
On compositions and paths for coalgebras

Ana Sokolova

Formal Methods Group
Department of Computer Science
Technische Universiteit Eindhoven

a.sokolova@tue.nl

Abstract

This report discusses the possibility of defining composed steps and
paths in coalgebras. Both of these notions are relevant for defining some
semantic relations for coalgebras like weak bisimulation and trace seman-
tics. We present some observations, ideas, and small results on the men-
tioned topics.

1 Introduction

In this report we collect some notes on compositions and paths for coalgebras.
We assume familiarity with the theory of coalgebras [Rut96, JR96, Rut00] and
with basic category theory (see e.g. [Mac71, Bor94]). As leading examples we
consider probabilistic systems. Most of the probabilistic systems are coalgebras
of a functor [VR99, Mos99, BSV04, SVW05].

The notions of compositions and paths are remotely related to trace semantics.
For some probabilistic systems there is a notion of trace semantics i.e. trace
distribution [Seg95a, Seg95b, Bai98]. For coalgebras in general it is difficult
to define what traces are. Interesting solutions for some classes of coalgebras
have been recently proposed [Jac04, HJ05b, Jac05, HJ05a]. We believe that an
important building block for defining trace semantics as well as weak bisimula-
tion for coalgebras is the notion of a composite step. In a coalgebra, for each
state, the transition function represents the one-step behavior of the state. In
order to define traces or weak steps, one needs to consider sequences of steps
i.e. composite steps. In Section 2 we discuss how composition of coalgebras,
i.e. composition of steps in a coalgebra can be defined for some types of coalge-
bras.

1

We next emphasize the importance of the notion of paths. Consider labelled
transition systems. A (finite) path π is an alternating sequence of states and
labels of the form s0

a1−→ s1
a2−→ s2 · · · an−→ sn. We notice that many of the se-

mantic relations can be defined via a transformation on paths in the following
way. Assume T is a function defined on paths. Then a T -semantics can be
defined as: two states s and t are T -equivalent if and only if the image under
T of the set of paths that start in s equals the image under T of the set of
paths that start in t. Indeed, if the transformation T is the consistent coloring,
then we get bisimilarity. If T is weak consistent coloring, then we get branching
bisimilarity. If T maps a path π as above to its trace a1 . . . an, then the se-
mantic relation obtained is the trace equivalence. For probabilistic systems the
notion of a path is also used in many occasions, for example for weak bisimula-
tion [Seg95a, BH97, SVW05]. For these reasons, we investigate what a proper
notion of a path in coalgebra might be. We focus on this in Section 3.

To this end we would like to stress that the mentioned investigations are only
preliminary. We collect some observations, ideas and small results that might
turn out useful in the future.

2 Composition of coalgebras

Consider a transition system 〈S, α : S → PS〉 with s, t, u ∈ S. The outgoing
transitions from the state s are shown in the left diagram below.

〈S, α〉 s

¢¢¤¤
¤¤

¤¤

ÁÁ<
<<

<<
<

t u

〈S, β〉 t

¢¢¥¥
¥¥

¥¥

ÀÀ;
;;

;;
;

t s

Moreover, assume that there is a transition system 〈S, β : S → PS〉 (β =
α is possible) in which the state t allows the transitions shown in the right
diagram above, and the state u is terminating. Transitions that correspond to
the sequential composition of 〈S, α〉 and 〈S, β〉 from the state s are as shown
below.

〈S, α · β〉 s

¢¢¤¤
¤¤

¤¤

ÀÀ<
<<

<<
<

t s

In this case, we compose by composing the transition relation −→ . Similarly, in
the case of labelled transition systems, LTS, we consider 〈S, α〉 and 〈S, β〉 with
the transitions from s and t in the two systems as below, and u a terminating
state.

〈S, α〉 s
a

¢¢¤¤
¤¤

¤¤ b

ÁÁ<
<<

<<
<

t u

〈S, β〉 t
b

¢¢¥¥
¥¥

¥¥ c

ÀÀ;
;;

;;
;

t s

2

The composition in state s is then described by the following transitions (now
with labels from A2).

〈S, α · β〉 s
ab

¢¢¤¤
¤¤

¤¤ ac

ÀÀ<
<<

<<
<

t s

In general, if two systems 〈S, α : S → FS〉 and 〈S, β : S → FS〉 are given, then
we wonder which system (on S) behaves as if a step from 〈S, α〉 is followed by
a step from 〈S, β〉. We wish to define such a system 〈S, α · β〉. We could always
define this composition to be of type FF , by α · β = Fβ ◦ α, i.e.

S
α−→FS

Fβ−→FFS. (1)

However, in the case of transition systems we get a composed system of type
P and not PP, and in the case of LTS we get a composed system of type
P(A2 × Id) and not of type P(A × Id)P(A × Id). This is due to the richer
structure of P, namely it is a monad. Moreover there is a distributive law
π : (A×Id)P =⇒ P(A×Id). Distributive laws have various applications in the
theory of coalgebras (c.f. [Bar04]). In this section we shall see how composition
of systems can be defined for systems of type T F where T is a monad, with a
distributive law λ : FT =⇒ T F . We start by introducing the notions that we
need for the sequel.

2.1 Monads and distributive laws

We start by introducing some basic notions and properties.

Definition 2.1. A monad in a category C is a triple 〈T, η, µ〉 where T is a
C endofunctor, and η : Id =⇒ T , µ : T ◦ T =⇒ T are natural transforma-
tions, called the unit and the multiplication, respectively, such that the following
diagrams commute.

T T η +3

id
.6

(unit T)

T 2

µ

®¶
(unit T)

TηTks

id
hp

T 3
T µ +3

µT
®¶

(mult.T)

T 2

µ

®¶
T T 2

µ
+3 T

The two parts of the left diagram are the unit laws, and the right diagram is the
multiplication law, or the associativity, of the monad.

Example 2.2. A typical example of a monad in Set is the powerset monad
〈P, {},⋃〉 where {} : Id =⇒ P is the singleton natural transformation given by
{}X(x) = {x}, and

⋃
: P2 =⇒ P is the union natural transformation given by⋃

X(Y) =
⋃

Z∈Y Z for any Y ∈ PPX.

3

The distribution functor can also be equipped with a monad structure, namely
〈D, η, µ〉 is a monad for η : Id =⇒ D being the Dirac natural transformation
given by ηX(x) = µ1

x, and the multiplication µ : D2 =⇒ D is given by µX(ν) = ν̄
for ν ∈ DDX and ν̄ ∈ DX defined by

ν̄(x) =
∑

ξ∈DX

ν(ξ) · ξ(x).

Simple derivations suffice to check that the unit and the multiplication laws
hold in this case as well.

Let F and G be any endofunctors on a category C. A distributive law of F
over G is a natural transformation λ : FG =⇒ GF . For the sequel we will use
distributive laws of a functor over a monad, whose definition we give next.

Definition 2.3. Let F be a functor and T a monad. A plain distributive law
of F over T is a distributive law of F over the functor T . A distributive law of
F over the monad T is a natural transformation λ : FT =⇒ T F that preserves
the monad structure, i.e., the following diagrams commute.

FX
FηX //

ηFX ,,

(a)

FT X

λX

²²

FT T X
λTX //

FµX

²²
(b)

T FT X
T λX // T T FX

µFX

²²
T FX FT X

λX // T FX

Example 2.4. Let F = A × Id and T = D be the distribution monad. Then
there exists a distributive law λ : FT =⇒ T F i.e. λ : A × D =⇒ D(A × Id),
given by

λX(〈a, µ〉)(〈b, s〉) =
{

µ(s) a = b
0 otherwise.

This distributive law preserves the monad structure. Note that λX(〈a, µ〉) =
µ1

a×µ, for × denoting the product of distributions, and µ1
a the Dirac distribution

for a ∈ A.

When dealing with the powerset monad, a distributive law comes for free, as in
the next lemma.

Lemma 2.5. ([Jac04, HJ05b]) Let F be any weak pullback preserving functor.
Then there exists a distributive law π : FP =⇒ PF of F over the powerset
monad P, called a power law. The power law π is given by

πX(v) = {u ∈ FX | 〈u, v〉 ∈ Rel(F)(∈X)} (2)

for any set X and v ∈ FPX. ¤
Example 2.6. In particular, for F = A × Id, Lemma 2.5 provides us with a
power law π : A×P =⇒ P(A×Id) which according to the definition of relation
lifting for A× Id is given by

πX(〈a,X ′〉) = {〈a, x〉 | x ∈ X ′} (3)

for any a ∈ A and any X ′ ⊆ X.

4

Recently, Hasuo and Jacobs [HJ05a] have shown existence of a distributive law
δ : FD =⇒ DF for polynomial functors F , providing a generalization of Exam-
ple 2.4 in the sense of Lemma 2.5.

Assume T is a monad, F a functor, and assume there exists a (plain) dis-
tributive law λ : FT =⇒ T F . Following [Jac04] we define families of maps
λn

X : FnT X → T FnX, indexed by sets, for all n ∈ N by

λ0
X = idTX , λn+1

X = λFnX ◦ Fλn
X (4)

i.e.

Fn+1T X
λn+1

X //

Fλn
X $$JJJJJJJJJ

(4)

T Fn+1X

FT FnX

λFnX

::ttttttttt

Lemma 2.7. Let λ : FT =⇒ T F be a (plain) distributive law. For all n ∈ N,
from (4) we get a (plain) distributive law

λn : FnT =⇒ T Fn.

Proof We first show the naturality of λn for n ∈ N, by induction. For n = 0
the statement is trivial saying that id : T =⇒ T . For n = 1 the statement is
the naturality of λ. Assume λn is natural, and let f : X → Y . Then we have
that the following diagram commutes

Fn+1T X
Fn+1T f//

Fλn
X

²²
F(nat.λn)

Fn+1T Y

Fλn
Y

²²
FT FnX

FT Fnf//

λFnX

²²
(nat.λ)

FT FnY

λFnY

²²
T Fn+1X

T Fn+1f// T Fn+1Y

giving the naturality of λn+1. It remains to show that if λ preserves the monad
structure of T , then λn also does. We show this also by induction on n. Again,
the case n = 0 is trivial, and the case n = 1 is the statement for λ. We need to
show that both (a) and (b) from Definition 2.3 are satisfied for λn+1 assuming
that they are for λi if i ≤ n. We obtain (a) from the following diagram

Fn+1X
Fn+1ηX //

FηFnX &&LLLLLLLLLL

ηFn+1X 11

F((a)λn)

((a)λ)

Fn+1T X

Fλn
Xxxpppppppppp

λn+1
X

²²

FT FnX

λFnX &&NNNNNNNNNN (def.λn+1)

T Fn+1X

5

and (b) from the diagram below

Fn+1T T X
λn+1
TX //

Fλn
TX

((QQQQQQQQ

Fn+1µX

²²

(def.λn+1)

T Fn+1T X
T λn+1

X //

T Fλn
X

((QQQQQQQQ
T (def.λn+1)

T T Fn+1X

µFn+1X

²²

FT FnT X

FT λn
X

((QQQQQQQQ

λFnTX

66mmmmmmmm
(nat.λ) T FT FnX

T λFnX

66mmmmmmmm

F((b)λn)
FT T FnX

λT FnX

66mmmmmmmm

FµFnX²²
((b)λ)

FT FnX
λFnX

,,XXXXXXXXXXXXXXXXXX

Fn+1T X

Fλn
X

22ffffffffffffffffff

λn+1
X

//(def.λn+1)

T Fn+1X

which completes the proof. ¤

Lemma 2.8. For λk defined by (4) and for all natural numbers n, m ∈ N, it
holds that

λn+m
X = λn

FmX
◦ Fnλm

X . (5)

Proof We prove the property by induction on n. We have

λ0+m
X = λm

X = id ◦ λm
X = λ0

FmX
◦ F0λm

X .

We show that if it holds for the pair 〈n,m〉, then it does for 〈n + 1,m〉, by the
commutativity of the following diagram.

Fn+m+1T X
λn+m+1

X //

Fλn+m
X ((PPPPPPPPPPPP

Fn+1λm
X ..

(F(IH))

(def.λn+m+1)

T Fn+m+1

FT Fn+mX

λFn+mX

77nnnnnnnnnnnn

(def.λn+1)

Fn+1T FmX

Fλn
FmX

OO

λn+1
FmX

PP

¤

Example 2.9. Consider again the setting of Example 2.6, and the given power
law π : FP =⇒ PF for F = A× Id. Since

(A× Id)n ∼= An × Id,

from Lemma 2.8, we get n-fold power law πn : An×P =⇒ P(An×Id), for each
n ∈ N. According to Equation (4), we can derive that it is given by

πn
X(〈w, X ′〉) = {〈w, x〉 | x ∈ X ′}

for w ∈ An and X ′ ⊆ X.

6

2.2 Composition

We can now define composition of coalgebras of type T F for a monad T with
a distributive law λ : FT =⇒ T F .

Let S be a given set. We consider the set of all systems with carrier set S
of type T Fn, for some n ∈ N. Let 〈S, α〉 and 〈S, β〉 be two such systems,
α : S → T FkS, β : S → T FmS. We define

〈S, γ〉 = 〈S, α〉 · 〈S, β〉

for γ : S → T Fk+mS as given by the following diagram

S
α //

γ

,,YYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYYY T FkS
T Fkβ// T FkT FmS

T λk
FmS // T 2Fk+mS

µFk+mS

²²
T Fk+mS

(6)

The system 〈S, γ〉 is called the composition of 〈S, α〉 and 〈S, β〉. When the car-
rier set is clear from the context, we shall often just write γ = α ·β. Note that if
T is the identity monad, then one obtains the obvious definition of composition
as in (1).

The next lemma shows that the composition is a monoid operation.

Lemma 2.10. Let T be a monad, F a functor, and assume that there exists a
distributive law λ : FT =⇒ T F . The following hold.

(i) The composition of systems is associative.

(ii) The system 〈S, ηS : S → T S〉 is a unit for the composition of systems.

Proof

(i) Let 〈S, α〉, 〈S, β〉 and 〈S, γ〉 be such that α : S → T FkS, β : S → T FmS
and γ : S → T F lS. By the definition of the composition we have

(α · β) · γ = (µFk+mS ◦ T λk
FmS

◦ T Fkβ ◦ α) · γ
= µFk+m+lS ◦ T λk+m

FlS
◦ T Fk+mγ ◦ µFk+mS ◦ T λk

FmS
◦ T Fkβ ◦ α

and

α · (β · γ) = α · (µFm+lS ◦ T λm
FlS

◦ T Fmγ ◦ β)

= µFk+m+lS ◦ T λk
Fm+lS

◦ T FkµFm+lS ◦ T FkT λm
FlS

◦T FkT Fmγ ◦ T Fkβ ◦ α

7

Hence, the associativity is a consequence of the commutativity of the
following diagram.

T FkT FmS
T λk

FmS //

T FkT Fmγ

²²

T (nat.λk)

T 2Fk+mS
µFk+mS //

T 2Fk+mγ

²²

(nat.µ)

T Fk+mS

T Fk+mγ

²²
T FkT FmT F lS

T λk

FmT FlS //

T FkT λm

FlS

²²

T (nat.λk)

T 2Fk+mT F lS
µFk+mT FlS//

T 2λk+m

FlS
T (4)

²²

T 2Fkλm

FlS

yyrrrrrrrrrrrrrrr
(nat.µ)

T Fk+mT F lS

T λk+m

FlS

²²
T FkT 2Fm+lS

T λk

T Fm+lS//

T FkµFm+lS

²²

T ((b)λk)

T 2FkT Fm+lS
T 2λk

Fm+lS// T 3Fk+m+lS
µT Fk+m+lS//

T µFk+m+lS

²²

(mult.T)

T 2Fk+m+lS

µFk+m+lS

²²
T FkT Fm+lS

T λk

Fm+lS // T 2Fk+m+lS
µFk+m+lS// T Fk+m+lS

(ii) Let 〈S, α〉 be such that α : S → T FkS. The system 〈S, ηS〉 is a right unit
since

S
α //

α·ηS 33

T FkS
T FkηS//

T ηFkS

11

T ((a)λk)

id
(unit T)

..

T FkT S

T λk
S

²²
T 2FkS

µFkS

²²
T FkS

and it is a left unit since

S
ηS //

α

²²
(nat.η)

ηS ·α

ºº

T S

T α

²²
(def.com.)

T FkS
ηT FkS//

id

(unit T)

::T 2FkS
µFkS // T FkS

¤

Exponentiation of systems can also be defined, in the usual way: Let 〈S, α〉 be
a system of type T Fn. Then α0 = ηS and αn+1 = αn · α. By the associativity
of the composition we have αn+m = αn · αm, for any n,m ∈ N.

8

Remark 2.11. We note that the definition of composition as well as Lemma 2.10
are related to Kleisli categories. For a monad T = 〈T , η, µ〉, by SetT we de-
note the Kleisli category associated to T . Its objects are sets and morphisms
f : X →T Y are functions f : X → T Y . The identity morphism is then ηX

for any set X and two morphisms f : X →T Y and g : Y →T Z compose to a
morphism g ◦T f : X →T Z given by

g ◦T f = µZ ◦ T g ◦ f.

Given a Set endofunctor F with a distributive law λ : FT =⇒ T F , we can lift
F to an endofunctor FT on the Kleisli category which acts as follows

FT (X) = FX FT (f) = λY ◦ Ff

for f : X →T Y a morphism in SetT . By Lemma 2.7 and Lemma 2.8 also
Fk lifts to a functor Fk

T on the Kleisli category. Then the composition of
coalgebras α ·β corresponds to composing some morphisms in SetT in particular
α · β = Fk

T β ◦T α. Hence, the proof of Lemma 2.10 could also be given via the
Kleisli category. There is only an obligation to prove that Fk lifts in SetT to
the exponent of the lifting of F , i.e.

Fk
T = (FT)k

which can be done by induction, by the definition of λk and by Lemma 2.8.

We next provide examples that show how the composition is defined for LTSs
and for generative probabilistic systems.

Example 2.12. The functor defining the LTSs is of a form T F for T = P,
the powerset monad, and F = A × Id. By Lemma 2.5 the composition (and
exponentiation) is defined for LTSs. Moreover, since

(Ak × Id) ◦ (Am × Id) ∼= (Ak+m × Id) (7)

if 〈S, α : S → P(Ak × Id)〉 and 〈S, β : S → P(Am × Id)〉, then 〈S, α · β : S →
P(Ak+m × Id)〉. Some derivations suffice to see that

(α · β)(s) = {〈uv, t〉 | ∃r ∈ S : 〈u, r〉 ∈ α(s), 〈v, t〉 ∈ β(r)}

i.e., s
uv−→ t in 〈S, α · β〉 if and only if there exists r ∈ S such that s

u−→ r

in 〈S, α〉 and r
v−→ t in 〈S, β〉, for arbitrary state s ∈ S and arbitrary words

u ∈ Ak, v ∈ Am.

Example 2.13. The generative probabilistic systems are defined by the functor
D(A× Id) i.e., by a functor T F for F as in the previous example, and T = D
being the distribution monad. Example 2.4 provides also a distributive law of F
over the monad T . Hence, composition and exponentiation of generative prob-
abilistic systems is also defined. Using the isomorphism (7), and the definition

9

of composition, after some derivations we get that if 〈S, α : S → D(Ak × Id)〉
and 〈S, β : S → D(Am × Id)〉, then 〈S, α · β : S → D(Ak+m × Id)〉 is given by

(α · β)(s)(uv, t) =
∑

r∈S

α(s)(u, r) · β(r)(v, t)

for u ∈ Ak, v ∈ Am and s, t ∈ S.

3 Paths

In this section we investigate possible definitions of paths for coalgebras. The
case of LTS makes us believe that having a good definition of paths brings pos-
sibilities of defining various semantic relations.

Assume we have a system 〈S, α〉 of type F . A (finite) path could be a sequence
of transitions

s0 α(s0) s1 α(s1) s2 · · · sn−1 α(sn−1) sn (8)

where, each si is “reachable” from α(si−1) for i ≥ 1. In case of transition
systems, i.e. the powerset functor, it is intuitively clear that reachable means
“belongs to” i.e. we require si ∈ α(si−1).

Still, the usual notions of paths for TS and LTS are linear, being sequences of
states and actions, unlike those from (8). In an LTS a path is an alternating
sequence of states and actions, usually represented as

s0
a1−→ s1

a2−→ s2 · · · sn−1
an−→ sn.

Similarly, in a transition system a path is only a sequence of states

s0 → s1 → s2 · · · → sn.

Moreover, in a simple Segala system [Seg95b], a path is a sequence

s0
a1−→µ1 s1

a2−→µ2 s2 · · · sn−1
an−→µn sn

where si ∈ supp(µi). This definition of a path is semi-linear. On the one hand,
it exploits the similarity with LTS and therefore shows linearity and, on the
other hand, it involves whole distributions over states.

For generative probabilistic systems the usual notion of a path (see e.g. [BH97,
SVW05]) is also linear. A path in a generative system is an alternating sequence

s0
a1−→ s1

a2−→ s2 · · · sn−1
an−→ sn

such that the probability of performing each transition si−1
ai−→ si is greater

than 0, for i ≥ 1. This is very much different than what comes out of (8). The

10

advantage of the used definition is that it is indeed linear, the disadvantage is
that it looses probabilistic information. The behavior of the state is no longer
determined by the set of paths, nor by the set of paths of length one, in contrast
to the LTS case.

In this section we will present some general observations that show, for example,
the general principles that lead to this linear but incomplete definition of paths
for generative systems.

Jacobs [Jac04] defines paths in a semi-linear fashion for systems of type PF ,
where F preserves weak pullbacks, as sequences

〈u0, u1, . . . , un〉 ∈
n∏

i=0

F iS

such that for i ≥ 0 we have

〈ui+1, ui〉 ∈ Rel(F)i((id× α)−1∈FS). (9)

Jacobs’ definition of a path implicitly uses the existing power law and the fact
that ∈X is the reachability relation.

In general, let T be a monad and F a functor, with a distributive law λ :
FT =⇒ T F . Moreover, let a family of reachability relations be givenR = {RX}
where RX ⊆ X × T X for any set X. Intuitively, this is how we form paths
of 〈S, α : S → T FS〉 w.r.t. R: We pick up a first element u0 ∈ S. We
apply the transition function to it and get α(u0) ∈ T FS. We pick up a
next element u1 ∈ FS such that 〈u1, α(u0)〉 ∈ RFS . Then we continue from
u1, we apply now Fα to it in order to get its transitions and we land in
Fα(u1) ∈ FT FS. An application of the distributive law gets us back on the
right track, and we have λFS(Fα(u1)) ∈ T F2S. At this point we are in position
to again pick up a next element for our path. We choose u2 ∈ F2S such that
〈u2, λFS(Fα(u1))〉 ∈ RF2S . Proceeding this way, we build possible paths.

Hence, paths for systems of type T F with T being a monad and a corresponding
distributive law, w.r.t a family R are sequences

〈u0, u1, . . . , un〉 ∈
n∏

i=0

F iS

such that for all i = 0, . . . , n− 1 we have

〈ui+1, ui〉 ∈ (id× λi
FSF iα)−1RFi+1S = Rα,i. (10)

Remark 3.1. We note that Jacobs’ paths are indeed paths according to (10)
in case of the powerset monad and the membership relations. Let T = P, πn

11

the n-fold power law, and RX = ∈X . Moreover, let 〈S, α〉 be a PF coalgebra,
for a weak pullback preserving functor F . Then

Rel(F)i(∈FS) = (id× πi
FS)−1(∈Fi+1S) (11)

as can be derived from [Jac04, Lemma 4.2]. This implies that

Rel(F)i((id× α)−1(∈FS))
(∗)
= (id×F iα)−1 Rel(F)i(∈FS)

(11)
= (id×F iα)−1(id× πi

FS)−1(∈Fi+1S)
= (id× πi

FSF iα)−1(∈Fi+1S)

where the equality (∗) holds by the properties of relation liftings (see [Jac02,
JH03]).

Hence, both notions of paths coincide for LTS, and they also correspond to the
usual notion of paths for LTS, as shown in the next example.

Example 3.2. Let T = P, F = A × Id and RX = ∈X . Let πn be the
distributive laws from Example 2.9. A sequence 〈u0, . . . , un〉 is a path, ui ∈
Ai × S if for all i ≥ 0

〈ui+1, ui〉 ∈ (id× πi
FSF iα)−1RFi+1S .

i.e.
ui+1 ∈ πi

FS((Ai × α)(ui)).

Now, since ui = 〈wi, si〉 ∈ Ai × S, and (Ai × α)(ui) = 〈wi, α(si)〉, from Exam-
ple 2.9, we get

πi
FS(〈wi, α(si)〉) = {〈wi, u〉 | u ∈ α(si)}

= {〈wi, 〈a, s′〉〉 | 〈a, s′〉 ∈ α(si)}
∼= {〈wi · a, s′〉 | s a−→ s′}.

Hence, 〈u0, . . . , un〉 is a path, ui = 〈wi, si〉 ∈ Ai × S if and only if for all i ≥ 0
it holds that wi+1 = wi · a for some a ∈ A and si

a−→ si+1.

The definition of paths for systems of type T F depends on a family of relations
R. We do not know what characterizes a good family R = {RX ⊆ X × T X}
of relations for reachability. In any case, every such family of relations should
satisfy the following condition. For any natural number n, any system 〈S, α〉 of
type T F and any state s ∈ S

(id× αn)−1(RFnS) ∩ FnS × {s} = Rα,n ◦ · · · ◦ Rα,1 ∩ FnS × {s} (12)

The condition provides a link between the notion of composition of systems and
the notion of a path. It can be rewritten to

{u | 〈u, αn(s)〉 ∈ RFnS} =
{u | ∃u1, . . . , un−1 : 〈s, u1, . . . , un−1, u〉 is a path in 〈S, α〉 w.r.t RX}

12

expressing that reachable elements from αn(s) are exactly those that can be
reached by a path of length n.

We next show that for T being a submonad of P in the sense that there exists
a natural transformation σ : T =⇒ P, families of reachability relations come
naturally.

3.1 Submonads of P
Since the powerset monad, together with the family of membership relations,
seems to play a special role in defining paths of systems, it makes sense to study
in more detail submonads of P i.e. monads that can be naturally mapped to
the powerset monad.

Lemma 3.3. The following are equivalent:

(i) The monad T is submonad of P, i.e. there exists a natural transformation
σ : T =⇒ P.

(ii) There exists a family R = {RX ⊆ X × T X} of relations indexed by sets
such that for all sets X, Y and all f : X → Y

(f × id)RX = (id× T f)−1RY . (13)

Proof

(i) =⇒ (ii) If σ : T =⇒ P, then we can define a family of relations

RX = (id× σX)−1(∈X) ⊆ X × T X (14)

which satisfies (13) since for any y ∈ Y and u ∈ T X

〈y, u〉 ∈ (id× T f)−1((id× σY)−1(∈Y))
⇐⇒ 〈y, (T f)u〉 ∈ (id× σY)−1(∈Y)
⇐⇒ 〈y, σY ((T f)u)〉 ∈ ∈Y

⇐⇒ y ∈ σY ((T f)u)
(nat.σ)⇐⇒ y ∈ (Pf)(σX(u)) = f(σX(u))
⇐⇒ 〈y, u〉 = 〈f(x), u〉 ∧ x ∈ σX(u)
⇐⇒ 〈y, u〉 ∈ (f × id)(id× σX)−1(∈X).

(ii) =⇒ (i) If RX ⊆ X × T X is a family of relations with the property (13), then we
define σ : T =⇒ P by

σX : T X → PX, σX(u) = {x ∈ X | 〈x, u〉 ∈ RX}. (15)

13

We have, for u ∈ T X,

σY (T f(u)) = {y ∈ Y | 〈y, T f(u)〉 ∈ RY }
(13)
= {y ∈ Y | 〈y, u〉 ∈ (f × id)(RX)}
= {y ∈ f(X) | y = f(x) ∧ 〈x, u〉 ∈ RX}
= {f(x) ∈ f(X) | 〈x, u〉 ∈ RX}
= f(σX(u))
= (Pf)(σX(u)).

¤

In the proof above, if σ satisfying (13) exists, then we call the family of rela-
tions RX defined by (14), the family associated to σ. Conversely, if RX exists
satisfying (13), then we say that the natural transformation σ from (15) is as-
sociated to the family. These assignments are inverses to each other. Assume σ
exists, RX is defined by (14) and a natural transformation σ′ is defined by (15)
associated to RX . Then

σ′X(u) = {x ∈ X | 〈x, u〉 ∈ RX}
= {x ∈ X | 〈x, σX(u)〉 ∈ ∈X}
= {x ∈ X | x ∈ σX(u)}
= σX(u).

The opposite also holds, if RX exists, σ is associated to it by (15), and a family
of relations R′X is associated to σ by (14), then

R′X = {〈x, u〉 | 〈x, σX(u)〉 ∈ ∈X}
= {〈x, u〉 | x ∈ σX(u)}
= {〈x, u〉 | 〈x, u〉 ∈ RX}
= RX .

Moreover, the condition (13) implies that

(f × T f)RX ⊆ RY (16)

which is equivalent to the condition that the family R = {RX} is functorial, i.e.
R determines a functor making the following diagram commute.

Rel

U
²²

Set

R
77pppppppppppp Id×T // Set× Set

The next lemma shows that a family of relations associated to a submonad of
P can be used instead of the membership family, in case the submonad natural
transformation is a monad map. We first define the notion of a monad map.

14

Definition 3.4. Let 〈T , ηT , µT 〉 and 〈M, ηM, µM〉 be two monads. A monad
map from T to M is a natural transformation λ : T =⇒ M such that it
preserves the monad structures, i.e., the following two diagrams commute.

X
ηTX //

ηMX ++

(c)

T X

λX

²²

T T X
λTX //

µTX
²²

(d)

MT X
MλX // MMX

µMX
²²

MX T X
λX // MX

Lemma 3.5. Let σ : T =⇒ P be a monad map and let R be the family asso-
ciated to σ, i.e. RX = (id × σX)−1(∈X). Let λ : FT =⇒ T F be a distributive
law. Then R satisfies condition (12).

Proof Assume σ : T =⇒ P is a monad map, i.e., according to Definition 3.4,
the next diagrams commute

X
ηX //

{}X ,,

(c)

T X

σX

²²

T T X
σTX //

µX

²²
(d)

PT X
PσX // PPXS

X

²²
PX T X

σX // PX

where η and µ are the unit and the multiplication of the monad T . We prove
condition (12) by induction on n. Let 〈S, α〉 be a T F system and s ∈ S. For
n = 0 we have

{u | 〈u, α0(s)〉 ∈ RS} = {u | 〈u, ηS(s)〉 ∈ RS}
= {u | 〈u, σS(ηS(s))〉 ∈ ∈S}
(c)
= {u | u ∈ {s}}
= {s}

and {s} is exactly the set of all elements of S that can be reached by a path of
length 0 w.r.t RX , starting in s.

Assume (12) holds for n. Note that

{u | ∃u1, . . . , un : 〈s, u1, . . . , un−1, un, u〉 is a path in 〈S, α〉 w.r.t RX}
= {u | ∃u1, . . . , un−1, un : 〈s, u1, . . . , un−1, un〉 is a path in 〈S, α〉 w.r.t RX

and 〈u, un〉 ∈ Rα,n} (17)
(IH)
= {u | ∃un : 〈un, αn(s)〉 ∈ RFnX ∧ 〈u, un〉 ∈ Rα,n}

15

From the commutativity of the following diagram

X

αn

²²

αn+1

))
(def.αn+1)

T FnX
T Fnα//

σFnX

²²
(nat.σ)

T FnT FX
T λn

FX //

σFnT FX

²²

(nat.σ)

T T Fn+1X
µFn+1X//

σT Fn+1X

²²
(d)

T Fn+1X

σFn+1X

²²

PFnX
PFnα// PFnT FX

Pλn
FX // PT Fn+1X

PσFn+1X

²²
PPFn+1X

S
Fn+1X// PFn+1X

we get that, for a monad map σ

σFn+1X ◦ αn+1 =
⋃
Fn+1X

◦PσFn+1X ◦ Pλn
FX

◦ PFnα ◦ σFnX ◦ αn (18)

and furthermore

〈u, αn+1(s)〉 ∈ RFn+1S

⇐⇒ 〈u, σFn+1S ◦ αn+1(s)〉 ∈ ∈Fn+1S

⇐⇒ u ∈ σFn+1S ◦ αn+1(s)
(18)⇐⇒ u ∈

⋃
Fn+1S

◦PσFn+1S ◦ Pλn
FS

◦ PFnα ◦ σFnS ◦ αn(s)

(∗)⇐⇒ ∃un ∈ FnS : un ∈ σFnS ◦ αn(s) ∧ u ∈ σFn+1S ◦ λn
FS

◦ Fnα(un)
⇐⇒ ∃un ∈ FnS : 〈un, αn(s)〉 ∈ RFnX ∧

〈u, λn
FS

◦ Fnα(un)〉 ∈ (id× σFn+1S)−1(∈Fn+1S)
⇐⇒ ∃un ∈ FnS : 〈un, αn(s)〉 ∈ RFnX ∧

〈u, λn
FS

◦ Fnα(un)〉 ∈ RFn+1S

⇐⇒ ∃un ∈ FnS : 〈un, αn(s)〉 ∈ RFnX ∧ 〈u, un〉 ∈ Rα,n

(17)⇐⇒ ∃u1, . . . , un : 〈s, u1, . . . , un−1, un, u〉 is a path in
〈S, α〉 w.r.t RX

where the equivalence marked with (∗) holds by the definition of the powerset
functor. This completes the proof. ¤

Example 3.6. We have a natural transformation supp : D =⇒ P mapping any
distribution to its support set, i.e., suppX(µ) = supp(µ) = {x ∈ X | µ(x) > 0}
for any µ ∈ DX. The associated family of relations with the property (13),
by (14) is

RX = (id× suppX)−1(∈X)
= {〈x, µ〉 | 〈x, supp(µ)〉 ∈ ∈X}
= {〈x, µ〉 | x ∈ supp(µ)}.

16

We now show that, under a reasonable assumption, ifR is the family of relations
associated to a natural transformation σ : T =⇒ P, then one can define paths
via (10) or via (9) with R instead of ∈ obtaining the same notion. For this we
introduce first the notion of a map of distributive laws. We say that σ : T =⇒ P
is a map of the distributive laws λ and π, notation σ : λ =⇒ π, if the next
diagram commutes.

FT X
FσX //

λX

²²

FPX

πX

²²
T FX

σFX // PFX

(19)

In a sense, a map of distributive laws shows that two distributive laws are
compatible, or imitate each other along the natural transformation σ.

Lemma 3.7. Let T be a monad, F a functor, λ : FT =⇒ T F a (plain)
distributive law, and π : FP =⇒ PF the power law. Moreover, let σ : λ =⇒ π
and let R = {RX} be the associated family of relations. Then

(id× λi
X)−1(RFiX) = Rel(F)i(RX). (20)

Proof Let λ, σ, π be as in the assumption of the lemma, such that (19) holds.
We first show, by induction on n, that the following diagram commutes for all
n ∈ N.

FnT X
FnσX //

λn
X

²²

FnPX

πn
X

²²
T FnX

σFnX // PFnX

(21)

where λn and πn are obtained from λ and π, respectively, by (4). For n = 0 it
holds trivially, for n = 1 it holds by assumption. Assume it holds for n. Then
we have

πn+1
X

◦ Fn+1σX
(4)
= πFnX ◦ Fπn

X
◦ Fn+1σX

= πFnX ◦ F(πn
X
◦ FnσX)

(IH)
= πFnX ◦ F(σFnX ◦ λn

X)
= πFnX ◦ FσFnX ◦ Fλn

X

(19)
= σFn+1X ◦ λFnX ◦ Fλn

X

(4)
= σFn+1X ◦ λn+1

X .

Next we show (20). Let i ∈ N. We have

Rel(F)i(RX) = (id×F iσX)−1(Rel(F)i(∈X))

17

and

〈u, v〉 ∈ (id× λi
X)−1RFiX = (id× λi

X)−1(id× σFiX)−1(∈FiX)
⇐⇒ 〈u, (σFiX ◦ λi

X)(v)〉 ∈ ∈FiX

(21)⇐⇒ 〈u, (πi
X
◦ F iσX)(v)〉 ∈ ∈FiX

(∗)⇐⇒ 〈u,F iσX(v)〉 ∈ Rel(F)i(∈X)
⇐⇒ 〈u, v〉 ∈ Rel(F)i(RX)

where the equivalence marked with (∗) holds since from [Jac04, Lemma 4.2] we
have

(id× πi
X)−1(∈FiX) = Rel(F)i(∈X).

¤

It can easily be seen, as in Remark 3.1, that Equation (20) implies equivalence
of the Conditions (10) and (9).

Maps between distributive laws exist in the nature, as the following example
demonstrates.

Example 3.8. Let λ : A×D =⇒ D(A× Id) and π : A×P =⇒ P(A× Id) be
defined as in Example 2.4 and Example 2.6, respectively. Consider the support
natural transformation supp : D =⇒ P. Then supp is a map of distributive
laws, supp : λ =⇒ π, since one can directly verify that

πX ◦ F suppX = suppFX
◦λX .

Hence, for generative probabilistic systems there is one notion of a path with
respect to the support relations. Moreover, it can be seen that this one notion
corresponds to the usual linear notion of a path for generative systems.

The following result suggests that in the case of the powerset monad, the family
of membership relations deserves to be called the family of reachability relations.

Lemma 3.9. There exist exactly two families of relations RX that satisfy (13),
associated to the powerset monad P. These are RX = ∅ for all sets X, and
RX = ∈X .

Proof Consider εX : PX → PX for any set X, defined by εX(X ′) = ∅. Then
ε : P =⇒ P is a natural transformation, and RX = ∅ = (id × εX)−1(∈X).
Hence, by the proof of Lemma 3.3, RX = ∅ satisfies (13). Furthermore,
RX = ∈X = (id× îdX)−1(∈X) for îd denoting the identity natural transforma-
tion îd : P =⇒ P, and therefore RX = ∈X also satisfies (13). In the remainder
of the proof we show that no other family of relations satisfies (13).

Assume RX ⊆ X × T X, for any set X is a family of relations that satisfy (13),
and assume that for some set Y , RY 6= ∅. We will first show that

18

(a) RX 6= ∅ for all sets X 6= ∅.
Let X 6= ∅, and choose a function f : Y → X. Then (f × id)RY 6= ∅ and so
by (13) (id×Pf)−1RX 6= ∅ implying that RX 6= ∅.

Next we will show that

(b) RX ∩ (X × {∅}) = ∅ for all sets X 6= ∅.
Assume that for some set X 6= ∅, RX ∩ (X ×{∅}) 6= ∅. Then there exists x ∈ X
with 〈x, ∅〉 ∈ RX , implying by (13), that for any set Z and any map f : X → Z,
the pair 〈f(x), ∅〉 ∈ RZ . This further implies that for any set Z, Z ×{∅} ⊆ RZ ,
and therefore

Z × {∅} ⊆ (id× Pf)−1RZ = (f × id)RX . (22)

Now choose a set Z and a map f : X → Z which is not surjective. Since
RX ⊆ X ×PX, we have (f × id)RX ⊆ f(X)×PX but Z ×{∅} 6⊆ f(X)×PX,
contradicting (22). Hence, we have shown (b).

The third step in the proof is to show:

(c) For any set X, and any x ∈ X we have 〈x, {x}〉 ∈ RX .

Let Y be a set such that RY 6= ∅ and let 〈y′, Y ′〉 ∈ RY . Then, by (b) Y ′ 6= ∅.
Consider now an arbitrary set X with x ∈ X. Define a function f : Y → X by
f(y) = x for all y ∈ Y . Note that (Pf)(Y ′) = {x} since Y ′ 6= ∅ and we get

〈x, {x}〉 = 〈f(y′), (Pf)(Y ′)〉 = (f ×Pf)(〈y′, Y ′〉) ∈ (id× Pf)(f × id)RY ⊆ RX

and (c) is proven.

Our next step is to prove that

(d) 〈x, X〉 ∈ RX for all x ∈ X.

Take x′ ∈ X and consider the constant map f : X → X, f(x) = x′ for all
x ∈ X. Then, by (c) we have

(id× Pf)(〈x′, X〉) = 〈x′, {x′}〉 ∈ RX

which means that 〈x′, X〉 ∈ (id × Pf)−1RX = (f × id)RX and so there exists
x′′ ∈ X such that 〈x′′, X〉 ∈ RX . Since (f × Pf)RX ⊆ RY for any map
f : X → Y (see (16)), we have (f × Pf)(〈x′′, X〉) ∈ RX for any f : X → X. In
particular, for arbitrary permutation f on X we have

(f × Pf)(〈x′′, X〉) = 〈f(x′′), f(X)〉 = 〈f(x′′), X〉 ∈ RX

which shows that (d) holds.

19

Next consider a set X 6= ∅ and let x′ ∈ X, X ′ ⊆ X such that x′ ∈ X ′. Define a
map f : X → X by

f(x) =
{

x x ∈ X ′

x′ x 6∈ X ′

Then f(X) = X ′, f(x′) = x′ and

〈x′, X ′〉 = 〈f(x′), f(X)〉 ∈ (f × Pf)RX ⊆ RX

i.e. we have shown that ∈X ⊆ RX .

It remains to show the opposite inclusion. Assume that 〈x′, X ′〉 ∈ RX and
x′ 6∈ X ′. By (b) we have that X ′ 6= ∅. Choose x′′ ∈ X ′ and define f : X → X
by

f(x) =
{

x x ∈ X ′

x′′ x 6∈ X ′

Then we have 〈x′, X ′〉 ∈ RX implying 〈x′, X〉 ∈ (id× Pf)−1RX = (f × id)RX .
This implies that x′ ∈ f(X), contradicting the assumption x′ 6∈ X ′. Hence,
RX ⊆ ∈X . ¤

We next point that for any submonad of P there is a largest natural trans-
formation that witnesses the submonad property. It corresponds to a largest
family of relations. First we order the families of relations and the natural
transformations. Let R = {RX ⊆ X × T X} and Q = {QX ⊆ X × T X}. We
define

R ≤ Q ⇐⇒ RX ⊆ QX

for all sets X. Furthermore, let λ : T =⇒ P and τ : T =⇒ P. Define

λ ≤ τ ⇐⇒ λX(u) ⊆ τX(u)

for all sets X and all u ∈ T X. One directly verifies that if R,Q are the
families of relations associated to the natural transformations λ, τ from T to P,
respectively, then

R ≤ Q ⇐⇒ λ ≤ τ.

For any monad T , there exists the empty natural transformation ε : T =⇒ P
given by εX(u) = ∅ for all sets X and all u ∈ T X. Furthermore, if {Ri | i ∈ I}
is a collection of families of relations that satisfy (13), then R with components
RX =

⋃
i∈I Ri

X also satisfies (13), and Ri ≤ R for all i ∈ I. As a consequence
we get the following property.

Lemma 3.10. For any monad T , there exists a largest family of relations
R = {RX ⊆ X × T X} with the property (13), and a corresponding largest
natural transformation σ : T =⇒ P. ¤

Example 3.11. The family R corresponding to the support natural transfor-
mation supp : D =⇒ P is the largest family of relations that satisfies (13).

20

Assume λ : D =⇒ P. Let X be arbitrary set and µ ∈ DX a distribution.

Choose a function f : X → X such that f(x) = x for x ∈ supp(µ), i.e.,
f |supp(µ) = id and f(X) = supp(µ). Such a function exists since the support of a
distribution is never empty. Then we have (Df)(µ) = µ since for x 6∈ supp(µ) we
have f−1(x)∩supp(µ) = ∅, and for x ∈ supp(µ) it holds f−1(x)∩supp(µ) = {x}.
Since λ is natural, Pf ◦ λX = λX ◦Df and in particular

λX(µ) = λX(Df(µ)) = (Pf)(λX(µ)) = f(λX(µ)) ⊆ f(X) = supp(µ)

proving that λ ≤ supp.

4 Concluding remarks

We have discussed composition of coalgebras and paths for coalgebras. The in-
terest in compositions was already invoked when considering weak bisimulations
[SVW05]. It was an important issue to know what does it mean to perform sev-
eral consecutive steps from a state. Later, the work of Jacobs [Jac04] on trace
semantics for coalgebras of type PF for F a polynomial functor drew the au-
thor’s attention to monads and distributive laws and made it easy to define
composition of coalgebras of type T F with T a monad and a corresponding
distributive law. The author’s ambition was to extend the results on traces for
other coalgebras but of type PF . The definition of composition is a small step in
this direction. In a recent work, Hasuo and Jacobs [HJ05b] proposed a different
treatment of (finite) traces for PF coalgebras. More recently, the same authors
also obtained traces for coalgebras of type D≤F [HJ05a]. The trace map in this
new result is defined in terms of composition i.e. exponentiation of coalgebras.
The same can be done for the trace map from [HJ05b]. The compositions are
not an essential part of the results, but they do provide a nice presentation.
Generalizing the traces result i.e. obtaining traces for more general coalgebras,
for example of type T F for any monad T , a polynomial functor F , with a cor-
responding distributive law, is an interesting direction for future work.

Coming back to weak bisimulations, we believe that compositions might also
help in obtaining ∗-extensions (see [SVW05, SVW04]). For example, given an
LTS coalgebra 〈S, α : S → P(A× S)〉, the ∗-extension 〈S, α∗ : S → P(A∗ × S)〉
can be expressed in terms of compositions by

α∗(s) =
⋃

n∈N
αn(s)

where αn denotes the n-th exponent of the coalgebra 〈S, α〉. There might be
similar connections between exponents and ∗-extensions for general coalgebras
as well.

Moreover, we studied ways to define paths in coalgebras. We are not yet con-
vinced whether it is reasonable to define notions of linear behavior, such as

21

paths, for general coalgebras. The most general definition given by condition (8)
does not seem to reflect intuition of what a linear path should be. Moreover,
there is the question of how to pick next states, i.e. which states are “reachable”
from a transition α(s).

Therefore, we discussed subclasses of coalgebras for which a definition of a
path is possible. Such are the coalgebras of a monad, the coalgebras of type
PF [Jac04], and, as we have seen, also coalgebras of type T F for T being a
submonad of P. An example of such coalgebras are the generative probabilistic
systems, and for them we obtain the usual notion of a path. While studying
the possibility of defining paths, we have come to some interesting observations
for the submonads of P. Still, we are not convinced that defining paths by
“forgetting” parts of the behavior, as in the case of generative systems is a good
idea. Application of these notions of paths for obtaining semantic relations
remains an issue for future research. It could be a way to evaluate the notions
of paths that we have considered.

Acknowledgements

I am thankful to Ichiro Hasuo and Bart Jacobs for reading and commenting a
previous version of this report. Special thanks go to Harald Woracek for the
long and involved discussions that led to the results reported in this report.

References

[Bai98] C. Baier, On algorithmic verification methods for probabilistic sys-
tems, Habilitationsschrift, FMI, Universitaet Mannheim, 1998.

[Bar04] F. Bartels, On generalised coinduction and probabilistic specification
formats: distributive laws in coalgebraic modelling, Ph.D. thesis, Vrije
Universiteit, Amsterdam, 2004.

[BH97] C. Baier and H. Hermanns, Weak bisimulation for fully probabilis-
tic processes, Proc. CAV’97 (O. Grumberg, ed.), LNCS 1254, 1997,
pp. 119–130.

[Bor94] F. Borceux, Handbook of categorial algebra, Cambridge University
Press, 1994.

[BSV04] F. Bartels, A. Sokolova, and E.P. de Vink, A hierarchy of probabilistic
system types, Theoretical Computer Science 327 (2004), 3–22.

[HJ05a] I. Hasuo and B. Jacobs, Coalgebraic trace semantics for probabilistic
systems, 2005, In preparation.

[HJ05b] , Context-free languages via coalgebraic trace semantics, Tech.
Report ICIS-R05004, Institute for Computing and Information Sci-
ences, Radboud University Nijmegen, 2005.

22

[Jac02] Bart Jacobs, Exercises in coalgebraic specification, Algebraic and
coalgebraic methods in the mathematics of program construction
(R. Backhouse, R. Crole, and J. Gibbons, eds.), LNCS, vol. 2297,
Springer, 2002, pp. 237–281.

[Jac04] B. Jacobs, Trace semantics for coalgebras, Proceedings of CMCS’04,
ENTCS (Jiri Adamek, ed.), Elsevier, 2004.

[Jac05] , Introduction to coalgebra. towards mathematics of states
and observations, 2005, Book in preparation, draft available via
http://www.cs.ru.nl/ bart.

[JH03] B. Jacobs and J. Hughes, Simulations in coalgebra, Electronic Notes in
Theoretical Computer Science (H. Peter Gumm, ed.), vol. 82, Elsevier,
2003.

[JR96] B.P.F. Jacobs and J.J.M.M. Rutten, A tutorial on (co)algebras and
(co)induction, Bulletin of the EATCS 62 (1996), 222–259.

[Mac71] S. MacLane, Categories for the working mathematician, Springer-
Verlag, 1971.

[Mos99] L.S. Moss, Coalgebraic logic, Annals of Pure and Applied Logic 96
(1999), 277–317.

[Rut96] J.J.M.M. Rutten, Universal coalgebra: A theory of systems, Tech.
Report CS-R9652, CWI Amsterdam, 1996.

[Rut00] , Universal coalgebra: A theory of systems, Theoretical Com-
puter Science 249 (2000), 3–80.

[Seg95a] R. Segala, A compositional trace-based semantics for probabilistic au-
tomata, Proc. CONCUR’95, LNCS, vol. 962, Springer, 1995, pp. 234–
248.

[Seg95b] , Modeling and verification of randomized distributed real-time
systems, Ph.D. thesis, MIT, 1995.

[SVW04] A. Sokolova, E.P. de Vink, and H. Woracek, Weak bisimulation for
action-type systems, Tech. Report CSR–04–16, TU Eindhoven, 2004,
Available via: http://www.win.tue.nl/~ana/.

[SVW05] , Weak bisimulation for action-type systems, Proc. CTCS’04,
ENTCS 122, 2005, pp. 211–228.

[VR99] E.P. de Vink and J.J.M.M. Rutten, Bisimulation for probabilistic tran-
sition systems: a coalgebraic approach, Theoretical Computer Science
221 (1999), 271–293.

23

