator for the class Seg.

4.3 Parallel composition in the I/O setting

A rather clean solution to the problems in the generative setting is given for
the class of I/O automata in [WSS97]. The view taken there is that the actions

are divided into input and output, and while there can be synchronization on
input actions, as in the reactive setting, the sets of output actions in each of the
components must be disjoint.

Let A1 = 〈S1, A1,α1〉,A2 = 〈S2, A2,α2〉 be two I/O automata. The automata
A1 and A2 are compatible if and only if Aout

1 ∩ Aout
2 = ∅. Parallel composition

is only defined on compatible automata. Let A = A1 ∪A2. We use the following
convention: if s is a state in A1 (A2) and a ∈ A \ Aout

1 (A \ Aout
2), such that

there is no transition from s involving a, then we consider that s
a[1]
! s. This

convention will enforce the “input always enabled” requirement for the composite
automaton.

The parallel composition of A1 and A2 is the I/O automaton A1‖A2 =
〈S1 × S2, A,α〉 where:

1. Aout = Aout
1 ∪Aout

2 ,
2. Ain = A \ Aout = (Ain

1 ∪Ain
2) \ Aout,

3. the transition function α is defined by the following:
s‖t a[P]

! s′‖t′ if and only if one of the following holds
a. a ∈ Ain, s

a[p]
! s′, t

a[q]
! t′ and P = pq;

b. a ∈ Aout
1 , s

a[p]
! s′, t

a[q]
! t′ and P = δ1(s)

δ1(s)+δ2(t)
pq

c. a ∈ Aout
2 , s

a[p]
! s′, t

a[q]
! t′ and P = δ2(t)

δ1(s)+δ2(t)
pq

Hence, α(s‖t) = 〈f in, µout, δ〉 where δ(s‖t) = δ1(s) + δ2(t), f in(a) = µa

is determined by a., for a ∈ Ain, and µout is determined by b. and c., for
a ∈ Aout.

Example 4. Let A1 = 〈S1, A1,α1〉,A2 = 〈S2, A2,α2〉 be two I/O automata, with
s ∈ S1, t ∈ S2 and their corresponding transitions as in the following diagram.

s
a[12]

** 56
56
56
56
56
56
56
56

a[12]

EF

>>
EF

b[1]

34

##
34 c[13]

GH

??
GH

d[23]

669:
9:

9:
9:

9:
9:

9:
9:

s1 s2 s3 s4 s5

t

b[12]

DD MN
MN
MN
MN
MN

b[12]

EEOP
OP
OP
OP
OP

t1 t2

Take Ain
1 ⊇ {a, b}, Aout

1 ⊇ {c, d}, Ain
2 ⊇ ∅, Aout

2 ⊇ {b}. Assume the automata
are compatible i.e. Aout

1 ∩ Aout
2 = ∅ (clearly the states s and t are compatible).

Then Aout ⊇ {b, c, d} and Ain ⊇ {a}. Due to the convention we consider that

t
a[1]
! t, t

c[1]
! t and t

d[1]
! t. The transitions from s‖t are then given with the

following diagram.

s‖t
a[12]

FF QR QR
QR QR

QR QR
QR QR

QR QR
QR QR

QR QR
QR QR

a[12]
ST ST

ST ST

22 ST
ST ST b[P ′

b]++ '(
'(
'(
'(
'(

b[P ′′
b]

,,)*
)*

)*
)*

)*

c[Pc]
UVUV

UVUV

GGUV
UVUV

d[Pd]

HHWXWX
WXWX

WXWX
WXWX

WXWX
WXWX

WXWX
WXWX

s1‖t s2‖t s3‖t1 s3‖t2 s4‖t s5‖t

For P ′
b = P ′′

b = δ2(t)
δ1(s)+δ2(t)

· 1
2 , Pc = δ1(s)

δ1(s)+δ2(t)
· 1

3 and Pd = δ1(s)
δ1(s)+δ2(t)

· 2
3 . Note

that indeed P ′
b + P ′′

b + Pc + Pd = 1.

The proof that A1‖A2 is well defined in the class IO can be found in [WSS97].
Let us now informally explain the definition of parallel composition, and the role
of the functions δ1, δ2 and δ. If s is a state of A1, then δ1(s) is a positive real
number corresponding to the delay rate in state s. It is a rate of an exponential
distribution, determining the time that the automaton waits in state s until
it generates one of its output actions. If no output actions are enabled in this
state then δ1(s) = 0. When determining the distribution on output actions for
s‖t, denoted by µout

s‖t , the components’ distributions µout
s and µout

t are joined
in one such that any probability of µout

s is multiplied with normalization factor
δ1(s)

δ1(s)+δ2(t)
and any probability of µout

t is multiplied with δ2(t)
δ1(s)+δ2(t)

. Note that by
the compatibility assumption, no action appears both in the support of µout

s and
in the support of µout

t . The normalization factor models a racing policy between
the states s and t for generating their own output actions. The value δ1(s)

δ1(s)+δ2(t)

is the probability that the state s has less waiting time left then the state t and
therefore wins the race and generates one of its own output actions. On the other
hand, synchronization occurs on all input actions, no autonomous behavior is
allowed by the components on input actions, corresponding to the assumption
that the input is provided by the environment and must be enabled in any state.

4.4 Parallel composition in the alternating setting

In this section we focus on the classes Str, Alt, SA (SAn, SAp) and Var that
exhibit alternating behavior i.e. make a distinction between probabilistic and
non-deterministic states. In [GSST90,GSS95] and in [Han91] a rather elegant
parallel composition for the classes Str and SA, respectively, is defined.

We present the definition for the class Alt and discuss that the same
definition can be restricted to the classes Str, Alt, SA (SAn, SAp). Let
A1 = 〈S1, A,α1〉 and A2 = 〈S2, A,α2〉 be two alternating automata, with
S1 = N1 + P1 and S2 = N2 + P2. Their parallel composition is the alternat-
ing automaton A1‖A2 = 〈S,A,α〉 where S = S1×S2 = N +P for N = N1×N2

and P = P1 × P2 + N1 × P2 + P1 ×N2 and the transition function is defined as
follows. Let p1 ∈ P1, p2 ∈ P2, n1 ∈ N1, n2 ∈ N2 and s1 ∈ S1, s2 ∈ S2. For the
probabilistic states in the composed automaton, we have:

p1‖p1 ! µ ⇐⇒ p1 ! µ1, p2 ! µ2, µ = µ1 × µ2

p1‖n2 ! µ ⇐⇒ p1 ! µ1, µ = µ1 × µ1
n2

n1‖p2 ! µ ⇐⇒ p2 ! µ2, µ = µ1
n1
× µ2.

For the non-deterministic states in the composed automaton different variants
(CCS, CSP or ACP style) can be chosen. We choose for the ACP style:
n1‖n2

a→ s1‖s2 if and only if

1. s
b→ s′, t

c→ t′ and bc = a defined, or
2. s

a→ s′, t = t′, or
3. t

a→ t′, s = s′.

Hence, when composing a probabilistic state with any other state the result
is a probabilistic state. If the other state is non-deterministic, then the com-
posed state basically behaves as the probabilistic state and leaves the second
component of the state unchanged, as in the following example.

p
1
3

!!
!"
!"
!" 2

3

""
#$
#$
#$

s1 s2

n
a

++''
''

'' b

,,(
((

((
(

s3 s4

p‖n
1
3

88 =>
=>
=>
=> 2

3

99?@
?@

?@
?@

s1‖n s2‖n

On the other hand, the composition of non-deterministic states is exactly
the same as in the non-probabilistic case and therefore any possible parallel
composition operator is definable here as in the case for LTSs.

By inspecting the definitions of the classes SA, SAn and SAp it is easy to
see that the following statement is valid.

Proposition 3. If A1,A2 ∈ SA (or SAn, or SAp), then A1‖A2 ∈ SA (or
SAn, or SAp), respectively. !

The definition of parallel composition for stratified systems is given in
[GSST90,GSS95] with synchronous behavior when composing two (non-) deter-
ministic states. This is necessary in order to stay in the class Str when composing
two such automata, since in the stratified model there is only a single action tran-
sition possible from a (non-) deterministic state. A parallel composition operator
with no synchronization but only interleaving, for the stratified class of systems,
is defined in [HV98]. In the original definition for strictly alternating systems of
[Han91], non-deterministic states are composed in the CCS fashion.

Complications arise in the case of Var models, due to their generative prob-
abilistic behavior. The behavior of the composite states n1‖n2, n1‖p2 and p1‖n2

can be defined in the same way as above. However, there is no convenient way to
define p1‖p2, since this coincides with defining generative parallel composition.
Any of the approaches described in section 4.2 can be used.

5 Comparing classes

This section is based on the results of [BSV03]. There a hierarchy of probabilistic
system types is presented in a coalgebraic setting. The coalgebraic theory proved
useful in providing a uniform framework and shortening the proofs. However, the
results can be restated and explained with the machinery introduced so far.

An expressiveness criterion

Let C1 and C2 be two classes of probabilistic automata. We say that the class C1

is included or embedded in the class C2, i.e. the class C2 is at least as expressive
as the class C1 (notation C1 → C2) if and only if there exists a translation
function T that maps each automaton of the first class to an automaton of
the second class such that bisimilarity is both reflected and preserved. More
explicitly, the translation function T : C1 → C2 should satisfy:

1. for A = 〈S,A,α〉 in C1, T (A) = 〈S,A,α′〉 with the same set of states S,
2. the translation function T is injective, and
2. if s, t ∈ S, then s ≈A t ⇔ s ≈T (A) t, i.e. two states are bisimilar in the

translated automaton (according to bisimilarity in the class C2) if and only
if they were bisimilar in the original automaton (according to bisimilarity
for the class C1).

The relation → between the classes of (probabilistic) automata is a preorder.
Basically our expressiveness criterion states that the class C1 is really embed-

ded in the class C2, i.e. the translations are nothing else but “suitable copies” of
the automata of the first class existing in the second class. Note that only preser-
vation of bisimulation is not enough. For example, we could define a translation
from reactive systems to LTSs that preserves bisimulation, by forgetting the
probabilities, as in the following example.

•
a[13]

!!
!"
!"
!" a[23]

""
#$

#$
#$

•
b[1]

##
34
34

•

•

T⇒

•
a

!!!!
!!

!! a

"""
""

""
"

•
b
##

•

•

T⇐

•
a[12]

!!
!"
!"
!" a[12]

""
#$

#$
#$

•
b[1]

##
34
34

•

•

But we do not consider the class of LTSs more expressive than the class of
reactive probabilistic automata, and the translation is by no means injective.

Another hierarchy result is the hierarchy of reactive, generative, stratified
and non-deterministic automata of [GSST90] and [GSS95]. The expressiveness
criterion used by van Glabbeek et al. is different. They consider a class C2 more
expressive than a class C1 if there is an abstraction mapping that maps each
automaton of the class C2 to an automaton of the class C1, such that the state
set remains the same and bisimulation is preserved. The abstraction mappings
are not injective by nature. An example of such an abstraction mapping is the
translation that forgets the probabilities in the previous figure. Therefore, in
their setting the class React is more expressive than the class NA.

The hierarchy

Theorem 1. [BSV03] The class embeddings presented in Figure 1 hold among
the probabilistic system types. !

The proof of Theorem 1 (except for the strictly alternating classes) is given
in [BSV03] using a technical result in terms of injective natural transformations.
Due to the correspondence of concrete bisimulation with coalgebraic bisimula-
tion for all the treated systems, the theorem remains valid without mentioning
the coalgebraic theory behind it. Instead of presenting a proof here, we will ex-
plicitly state the translations for each arrow in Figure 1, give some examples and
illustrate how preservation and reflection of bisimulation can be proven in one
concrete case. We present the translations for the arrows of Figure 1 in several

VarSSeg

Gen

Seg

DA

NA

PZ

Bun

MG

React

SAp

Alt

Str

MC

SA

SAn

Fig. 1. Class embeddings

groups: simple arrows based on inclusion, arrows that show a change from exter-
nal to full non-determinism, arrows that change an element to a singleton, arrows
that change an element to a corresponding Dirac distribution and more specific
arrows. The translations are quite natural. It is the property of preservation and
reflection of bisimilarity that adds justification to the translations.

Simple arrows Let C1 and C2 be two classes of probabilistic automata. If
C1 ⊆ C2 then C1 → C2. Therefore, the embeddings SA→ Alt, SAn → SA and
SAp → SA hold. Furthermore, if C1 is defined with a transition function α1 :
S → C1(S) and C2 has a transition function of type α2 : S → C2(S) such that
for all S, C1(S) ⊆ C2(S) then every automaton of the class C1 can be considered
an automaton of the class C2, by only extending the codomain of the transition
function. In this case also C1 → C2. The following arrows of Figure 1 hold due
to extending the codomain of the transition function: MC→ Str, Gen→ Var,
NA→ Var, PZ→MG. In each of these cases the translation of the automata
is basically the identity mapping. For example, every generative automaton is a
Vardi automaton without non-deterministic states, or every Markov chain is a
stratified automaton that has no action-transitions, i.e. no deterministic states.

From external to full non-determinism Two of the embedding arrows of
Figure 1, DA→ NA and React→ SSeg, show that every system with only ex-
ternal non-determinism can be considered as a system with full non-determinism
that never uses the full-nondeterminism option. Let A = 〈S,A,α〉 ∈ DA. Then

T (A) = 〈S,A,α′〉 ∈ NA is given by

α′(s) = {〈a, s′〉 | α(s)(a) = s′ ∈ S} ∈ P(A× S).

If we consider automata as diagrams, i.e. transition graphs, then this translation
does not change the transition graph of a DA system.

For React→ SSeg a similar translation is used, changing a partial function
to its graph. Due to the notation used for reactive systems in Section 3, the
diagram of a reactive system when considered a simple Segala system has to be
re-drawn, as in the next example.

•

a[23]

34

##
34

a[13]

++ '(
'(
'(
'(
'(

b[1]

,,)*
)*

)*
)*

)*

•

b[1]

34
34
34
34

• •

a[1]

34
34
34
34

• •

T⇒

•
a

!!++
++

++ b

"",
,,

,,
,

1
3

!!
!"
!"
!" 2

3

""
#$
#$
#$

1

""
#$
#$
#$

•
b
##

• •
a

##

1
##
34
34

1
##
34
34

• •
a reactive system as a simple Segala system

Singleton arrows In several cases the translation only changes an element
(state, or pair of state and action, or distribution) into a singleton set containing
this element.

Bun → PZ: Let A = 〈S,A,α〉 be a bundle probabilistic automaton, i.e.
α : S → D(P(A × S)) + 1, then the translation to a Pnueli-Zuck automaton is
achieved by putting T (A) = 〈S,A,α′〉 for α′(s) = {α(s)} if α(s) is a distribution,
and α′(s) = ∅ if α(s) = ∗.

•
1
2

!!
!"
!"
!"

1
2

""
#$
#$
#$

a

!!++
++

++ b

"",
,,

,,
,

a

!!++
++

++ a

"",
,,

,,
,

• • •
T⇒

•

##
•

1
2

!!
!"
!"
!"

1
2

""
#$
#$
#$

a

!!++
++

++ b

"",
,,

,,
,

a

!!++
++

++ a

"",
,,

,,
,

• • •
a bundle transition as a Pnueli-Zuck transition

Str→ Alt: In this case T (〈S,A,α〉) = 〈S,A,α′〉 where α : S → D(S) + A×
S + 1 and α′ : S → D(S) + P(A× S) and

α′(s) =

{α(s)} if α(s) ∈ A× S
∅ if α(s) = ∗
α(s) otherwise

The diagram of a stratified automaton when translated to alternating automaton
stays the same.

Seg → PZ: Let A = 〈S,A,α〉 be a Segala automaton, α : S → P(D(A×S)).
Then T (A) = 〈S,A,α′〉 where α′ is determined from α in the following way:

α′(s) = {µ′ | µ ∈ α(s)}

where µ′ is constructed from µ by changing a distribution over pairs to distri-
bution over singletons of pairs, i.e.

µ′ = {{〈a, s′〉} $→ µ(a, s′)}.

•

##
34
34

a[12]

++
'(
'(
'(b[12]

,,
)*

)*
)*

• •
T⇒

•

##
1
2

:: AB
AB
AB
AB 1

2

;;CD
CD

CD
CD

a
##

b
##

• •
a Segala transition as a Pnueli-Zuck transition

Dirac arrows Sometimes a transformation from an element to a Dirac dis-
tribution for this element is needed. This kind of translation embeds the non-
probabilistic automata, DA and NA, into the reactive and simple Segala au-
tomata, respectively.

DA → React: In this case every transition has to be changed to a proba-
bilistic transition with probability 1.

• a && • T⇒ •
a[1] &&&%&% •

a DA transition as a reactive transition

For 〈S,A,α〉 ∈ DA, the translation is T (〈S,A,α〉) = 〈S,A,α′〉, if α(s) ∈ (S +
1)A, we put α′(s) ∈ (D(S) + 1)A such that α(s)(a) = t ∈ S ⇐⇒ α′(s)(a) = µ1

t .
NA → SSeg: For obtaining a simple Segala automaton out of a LTS, we

change the next state of every transition to a Dirac distribution for this state.

• a && • T⇒ • a && 1 &&&%&% •
a NA transition as a simple Segala transition

Formally, T (〈S,A,α〉) = 〈S,A,α′〉 such that α′(s) = {〈a, µ1
s′〉 | 〈a, s′〉 ∈ α(s)}.

Specific arrows
Var → Seg: Let A = 〈S,A,α〉 be a Vardi automaton, with α(s) : S →

D(A× S) + P(A× S). The injective translation to a Segala automaton is given
by T (A) = 〈S,A,α′〉 for

α′(s) =
{
{α(s)} if α(s) ∈ D(A× S)
{µ1

〈a,s′〉 | 〈a, s′〉 ∈ α(s)} if α(s) ∈ P(A× S)

•
a[12]

!!
!"
!"
!" b[12]

""
#$

#$
#$

•
a

!!!!
!!

!! b

"""
""

""
" •

• •
T⇒

•

##
a[12]

++
'(
'(
'(b[12]

,,
)*

)*
)*

•

++''
''

''

,,(
((

((
(•

a[1]
##
34
34

b[1]
##
34
34

• •
a Vardi system as a Segala system

Var→ Bun: This translation is orthogonal to the one that gives us Var→ Seg.
For a Vardi automaton A = 〈S,A,α〉 we put T (A) = 〈S,A,α′〉 where

α′(s) =
{
{{〈a, s′〉} $→ µ(a, s′)} if α(s) = µ ∈ D(A× S)
µ1
α(s) if α(s) ∈ P(A× S)

•
a[12]

!!
!"
!"
!" b[12]

""
#$

#$
#$

•
a

!!!!
!!

!! b

"""
""

""
" •

• •
T⇒

•
1
2

++
'(
'(
'(

1
2

,,
)*

)*
)*

a
##

b
##

•
1
##
34
34

•

a

++''
''

'' b

,,(
((

((
(

• •
a Vardi system as a bundle system

Remark 5. Both in Var → Seg and in Var → Bun the translated transition
function α′ is well defined even when we consider D(A × S) ∩ P(A × S))= ∅,
i.e. we identify µ1

〈a,s〉 with {〈a, s〉}. Furthermore, this identification is needed to
obtain injectivity of the translations.

Alt → MG: Similarly as when translating Vardi systems, with an extra
singleton construction, an alternating automaton A = 〈S,A,α〉, α : S → D(S)+
P(A× S) is translated into a general probabilistic automaton. We put T (A) =
〈S,A,α′〉 where

α′(s) =
{
{{{〈a, s′〉} $→ µ(a, s′)}} if α(s) = µ ∈ D(S)
{µ1

α(s)} if α(s) ∈ P(A× S)

SSeg → Seg: In order to change a transition of a simple Segala automaton
to a transition of a Segala automaton it is enough to push the action label into
the distribution.

•
a

##
1
3

++
'(
'(
'(2

3

,,
)*

)*
)*

• •

T⇒

•

##
a[13]

++
'(
'(
'(a[23]

,,
)*

)*
)*

• •
a simple Segala transition as a Segala transition

Formally, if A = 〈S,A,α〉, α : S → P(A×D) then T (A) = 〈S,A,α′〉 where

〈a, µ〉 ∈ α(s) ⇐⇒ µa ∈ α′(s) ∈ P(D(A× S)

and µa(a, s′) = µ(s′) for all s′ ∈ S.
For this last translation, as an illustration, we give the proof of preservation

and reflection of bisimilarity. Let µ be a distribution on S and a an action in
A. Denote by µa the distribution on A× S obtained from µ by µa(a, s) = µ(s).
Clearly, for any subset X ⊆ S we have µ[X] = µa[a,X], which yields µ ≡R

µ′ ⇐⇒ µa ≡A,R µ′
a. By the translation, the following holds:

1. If s
a→!A µ, then s→!T (A) µa.

2. If s→!T (A) µ then there exists a ∈ A such that µ = νa for some distribu-
tion ν on S and s

a→!A ν.

Now assume s ≈A t, i.e. there exists a bisimulation R (Definition 11) with
〈s, t〉 ∈ R. We prove that R is a bisimulation (Definition 12) on the state space
of T (A). Let s →!T (A) µ. By 2. we have that µ = νa for some a ∈ A and some
ν ∈ D(S), and s

a→!A ν. Since R is a bisimulation on the state space of A we
have that there exists a distribution ν′ such that t

a→!A ν′ and ν ≡R ν′. Now
it follows by 1. that s→!T (A) ν

′
a, and furthermore µ = νa ≡A,R ν′a. So, R is a

bisimulation on the state set of T (A).
The opposite is analogous. If R is a bisimulation (Definition 12) with 〈s, t〉 ∈

R on the set of states of T (A), we prove that R is a bisimulation (Definition 11)
on the set of states of A. Assume s

a→!A µ. Then by 1., s→ !T (A) µa. Since
R is a bisimulation and 〈s, t〉 ∈ R we get that there exists ν ∈ D(A × S) such
that t→ !T (A) ν and µa ≡A,R ν. Now, by 2., we get that there exists a′ ∈ A

and a distribution µ′ on S such that ν = µ′
a′ , t

a′
→!A µ′ and µ ≡R µ′. However,

from µa ≡A,R ν = µ′
a′ we get that a′ = a and hence t

a→!A µ′ and µ ≡R µ′,
which completes the proof.

Remark 6. All the translations presented in this section are injective and pre-
serve and reflect bisimilarity.

Strict alternation vs. complex transition function

A translation between simple Segala automata and automata of the class SAn

has been known for a long time, and has been recently justified in [BS01]. Sim-
ilarly, the class SAp can be compared with the class of bundle probabilistic

automata. In order to carry out these comparisons in our framework we slightly
change the comparison criterion itself so that it allows for translations that do
not keep the same state set.

Relaxed expressiveness criteria Let C1 and C2 be two classes of proba-
bilistic automata and let T : C1 → C2 be a translation mapping, such that if
A = 〈S,A,α〉 then T (A) = 〈S′, A,α′〉

We say that the class C1 is embedded in the class C2, by the translation T ,
notation C1 " C2 if the following conditions hold:

1. for any automaton of C1, S ⊆ S′ or for any automaton of C1, S′ ⊆ S,
2. bisimilarity is preserved and reflected for common states, i.e.,
∀s, t ∈ S ∩ S′ : s ≈A t ⇐⇒ s ≈T (A) t, and

3. the translation T is injective.

Furthermore, we say that the class C1 is embedded up to irrelevant bisimilar-
ity in the class C2, by the translation T , notation C1 −→/≈ C2 if the following
conditions hold:

1. S′ ⊆ S,
2. for any two common states s, t ∈ S′, s ≈A t ⇐⇒ s ≈T (A) t, and
3. the translation T is injective up to bisimilarity of irrelevant states, i.e., if

A1 = 〈S1, A,α1〉 and A2 = 〈S2, A,α2〉 are two automata of the first class
such that T (A1) = T (A2) = 〈S,A,α〉, then

s1 ∈ S1 \ S ⇒ ∃s2 ∈ S2 \ S : s1 ≈ s2 and
s2 ∈ S2 \ S ⇒ ∃s1 ∈ S1 \ S : s1 ≈ s2.

Theorem 2. The following embeddings compare the classes of strictly alternat-
ing, bundle and simple Segala probabilistic automata.

SSeg
&& &&
SAn

/≈
%% SAp

&& &&
Bun%%%%

Fig. 2. Strictly alternating models as models with a structured transition relation

Instead of a complete proof, we give the translations needed in each of the
embeddings.

SSeg " SAn:

•
a

##
1
3

++
'(
'(
'(2

3

,,
)*

)*
)*

• •

T⇒

•
a
##
◦

1
3

!!
!"
!"
!" 2

3

""
#$

#$
#$

• •
a simple Segala automaton as a SAn automaton

Let A = 〈S,A,α〉 be a simple Segala automaton. The translation function trans-
lates it to T (A) = 〈S′, A,α′〉 by inserting a new probabilistic state for each
transition, i.e., by changing s

a→! µ to s
a→ ss,a,µ ! µ. Formally, S′ = S + Sp

where Sp is a set of fresh probabilistic states, such that Sp = {ss,a,µ | s ∈ S, a ∈
A,µ ∈ D(S), 〈a, µ〉 ∈ α(s)}. So, for every outgoing transition of a state there
is a corresponding new state added to Sp. The transition function is defined as
follows: if s ∈ S, such that 〈a, µ〉 ∈ α(s) and the corresponding new state is ss,a,µ

then and only then 〈a, ss,a,µ〉 ∈ α′(s); if ss,a,µ ∈ Sp corresponds to a transition
〈a, µ〉 ∈ α(s) then α′(ss,a,µ) = µ. The translation is injective and it preserves
and reflects bisimilarity on S.

SAn −→/≈ SSeg: The translation for this embedding, is the “inverse” of the
case SSeg " SAn. If A = 〈S,A,α〉 ∈ SAn with a set of probabilistic states P
and a set of non-deterministic states N , then T (A) = 〈N,A,α′〉 where for every
s ∈ N , α′(s) = {〈a, µ〉 | 〈a, s′〉 ∈ α(s) and α(s′) = µ}. Hence this translation
forgets the probabilistic states, and turns two strictly alternating steps of the
SAn automaton into one transition of the corresponding Segala automaton. This
translation is only injective up to bisimilarity of the disappearing probabilistic
states. In fact it is even stricter than that, it is injective up to indistinguishable
probabilistic states. The only cases of non-injectivity come as a consequence of
having two probabilistic states sp1 and sp2 such that α(sp1) = α(sp2) = µ. Then
if s is a non-deterministic state with s

a→ sp1 and s
a→ sp2, the two “copies”

s
a→ sp1 ! µ and s

a→ sp2 ! µ will be mapped to one single transition s
a→! µ.

For example, the following two different SAn automata translate to one SSeg
automaton.

•
a
##
◦

1
3

!!
!"
!"
!" 2

3

""
#$

#$
#$

• •

T⇒

•
a

##
1
3

++
'(
'(
'(2

3

,,
)*

)*
)*

• •

T⇐

•
a

!!!!
!!

!! a

"""
""

""
"

◦
1
3
##
34
34

2
3

669:
9:9:

9:9:
9:9:

◦

1
3

** 56
56 56

56 56
56 56

2
3
##
34
34

• •

Bun " SAp:

•
1
3

!!
!"
!"
!"

2
3

,,
)*

)*
)*

a

!!++
++

++ b

"",
,,

,,
,

a
##

a

,,(
((

((
(

• • • •

T⇒

◦
1
3

!!
!"
!"
!" 2

3

""
#$

#$
#$

•
a

!!!!
!!

!! b

"""
""

""
" •

a
##

a

"""
""

""
"

◦ ◦ ◦ ◦
a bundle automaton as a SAp automaton

The translation is as follows: T (〈S,A,α〉) = 〈S′, A,α′〉 where S′ = S + Sn, Sn

containing the fresh non-deterministic states Sn = {ss,T | s ∈ S, T ∈ spt(α(s))}.
The transition function is defined by: for s ∈ S with α(s) = µ, we put α′(s) =
µs ∈ D(Sn) where µs(ss,T) = µ(T), and for ss,T ∈ Sn we put α′(ss,T) = T .

SAp " Bun: The inverse of the translation Bun " SAp gives us the
translation in this case. We forget all the non-deterministic states in a SAp

automaton, being left with a bundle automaton. For a SAp automaton A =
〈S,A,α〉 with a set of probabilistic states P and non-deterministic states N we
put T (A) = 〈P,A,α′〉 where for s ∈ P with α(s) = µ ∈ D(N) we define α′(s) =
µs ∈ D(P(A × S)) such that µs(α(s′)) = µ(s′). Note that the phenomenon of
losing “copies” as in SAn −→/≈ SSeg does not appear here. Even though states
are lost, no transitions are identified, i.e. no arrow is lost.

Remark 7. Restricting to subclasses of the class SA, i.e. considering the classes
SAn and SAp, is necessary to obtain injectivity (up to bisimilar irrelevant states)
of the embedding mappings.

6 Conclusions

In this overview we have presented various types of probabilistic automata, in-
cluding generative, reactive and stratified ones, strictly alternating and alternat-
ing ones, the simple Segala, Segala and Vardi type of probabilistic automata and
the bundle, Pnueli-Zuck and general ones.

A major part of our work has been devoted to the comparison of the various
classes of probabilistic automata, taking strong bisimilarity for these automata
as a starting point, resulting in a hierarchy of probabilistic system types. Addi-
tionally, we have discussed the extent of non-determinism that can be modelled
in the various types of automata and the operator of parallel composition for
them. Classes positioned higher in the map of Figure 1 can be characterized
as closures of the simpler classes under parallel composition, which clarifies the
need for the more complex models.

The results obtained are briefly presented in Figure 1, Figure 2 and Table 1.
From there various conclusions on probabilistic system modelling can be drawn.
For instance, if presence of non-determinism and closedness under all variants of
parallel composition are desired properties on the one hand, and having as simple
a model as possible is needed on the other hand, then whether the choice is for
input (reactive) or output (generative) type of systems, the best choice appears
to be the simple Segala model and the bundle model, respectively. Different
requirements lead to different choices, but we hope the map of probabilistic
automata based models will prove to be useful in making a right decision.

References

[AH99] R. Alur and T.A. Henzinger, Reactive modules, Formal Methods in System
Design 15 (1999), 7–48, A preliminary version appeared in the Proceedings
of the 11th Annual Symposium on Logic in Computer Science (LICS), IEEE
Computer Society Press, 1996, pp. 207-218.

[AHJ01] L. de Alfaro, T.A. Henzinger, and R. Jhala, Compositional methods for
probabilistic systems, CONCUR 2001 - Concurrency Theory: 12th Interna-
tional Conference, Aalborg, Denmark, August 20-25, 2001, LNCS, vol. 2154,
Springer-Verlag, 2001, pp. 351–365.

[Alf97] L. de Alfaro, Formal verification of probabilistic systems, Ph.D. thesis, Stan-
ford University, 1997.

[Alf98] , Stochastic transition systems, International Conference on Concur-
rency Theory, CONCUR, vol. 1466, LNCS, 1998, pp. 423–438.

[And99] S. Andova, Process algebra with probabilistic choice, Proc. 5th Interna-
tional AMAST Workshop, ARTS’99, Bamberg, Germany (J.-P. Katoen,
ed.), LNCS 1601, Springer-Verlag, 1999, pp. 111–129.

[And02] , Probabilistic process algebra, Ph.D. thesis, Eindhoven University of
Technology, 2002.

[BA95] A. Bianco and L. de Alfaro, Model checking of probabilistic and nondeter-
ministic systems, Found. of Software Tech. and Theor. Comp. Sci., LNCS,
vol. 1026, Springer-Verlag, 1995.

[Bai96] C. Baier, Polynomial time algorithms for testing probabilistic bisimulation
and simulation, Proc. 8th International Conference on Computer Aided
Verification (CAV’96), Lecture Notes in Computer Science, vol. 1102, 1996,
pp. 38–49.

[Bai98] C. Baier, On algorithmic verification methods for probabilistic systems, Ha-
bilitationsschrift, FMI, Universitaet Mannheim, 1998.

[BBS95] J.C.M. Baeten, J.A. Bergstra, and S.A. Smolka, Axiomatizing probabilistic
processes: ACP with generative probabilities, Information and Computation
121 (1995), no. 2, 234–255.

[BDEP97] R. Blute, J. Desharnais, A. Edalat, and P. Panangaden, Bisimulation for
labelled Markov processes, LICS’97, 1997, pp. 149–158.

[BDHK99] C. Baier, P.R. D’Argenio, H. Hermanns, and J.-P. Katoen, How to cook a
probabilistic process calculus, unpublished, 1999.

[BEMC99] C. Baier, B. Engelen, and M. Majster-Cederbaum, Deciding bisimilarity
and similarity for probabilistic processes, Journal of Computer and System
Sciences 60 (1999), 187–231.

[Ber99] M. Bernardo, Theory and application of extended Markovian process algebra,
Ph.D. thesis, University of Bologna, 1999.

[BG98] M. Bernardo and R. Gorrieri, A tutorial on EMPA: A theory of concurrent
processes with nondeterminism, priorities, probabilities and time, Theoreti-
cal Computer Science 202 (1998), no. 1, 1–54.

[BH01] E. Brinksma and H. Hermanns, Process algebra and Markov chains, Lectures
on Formal Methods and Performance Analysis, First EEF/Euro Summer
School on Trends in Computer Science, Berg en Dal, The Netherlands, July
3-7, 2000 (E. Brinksma, H. Hermanns, and J.-P. Katoen, eds.), LNCS, vol.
2090, Springer-Verlag, 2001, pp. 183–232.

[BHHK00] C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen, Model checking
continuous-time Markov chains by transient analysis, CAV 2000, vol. 1855,
LNCS, Springer-Verlag, 2000, pp. 358–372.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.W. Roscoe, A theory of communicating
sequential processes, Journal of the ACM 31 (1984), 560–599.

[BK85] J.A. Bergstra and J.W. Klop, Algebra of communicating processes with ab-
straction, Theoretical Computer Science 37 (1985), 77–121.

[BK97] C. Baier and M.Z. Kwiatkowska, Domain equations for probabilistic pro-
cesses, 4th Workshop on Expressiveness in Concurrency (EXPRESS’97),
Santa Margherita, vol. 7, Electronic Notes in Theoretical Computer Sci-
ence, 1997.

[BK00] , Domain equations for probabilistic processes, Mathematical Struc-
tures in Computer Science 10 (2000), 665–717.

[BLFG95] A. Benveniste, B. C. Levy, E. Fabre, and P. Le Guernic, A calculus of
stochastic systems for the specification, simulation, and hidden state esti-
mation of mixed stochastic/non-stochastic systems, Theoretical Computer
Science 152 (1995), 171–217.

[BM89] B. Bloom and A. R. Meyer, A remark on bisimulation between probabilistic
processes, Foundations of Software Technology and Theoretical Computer
Science, LNCS, vol. 363, Springer-Verlag, 1989, pp. 26–40.

[BS00] C. Baier and M.I.A. Stoelinga, Norm fuctions for probabilistic bisimulations
with delays, Proceedings of 3rd International Conference on Foundations of
Science and Computation Structures (FOSSACS), Berlin, Germany, March
2000 (J. Tiuryn, ed.), LNCS, vol. 1784, ”Springer - verlag”, 2000, pp. 1–16.

[BS01] E. Bandini and R. Segala, Axiomatizations for probabilistic bisimulation,
Proceedings of the 28th International Colloquium on Automata, Languages
and Programming (ICALP) 2001, Crete, LNCS 2076, 2001, pp. 370–381.

[BSV03] F. Bartels, A. Sokolova, and E.P. de Vink, A hierarchy of probabilistic system
types, Electronic Notes in Theoretical Computer Science (H. Peter Gumm,
ed.), vol. 82, Elsevier, 2003.

[Buc94] P. Buchholz, Markovian process algebra: Composition and equivalence, in
Proc. of PAPM ’94, Erlangen (Germany), 1994, pp. 11–30.

[CC91] L. Christoff and I. Christoff, Efficient algorithms for verification of equiva-
lences for probabilistic processes, Proc. Workshop on Computer Aided Ver-
ification 1991 (K. Larsen and A. Skou, eds.), LNCS, vol. 575, 1991.

[Chr90] I. Christoff, Testing equivalences and fully abstract models for probabilis-
tic processes, Proceedings of CONCUR’90 (J.C.M. Baeten and J.W. Klop,
eds.), LNCS 458, Springer-Verlag, 1990, pp. 126–140.

[CSZ92] R. Cleaveland, S.A. Smolka, and A. Zwarico, Testing preorders for prob-
abilistic processes, Automata, Languages and Programming (ICALP ’92),
Vienna, LNCS, vol. 623, Springer-Verlag, 1992, pp. 708–719.

[CY95] C. Courcoubetis and M. Yannakakis, The complexity of probabilistic verifi-
cation, Journal of the ACM (JACM) 42 (1995), 857–907.

[D’A99] P.R. D’Argenio, Algebras and automata for timed and stochastic system,
Ph.D. thesis, University of Twente, 1999.

[DEP98] J. Desharnais, A. Edalat, and P. Panangaden, A logical characterization
of bisimulation for labeled Markov processes, Proc. LICS’98 (Indianapolis),
1998, pp. 478–487.

[Der70] C. Derman, Finite state Markovian decision proceses, Academic Press, 1970.
[DHK98] P. D’Argenio, H. Hermanns, and J.-P. Katoen, On generative parallel com-

position, Proc. PROBMIV’98, ENTCS 22, 1998, pp. 105–122.
[DJJL01] P.R. D’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen, Reachabil-

ity analysis of probabilistic systems by successive refinements, PAPM-
PROBMIV 2001, Aachen, Germany (L. de Alfaro and S. Gilmore, eds.),
LNCS, vol. 2165, Springer-Verlag, 2001, pp. 29–56.

[DJJL02] , Reduction and refinement strategies for probabilistic analy-
sis, PAPM-PROBMIV 2002, Copenhagen, Denmark (H. Hermanns and
R. Segala, eds.), LNCS, Springer-Verlag, 2002.

[GJS90] A. Giacalone, C. Jou, and S. Smolka, Algebraic reasoning for probabilistic
concurrent systems, Proc. of the Working Conf. on Programming Concepts
and Methods, 1990. (M. Broy and C.B. Jones, eds.), North Holland, 1990,
pp. 443–458.

[GSS95] R.J. van Glabbeek, S.A. Smolka, and B. Steffen, Reactive, generative, and
stratified models of probabilistic processes, Information and Computation
121 (1995), 59–80.

[GSST90] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts, Re-
active, generative, and stratified models of probabilistic processes, Logic in
Computer Science, 1990, pp. 130–141.

[Han91] H. A. Hansson, Time and probability in formal design of distributed systems,
Ph.D. thesis, Uppsala University, Department of Computer Systems, 1991,
Also appeared in Real-Time Safety Critical Systems, vol. 1, Elsevier, 1994.

[Har02] J.I. den Hartog, Probabilistic extensions of semantical models, Ph.D. thesis,
Vrije Universiteit Amsterdam, 2002.

[Hav01] B. R. Haverkort, Markovian models for performance and dependability
evaluation, Lectures on Formal Methods and Performance Analysis, First
EEF/Euro Summer School on Trends in Computer Science, Berg en Dal,
The Netherlands, July 3-7, 2000 (E. Brinksma, H. Hermanns, and J.-P.
Katoen, eds.), LNCS, vol. 2090, Springer-Verlag, 2001, pp. 38–84.

[Her98] H. Hermanns, Interactive Markov chains, Ph.D. thesis, Universiät Erlangen-
Nürnberg, 1998, Revised version appeared as Interactive Markov Chains
And the Quest for Quantified Quality, LNCS 2428, 2002.

[Hil94] J. Hillston, A compositional approach to performance modelling, Ph.D. the-
sis, University of Edinburgh, 1994, Also appeared in the CPHC/BCS Dis-
tinguished Dissertation Series, Cambridge University Press, 1996.

[HJ94] H. Hansson and B. Jonsson, A logic for reasoning about time and reliability,
Formal Aspects of Computing 6 (1994), 512–535.

[Hoa85] C.A.R. Hoare, Communicating Sequential Processes, Prentice Hall, 1985.
[How71] R. A. Howard, Dynamic probabilistic systems, John Wiley & Sons, Inc., New

York, 1971.
[HV98] J.I. den Hartog and E.P. de Vink, Mixing up nondeterminism and prob-

ability: A preliminary report, Proc. PROBMIV’98 (C. Baier, M. Huth,
M. Kwiatkowska, and M. Ryan, eds.), ENTCS 22, 1998.

[HV02] , Verifying probabilistic programs using a Hoare-like logic, Interna-
tional Journal of Foundations of Computer Science 13 (2002), 315–340.

[JL91] B. Jonsson and K.G. Larsen, Specification and refinement of probabilistic
processes, Proceedings of Sixth Annual IEEE Symposium on Logic in Com-
puter Science, 1991. LICS ’91., IEEE, 1991.

[JLY01] B. Jonsson, K.G. Larsen, and W. Yi, Probabilistic extensions of process
algebras, Handbook of Process Algebras, Elsevier, North Holland, 2001.

[JR96] B.P.F. Jacobs and J.J.M.M. Rutten, A tutorial on (co)algebras and
(co)induction, Bulletin of the EATCS 62 (1996), 222–259.

[JS90] C.-C. Jou and S.A. Smolka, Equivalences, congruences and complete axiom-
atizations for probabilistic processes, Proceedings of CONCUR’90 (J.C.M.
Baeten and J.W. Klop, eds.), Springer-Verlag, 1990, pp. 367–383.

[JY02] B. Jonnson and W. Yi, Testing preorders for probabilistic processes can
be characterized by simulations, Theoretical Computer Science 282 (2002),
33–51.

[KN98] M.Z. Kwiatkowska and G.J. Norman, A testing equivalence for reactive prob-
abilistic processes, EXPRESS ’98 Fifth International Workshop on Expres-
siveness in Concurrency, ENTCS 16(2), 1998.

[KS76] J. G. Kemeny and J. L. Snell, Finite Markov Chains, Springer-Verlag, New
York, 1976.

[LN03] N. López and M. Núñez, An overview of probabilistic process algebras and
their equivalences, 2003, this volume.

[Low95] G. Lowe, Probabilistic and prioritized models of timed CSP, Theoretical
Computer Science 138 (1995), 315–352.

[LP81] L. R. Lewis and C. H. Papadimitriou, Elements of the theory of computation,
Prentice-Hall, Englewood Cliffs, NJ, 1981.

[LS91] K. G. Larsen and A. Skou, Bisimulation through probabilistic testing, Infor-
mation and Computation 94 (1991), 1–28.

[LS92] K.G. Larsen and A. Skou, Compositional verification of probabilistic pro-
cesses, CONCUR ’92, Third International Conference on Concurrency The-
ory, Stony Brook, NY, USA (R. Cleaveland, ed.), LNCS, vol. 630, Springer-
Verlag, 1992, pp. 456–471.

[LT87] N. A. Lynch and M. Tuttle, Hierarchical completeness proofs for distributed
algorithms, Proceedings of the 6th Annual ACM Symposium on Principles
of Distributed Computing, 1987.

[Mac71] S. MacLane, Categories for the working mathematician, Springer-Verlag,
1971.

[Mil83] R. Milner, Calculi for synchrony and asynchrony, Theoretical Computer
Science 25 (1983), 267–310.

[Mil89] , Communication and Concurrency, Prentice-Hall, 1989.
[MMSS96] C. Morgan, A. McIver, K. Seidel, and J.W. Sanders, Refinement oriented

probability for CSP, Formal aspects of computing 8 (1996), 617–647.
[Mos99] L.S. Moss, Coalgebraic logic, Annals of Pure and Applied Logic 96 (1999),

277–317.
[Nor97] G. Norman, Metric semantics for reactive probabilistic processes, Ph.D. the-

sis, School of Computer Science, University of Birmingham, 1997.
[PA91] B. Plateau and K. Atif, Stochastic automata network for modeling parallel

systems, IEEE Trans. on Software Engineering 17 (1991), 1093–1108.
[PZ86] A. Pnueli and L. Zuck, Verification of multiprocess probabilistic protocols,

Distributed Computing 1 (1986), no. 1, 53–72.
[PZ93] , Probabilistic verification, Information and Computation 103

(1993), 1–29.
[Rab63] M.O. Rabin, Probabilistic automata, Information and Control 6 (1963), 230–

245.
[Rut00] J.J.M.M. Rutten, Universal coalgebra: A theory of systems, Theoretical

Computer Science 249 (2000), 3–80.
[SCS03] E.W. Stark, R. Cleaveland, and S.A. Smolka, A process-algebraic lan-

guage for probabilistic I/O automata, Proc. CONCUR’03 (R. Amadio and
D. Lugiez, eds.), LNCS, vol. 2761, Springer, 2003, pp. 193–207.

[Seg95] R. Segala, Modeling and verification of randomized distributed real-time sys-
tems, Ph.D. thesis, MIT, 1995.

[Sei95] K. Seidel, Probabilistic communicating processes, Theoretical Computer Sci-
ence 152 (1995), 219–249.

[SL94] R. Segala and N.A. Lynch, Probabilistic simulations for probabilistic pro-
cesses, Proc. Concur’94, LNCS 836, 1994, pp. 481–496.

[SS90] S. A. Smolka and B.U. Steffen, Priority as extremal probability, Proceed-
ings of CONCUR’90 (J.C.M. Baeten and J.W. Klop, eds.), LNCS, vol. 458,
Springer-Verlag, 1990, pp. 456–466.

[Sto02a] M.I.A. Stoelinga, Alea jacta est: verification of probabilistic, real-time and
parametric systems, Ph.D. thesis, University of Nijmegen, the Netherlands,
2002.

[Sto02b] , An introduction to probabilistic automata, EATCS bulletin, vol. 78,
2002.

[SV99] M.I.A. Stoelinga and F.W. Vaandrager, Root contention in IEEE 1394,
Proc. 5th International AMAST Workshop, ARTS’99, Bamberg, Germany
(J.-P. Katoen, ed.), LNCS, vol. 1601, Springer-Verlag, 1999, pp. 53–75.

[SV03] , A testing scenario for probabilistic automata, Proceedings of the
30th International colloquium on automata, languages and programming
(ICALP’03) Eindhoven, the Netherlands, June 2003, LNCS, vol. 2719,
Springer-verlag, 2003, pp. 464–477.

[Var85] M.Y. Vardi, Automatic verification of probabilistic concurrent finite state
programs, Proc. FOCS’95 (Portland, Oregon), IEEE Computer Society
Press, 1985, pp. 327–338.

[Vin98] E.P. de Vink, On a functor for probabilistic bisimulation and the preserva-
tion of weak pullbacks, Tech. Report IR–444, Vrije Universiteit Amsterdam,
1998.

[VR99] E.P. de Vink and J.J.M.M. Rutten, Bisimulation for probabilistic transition
systems: a coalgebraic approach, Theoretical Computer Science 221 (1999),
271–293.

[WSS97] S.-H. Wu, S. A. Smolka, and E. W. Stark, Composition and behaviors of
probabilistic I/O automata, Theoretical Computer Science 176 (1997), 1–
38.

[YL92] W. Yi and K.G. Larsen, Testing preorders for probabilistic and non-
deterministic processes, Protocol Specification, Testing and Verification
(Florida, USA), vol. 12, 1992, pp. 47–61.

