
A Companion to

Coalgebraic Weak Bisimulation

for Action-Type Systems∗

Ana Sokolova 1 Erik de Vink 2 Harald Woracek 3

Abstract

We propose a coalgebraic definition of weak bisimulation for classes of
coalgebras obtained from bifunctors in the category Set. Weak bisimilarity
for a system is obtained as strong bisimilarity of a transformed system.
The particular transformation consists of two steps: First, the behavior
on actions is lifted to behavior on finite words. Second, the behavior
on finite words is taken modulo the hiding of internal or invisible actions,
yielding behavior on equivalence classes of words closed under silent steps.
The coalgebraic definition is validated by two correspondence results: one
for the classical notion of weak bisimulation of Milner, another for the
notion of weak bisimulation for generative probabilistic transition systems
as advocated by Baier and Hermanns.

1 Introduction

We present a definition of weak bisimulation for action type systems based
on the general coalgebraic apparatus of bisimulation [1, 21, 36]. Action-type
systems are systems that arise from bifunctors in the category Set. A typical
and familiar example of an action-type system is a labelled transition system
(LTS) (see, e.g., [22, 32]), but also many types of probabilistic systems (see, e.g.,
[24, 38, 17, 7, 37]) fall into this class. Informally, an action-type system in Set
is a coalgebra that performs actions from a set A.

For the verification of system properties, behavior equivalences are often
employed. One such behavior equivalence is strong bisimilarity. However strong
bisimilarity is often too strong an equivalence. Weak bisimilarity, originally

∗A shortened version entitled “Coalgebraic Weak Bisimulation for Action-Type Systems”
has been submitted for journal publication.

1 A. Sokolova, Department of Computer Sciences, University of Salzburg, Austria,
anas@cs.uni-salzburg.at

2 E.P. de Vink, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, The Netherlands, evink@win.tue.nl

3 H. Woracek, Department of Analysis and Scientific Computing, Vienna University of
Technology, Austria, harald.woracek@tuwien.ac.at

defined for LTSs in the work of Milner [27, 29], is a looser equivalence on systems
that abstracts away from internal or invisible steps. In fact, weak bisimilarity for
a labelled transition system S amounts to strong bisimilarity on the ‘double-
arrowed’ system S ′ induced by S. We generalize this idea for a coalgebraic
definition of weak bisimulation. Our approach, given a system S, consists of
two stages.

1. First, we define a ‘∗-extension’ S ′ of S which is a system with the same
carrier as S, but with action set A∗, the set of all finite words over A. The
system S ′ captures the behavior of S on finite traces.

2. Next, given a set of invisible actions τ ⊆ A, we transform S ′ into a so-called
‘weak τ -extension’ S ′′ which abstracts away from τ steps. Then we define
weak bisimilarity on S as strong bisimilarity on the weak-τ -extension S ′′.

Defining weak bisimulation for coalgebras has been studied before. There is
early work by Rutten on weak bisimulation for while programs [35], succeeded by
a syntactic approach to weak bisimulation by Rothe [33]. In the latter paper,
weak bisimulation for a particular class of coalgebras was obtained by trans-
forming a coalgebra into an LTS and making use of Milner’s weak bisimulation
there. This approach also supports a definition of weak homomorphisms and
weak simulation relations. Later, in the work of Rothe and Mašulović [34],
a complex, but interesting coalgebraic theory was developed leading to weak
bisimulation for functors that weakly preserve pullbacks. They also consider a
chosen ‘observer’ and hidden parts of a functor. However, in the case of prob-
abilistic and similar systems, this does not lead to intuitive results and cannot
be related to the concrete notions of weak bisimulation. The so-called skip re-
lations used in [34] seem to be the major obstacle as it remains unclear how
quantitative information can be incorporated. In the context of open maps, a
category theoretical interpretation of weak bisimulation on presheaf models has
been proposed in [15].

Indeed, the two-phase approach of defining weak bisimilarity for general sys-
tems is, amplifying Milner’s original idea, rather natural. Our proposal for weak
bisimilarity of action-type systems builds on the intuition in concrete cases. A
drawback of our approach is that the definition of weak bisimulation is pa-
rameterized with a notion of a ∗-extension that does not come from a general
categorical construction, but has to be tuned for the concrete type of systems
at hand.

In this paper we focus on two particular examples of action-type systems:
LTSs and the generative probabilistic systems [16, 17, 40]. The generative sys-
tems are closely related to LTSs, the difference is that all non-deterministic
choices in an LTS are probabilistic choices in a generative system.

For LTSs, weak bisimulation is an established notion and the main moti-
vation of the paper is to generalize this notion to coalgebras, as arbitrary as
possible. Baier and Hermanns introduced, rather appealingly, the notion of
weak bisimulation for generative probabilistic systems [7, 6, 8]. In this paper,
we propose a notion of weak bisimulation at a high-level of abstraction that

2

justifies the definition of Baier and Hermanns for generative systems and illu-
minates the similarity between the notion of weak bisimulation for LTSs and of
weak bisimulation for generative systems.

In the context of concrete probabilistic transition systems, there have been
several other proposals for a notion of weak bisimulation, often relying on the
particular model under consideration. For a detailed study of the different prob-
abilistic models the reader is referred to [10, 11, 41, 40]. Segala [38, 37] proposes
four notions of weak relations for his model of simple probabilistic automata.
A detailed study of these relations can be found in [42]. It is a topic for fur-
ther research to see how these notions fit into our general framework. Several
groups of authors studied weak equivalences for the so-called alternating model
of Hansson [20]. Philippou, Lee and Sokolsky [31] proposed the first notion of
weak bisimulation in this setting. This work was extended to infinite systems
by Desharnais, Gupta, Jagadeesan and Panangaden [14]. The same authors
also provided a metric analogue of weak bisimulation [13]. Recently, Andova
and Willemse studied branching bisimulation for the alternating model [4, 5],
and together with Baeten [3] provided a complete axiomatization of this process
equivalence in a process algebra setting. However, the alternating probabilis-
tic automata are not coalgebras (see [40]) and therefore do not qualify for our
definition.

Weak bisimulation was also considered for Markov chains in both discrete
time [9, 39] and continuous time [9, 26]. Markov chains are not exactly action
type coalgebras, since they are fully probabilistic non-labelled systems. How-
ever, the notion of weak bisimulation from [39] is based on the notion of weak
bisimulation for generative probabilistic systems that is central to our paper. It
is interesting to note that the notion of weak bisimulation by Baier and Her-
manns has attracted attention in the security community and has been applied
to security issues such as non-interference and secure information flow [2, 39, 23].
For the latter paper [23], as we will see for the present paper too, the coincidence
of weak bisimulation and branching bisimulation in the setting of generative sys-
tems is crucial. Transition systems with both actions and generally distributed
time delay occurring as labels are studied in [25] as well as a notion of weak
bisimulation taking non-deterministic and sequential composition into account.

Below, we prove, not only for the case of labelled transition systems, but
also for generative probabilistic systems that our coalgebraic definition corre-
sponds to the concrete one of [29] and [7]. Despite the appeal of the coalgebraic
definition of weak bisimulation, the proofs of correspondence results vary from
straightforward to technically involved. For example, the relevant theorem for
labelled transition systems takes less than a page, whereas proving the corre-
spondence result for generative probabilistic systems takes in its present form
more than twenty pages (additional machinery included).

The paper is organized as follows: Section 2 gathers the preliminary defini-
tions and results. Section 3 is the kernel of the paper presenting the definition of
coalgebraic weak bisimulation. We show that our definition of weak bisimilarity
leads to Milner’s weak bisimilarity for LTSs in Section 4. Section 5 is devoted
to the correspondence result for the class of generative systems of the notion of

3

weak bisimilarity of Baier and Hermanns and our coalgebraic definition. This
section is a technically involved part of the paper and is divided in several
parts, discussing in detail generative probabilistic systems and their concrete
and coalgebraic weak bisimulation. In Section 5.1 we study some basic notions,
such as paths and cones of generative systems, and their properties. Section 5.2
establishes that the probability distributions defining a generative probabilis-
tic system extend to measures on a certain σ-algebra of paths. In Section 5.3
we present the concrete definitions of weak bisimulation for generative systems
by Baier and Hermanns, as well as branching bisimulation, and we gather and
prove some properties of these relations (in concrete terms) that we need for
our correspondence result. Section 5.4 presents the coalgebraic weak bisimu-
lation for generative probabilistic systems which in Section 5.5 is compared to
the concrete notion of weak bisimulation. At the end, Section 6 draws some
conclusions. Last, but not least, one will find several appendices. The theme
that connects them is the notion of weak pullback preservation—a technical
condition that is helpful in relating concrete and coalgebraic bisimulations. We
recall the definitions of pullbacks and their preservation in Appendix A. We
prove weak pullback preservation of the distribution functor (without restrict-
ing to finite support) in Appendix B. This is an interesting side-contribution
of the paper. Its place is in an appendix in order not to distract the main line
of the story. In Appendix C we investigate the weak pullback preservation of
the functor appearing in Section 5. Interestingly, this functor does not preserve
weak pullbacks, but it preserves total weak pullbacks, a notion that turns out
to be important in our investigations.

2 Systems and bisimilarity

We are treating systems from a coalgebraic point of view. Usually, in this
context, a system is considered a coalgebra of a given Set endofunctor. For an
introduction to the theory of coalgebra the reader is referred to the introductory
articles by Rutten, Jacobs, and Gumm [36, 21, 19]. However, in our investigation
of weak bisimilarity it is essential to explicitly specify the set of executable
actions. Therefore we shall rather start from a so-called bifunctor instead of a
Set endofunctor, cf [12].

A bifunctor is any functor F : Set× Set → Set. If F is a bifunctor and A is
a fixed set, then a Set endofunctor FA is defined by

FAS = F(A,S), FAf = F〈idA, f〉 for f : S → T. (1)

We formulate the next simple proposition for further reference.

Proposition 2.1 Let F be a bifunctor, and let A1, A2 be two fixed sets and f :
A1 → A2 a mapping. Then f induces a natural transformation ηf : FA1 ⇒FA2

defined by ηf
S = F〈f, idS〉. 2

We next define action-type coalgebras i.e. action-type systems based on
bifunctors.

4

Definition 2.2 Let F be a bifunctor. If S and A are sets and α is a function,
α : S → FA(S), then the triple 〈S,A, α〉 is called an action type FA coalgebra. A
homomorphism between two FA-coalgebras 〈S,A, α〉 and 〈T,A, β〉 is a function
h : S → T satisfying FAh ◦ α = β ◦ h. The FA-coalgebras together with their
homomorphisms form a category, which we denote by CoalgA

F .

Next we present two basic types of systems, labelled transition systems and
generative systems, which will be treated in more detail in Section 4 and Sec-
tion 5. We give their concrete definitions first.

Definition 2.3 A labelled transition system, or LTS for short, is a triple
〈S, A, →〉 where S and A are sets and → ⊆ S × A × S. We speak of S as
the set of states, of A as the set of labels or actions the system can perform
and of → as the transition relation. As usual we denote s

a−→ s′ whenever
〈s, a, s′〉 ∈ → .

When replacing the transition relation of an LTS by a “probabilistic transi-
tion relation”, the so-called generative probabilistic systems are obtained.

Definition 2.4 A generative probabilistic system is a triple 〈S, A, P 〉 where S
and A are sets and P : S ×A× S → [0, 1] with the property that for s ∈ S,

∑

a∈A, s′∈S

P (s, a, s′) ∈ {0, 1}. (2)

We speak of S as the set of states, of A as the set of labels or actions the
system can perform and of P as the probabilistic transition relation. Condi-
tion (2) states that for all s ∈ S, P (s, ,) is either a distribution over A × S

or P (s, ,) = 0, i.e. s is a terminating state. As usual we denote s
a[p]−→ s′

whenever P (s, a, s′) = p, and s
a−→ s′ for P (s, a, s′) > 0.

Remark 2.5 In order to clarify the condition (2) let us recall that the sum of
an arbitrary family {xi | i ∈ I} of non-negative real numbers is defined as

∑

i∈I

xi = sup{
∑

i∈J

xi | J ⊆ I, J finite}.

Note that, if
∑

i∈I xi <∞, then the set {xi | i ∈ I, xi 6= 0} is at most countably
infinite.

Let us turn to the coalgebraic side. LTSs can be viewed as coalgebras cor-
responding to the bifunctor

L = P(Id× Id).

Namely, if 〈S,A,→〉 is an LTS, then 〈S, A, α〉, where α : S → LA(S) is defined
by

〈a, s′〉 ∈ α(s) ⇐⇒ s
a−→ s′

5

is an LA-coalgebra, and vice-versa. Furtheron, we will freely use a−→ notation
when talking about LA-coalgebras. Also the generative systems can be consid-
ered as coalgebras corresponding to the bifunctor

G = D(Id× Id) + 1.

Here D denotes the distribution functor, that is, D : Set → Set

DX = {µ : X → [0, 1] | ∑x∈X µ(x) = 1}

(Df)(µ)(y) =
∑

f(x)=y µ(x), f : X → Y, µ ∈ DX, y ∈ Y .

If 〈S, A, P 〉 is a generative system, then 〈S, A, α〉 is a GA-coalgebra where
α : S → GA(S) is given by

α(s)(a, s′) = P (s, a, s′),

and vice-versa. Thereby we interpret the singleton set 1 as the set containing
the zero-function on A× S. Note that α(s) is the zero-function if and only if s
is a terminating state.

In the literature it is common to restrict to generative systems 〈S, A, α〉
where for any state s the function α(s) has finite support. The restriction to
finite support guarantees existence of a final coalgebra. However, in many re-
spects, in particular when the existence of a final coalgebra is not needed, this
restriction is not necessary.

An important notion in this paper is that of a bisimulation relation between
two systems. We recall here the general definition of bisimulation in coalgebraic
terms.

Definition 2.6 Let 〈S,A, α〉 and 〈T, A, β〉 be two FA-coalgebras. A bisimula-
tion between 〈S,A, α〉 and 〈T,A, β〉 is a relation R ⊆ S × T , such that there
exists a map γ : R → FAR making the projections π1 and π2 coalgebra homo-
morphisms between the respective coalgebras, i.e. making the following diagram
commute:

S

α

²²

R
π1oo π2 //

γ

²²

T

β

²²
FAS FARFAπ1

oo
FAπ2

// FAT

Two states s ∈ S and t ∈ T are bisimilar, notation s ∼ t if they are related by
some bisimulation between 〈S,A, α〉 and 〈T, A, β〉.

Often we will consider bisimulations that are equivalence relations on a sin-
gle coalgebra 〈S,A, α〉.

6

In general, hence also for functors FA and GA arising from bifunctors F and
G, it holds that a natural transformation η : FA⇒GA determines a functor
T : CoalgA

F → CoalgA
G defined by

T (〈S, A, α〉) = 〈S, A, ηS ◦ α〉, T f = f. (3)

We will refer to the functor T as the functor induced by the natural transforma-
tion η. Functors induced by natural transformations preserve homomorphisms
and thus preserve bisimulation relations, in particular bisimilarity (cf. [36]).

LTSs and generative systems come equipped with their concrete notions of
bisimulation relations, cf. [28] and [24, 17], respectively, which we present next.

Definition 2.7 Let 〈S, A, →〉 be an LTS. An equivalence relation R ⊆ S × S
is a (strong) bisimulation on 〈S, A, →〉 if and only if whenever 〈s, t〉 ∈ R then
for all a ∈ A the following holds:

s
a−→ s′ implies that there exists t′ ∈ S with t

a−→ t′ and 〈s′, t′〉 ∈ R.

Two states s and t of an LTS are called bisimilar if and only if they are
related by some bisimulation relation. Notation s ∼` t.

For generative systems we have the following definition of bisimulation.

Definition 2.8 Let 〈S, A, P 〉 be a generative system. An equivalence relation
R ⊆ S × S is a (strong) bisimulation on 〈S, A, P 〉 if and only if whenever
〈s, t〉 ∈ R then for all a ∈ A and for all equivalence classes C ∈ S/R

P (s, a, C) = P (t, a, C). (4)

Here we have put P (s, a, C) =
∑

s′∈C P (s, a, s′). Two states s and t of a gen-
erative system are bisimilar if and only if they are related by some bisimulation
relation. Notation s ∼g t.

The concrete notion of bisimilarity for LTSs and generative systems and the
respective notions of bisimilarity obtained from Definition 2.6 coincide. For the
case of LTSs a direct proof was given, for example, by Rutten [36]. For genera-
tive systems this fact goes back to the work of De Vink and Rutten [43] where
Markov systems were considered, and was treated in [10] for generative systems
with finite support.

We will now describe a general procedure to obtain coincidence results of
this kind. This method already appeared implicitly in [11]. It applies to LTSs
as well as to generative systems in their full generality. We will also use the
method to obtain a concrete characterization of bisimilarity for another, more
complex, functor, in Section 5.

7

Definition 2.9 Let R ⊆ S×T be a relation, and F a Set functor. The relation
R can be lifted to a relation ≡F,R⊆ FS ×FT defined by

x ≡F,R y ⇐⇒ ∃z ∈ FR : Fπ1(z) = x, Fπ2(z) = y.

The following lemma is obvious from Definition 2.6.

Lemma 2.10 A relation R ⊆ S × T is a bisimulation between the FA systems
〈S, A, α〉 and 〈T,A, β〉 if and only if

〈s, t〉 ∈ R =⇒ α(s) ≡FA,R β(t). (5)

2

Note that the condition (5) is an abstract formulation of what is commonly
referred to as a transfer condition.

For the sequel, weak pullback preservation will be of some importance. We
recall the definitions of (weak) pullbacks and some needed properties concerning
their preservation in Appendix A. One particular kind of pullbacks, total pull-
backs, are important for our investigations. A total pullback is a weak pullback
with surjective legs.

A characterization of bisimilarity will follow from the next lemma.

Lemma 2.11 If the functor F weakly preserves total pullbacks and R is an
equivalence on S, then ≡F,R is the pullback in Set of the cospan

FS
Fc // F(S/R) FS

Fcoo (6)

where c : S → S/R is the canonical morphism mapping each element to its
equivalence class.

Proof Since R is an equivalence relation and therefore reflexive, the left dia-
gram below is a pullback diagram with epi legs, i.e., a total pullback.

R
π1

||yyy
yy

y π2

""EE
EE

EE

S

c !!CC
CC

C S

c}}{{
{{

{

S/R

FR
Fπ1

yyrrrrrr Fπ2

%%LLLLLL

FS

Fc %%KKK
KKK

FS

Fcyysss
sss

F(S/R)
Since F weakly preserves total pullbacks, the right diagram is a weak pullback
diagram. By Definition 2.9 the map ω : FR →≡F,R, ω(z) = 〈Fπ1(z),Fπ2(z)〉
is well-defined, surjective, and it makes the two upper triangles of the next

8

diagram commute:
≡F,R

π1

®®

π2

¶¶

FR

ω
OO

Fπ1yyrrrrrr
Fπ2 %%LLLLLL

FS

Fc %%KKK
KKK

FS

Fcyysss
sss

F(S/R)

As the lower square commutes and ω is surjective, the outer square of the above
diagram also commutes, and by the existence of ω from the weak pullback FR
to ≡F,R, ≡F,R is a weak pullback as well. However, since it has projections as
legs it is a pullback. 2

Suppose that a functor F weakly preserves total pullbacks and assume that
R is an equivalence bisimulation on S, i.e., R is both an equivalence relation and
a bisimulation on S, such that 〈s, t〉 ∈ R. The pullback in Set of the cospan (6)
is the set { 〈x, y〉 | Fc(x) = Fc(y) }. By Lemma 2.11 this set coincides with the
lifted relation ≡F,R. Thus x ≡F,R y ⇐⇒ Fc(x) = Fc(y). Therefore, we obtain
the transfer condition for the particular notion of bisimulation if we succeed in
expressing concretely (Fc ◦α)(s) = (Fc ◦α)(t) in terms of the representation of
α(s) and α(t).

To illustrate the method, we will use it in showing the well-known corre-
spondence of coalgebraic and concrete bisimulation for LTSs.

Lemma 2.12 An equivalence relation R on a set S is a coalgebraic bisimulation
on the LTS 〈S,A, α〉 according to Definition 2.6 for the functor LA if and only
if it is a concrete bisimulation according to Definition 2.7.

Proof It is easy to show that the LTS functor LA preserves weak pullbacks (see
e.g. [40]). For X ∈ LA(S), i.e. X ⊆ A× S, we have LA(c)(X) = P〈idA, c〉(X) =
〈idA, c〉(X) = {〈a, c(x)〉 | 〈a, x〉 ∈ X}. Using Lemma 2.10 we get that an
equivalence R ⊆ S × S is a coalgebraic bisimulation for an LTS 〈S,A, α〉 if and
only if

〈s, t〉 ∈ R =⇒ {〈a, c(s′)〉 | 〈a, s′〉 ∈ α(s) } = { 〈a, c(t′)〉 | 〈a, t′〉 ∈ α(t) }

or, equivalently

〈s, t〉 ∈ R =⇒ (s
a−→ s′ =⇒ ∃t′ ∈ S : t

a−→ t′ ∧ 〈s′, t′〉 ∈ R).

which is the transfer condition from Definition 2.7. 2

The most difficult part in establishing the correspondence result for gen-
erative systems is proving the weak pullback preservation for the distribution
functor.

9

Proposition 2.13 The functor D preserves weak pullbacks. 2

Appendix B is dedicated to the proof of this proposition. As a consequence
we get that the functor for generative systems GA preserves weak pullbacks. An
application of Lemma 2.10 and some simple derivations now suffice to show the
correspondence result.

Lemma 2.14 An equivalence relation R on a set S is a coalgebraic bisimulation
on the generative system 〈S, A, α〉 according to Definition 2.6 for the functor GA

if and only if it is a concrete bisimulation according to Definition 2.8. 2

We end this section with a small discussion on the assumption of Lemma 2.10.
Often we require a functor to weakly preserve pullbacks, so that it will be “well-
behaved”. For example, for bisimilarity being an equivalence. It can easily be
seen that the milder condition of weakly preserving total pullbacks suffices for
bisimilarity to be an equivalence. Moreover, we have relaxed the weak pullback
preservation condition since in Section 5 we will need a bisimilarity characteri-
zation of a functor that transforms total pullbacks to weak pullbacks, but does
not preserve weak pullbacks.

3 Weak bisimulation for action-type coalgebras

In this section we present a general definition of weak bisimulation for action-
type systems. Our idea arises as a generalization of the notions of weak bisim-
ulation for concrete types of systems. In our opinion, a weak bisimulation on a
given system is a strong bisimulation on a suitably transformed system obtained
from the original one.

Weak bisimulation in concrete cases deals with hiding actions. Therefore
we focus on weak bisimulation for action-type coalgebras. Recall that we have
defined action-type coalgebras in Definition 2.2 as triples 〈S,A, α〉 such that
〈S, α : S → FAS〉 is a coalgebra for the functor FA induced by a bifunctor F ,
as in Equation (1).

We proceed with the definition of weak bisimulation for action-type coal-
gebras. The definition consists of two phases. First we define the notion of a
∗-extended system, that captures the behavior of the original system when ex-
tending from the given set of actions A to A∗, the set of finite words over A. The
∗-extension should emerge from the original system in a faithful way (which will
be made precise below). The second phase considers invisibility. Given a subset
τ ⊆ A of invisible actions, we restrict the ∗-extension to visible behavior only, by
defining its weak-τ -extended system. Then a weak bisimulation relation on the
original system is obtained as a bisimulation relation on the weak-τ -extension.

Definition 3.1 Let F and G be two bifunctors. Let Φ be a map assigning to
every FA-coalgebra 〈S,A, α〉, a GA∗ system 〈S, A∗, α′〉, on the same set of states
S, such that the following conditions are met

(1) Φ is injective, i.e. Φ(〈S,A, α〉) = Φ(〈S, A, β〉) ⇒ α = β;

10

(2) Φ preserves and reflects bisimilarity, i.e. s ∼ t in the system 〈S, A, α〉 if
and only if s ∼ t in the transformed system Φ(〈S,A, α〉).

Then Φ is called a ∗-translation, notation Φ : F ∗→ G. The GA∗-coalgebra
Φ(〈S,A, α〉) is said to be a ∗-extension of the FA-coalgebra 〈S,A, α〉.

From the conditions (1) and (2) in Definition 3.1 it follows that the original
system is “embedded” in its ∗-extension, cf. [10, 11, 41]. The fact that a ∗-
translation may lead to systems of a new type, viz. of the bifunctor G, might
seem counterintuitive at first sight. However, this extra freedom is exploited in
Section 5 when the starting functor itself is not expressive enough to allow for
a ∗-extension.

A way to obtain ∗-translations follows from a previous result. Namely, if
λ : FA⇒GA∗ is a natural transformation with injective components and the func-
tor FA preserves weak pullbacks, then the induced functor (see Equation (3)) is
a ∗-translation [10, 11]. However, we shall see later that ∗-translations emerging
from natural transformations do not suffice.

Having described how to extend an FA system to its ∗-extension we show
how to hide invisible actions. Fix a set of invisible actions τ ⊆ A. Consider
the function hτ : A∗ → (A \ τ)∗ induced by hτ (a) = a if a 6∈ τ and hτ (a) = ε
for a ∈ τ (where ε denotes the empty word). The function hτ is deleting all
the occurrences of elements of τ in a word of A∗. We put Aτ = (A \ τ)∗. By
Proposition 2.1, we get the following.

Corollary 3.2 The transformation ητ : GA∗⇒GAτ given by ητ
S = G〈hτ , idS〉 is

natural. 2

Let Ψτ be the functor from CoalgA∗
G to CoalgAτ

G induced by the natural
transformation ητ , i.e. Ψτ (〈S,A∗, α′〉) = 〈S, Aτ , α′′〉 for α′′ = ητ

S
◦α′ and Ψτf =

f for any morphism f : S → T . As mentioned above, the induced functor
preserves bisimilarity. The composition of a ∗-translation Φ and the hiding
functor Ψτ is denoted by Ωτ = Ψτ ◦ Φ and is called a weak-τ -translation. The
resulting system 〈S, Aτ , ητ

S
◦ α′〉 is called a weak-τ -extension of 〈S, A, α〉.

The transformation to a weak-τ -extension is presented in the following scheme.

S

α

²²

S
α′

²²

S

α′′=ητ
S
◦α′

²²

Φ ///o/o/o/o/o/o/o/o/o
Ψτ ///o/o/o/o/o/o/o/o/o

FAS GA∗S

FA - coalgebra GA∗ - coalgebra GAτ S

GAτ - coalgebra

A weak-τ -translation, or equivalently, the pair 〈Φ, τ〉, yields a notion of weak
bisimulation with respect to Φ and τ .

11

Definition 3.3 Let F , G be two bifunctors, Φ : F ∗→ G a ∗-translation and
τ ⊆ A. Let 〈S, A, α〉 and 〈T,A, β〉 be two FA systems. A relation R ⊆ S × T
is a weak bisimulation with respect to 〈Φ, τ〉 if and only if it is a bisimulation
between Ωτ (〈S, A, α〉) and Ωτ (〈T, A, β〉). Two states s ∈ S and t ∈ T are weakly
bisimilar with respect to 〈Φ, τ〉, notation s ≈τ t, if they are related by some weak
bisimulation with respect to 〈Φ, τ〉.

Concrete examples of weak bisimulation will be discussed in Section 4 and
Section 5. We continue with verifying that weak bisimulations ≈τ posses the
intuitively expected properties.

Proposition 3.4 Let F , G be two bifunctors, Φ : F ∗→ G a ∗-translation,
〈S, A, α〉 an FA-coalgebra, τ ⊆ A and let ≈τ denote the weak bisimilarity on
〈S, A, α〉 w.r.t. 〈Φ, τ〉. Then the following hold:

(i) ∼ ⊆ ≈τ for any τ ⊆ A
i.e. strong bisimilarity implies weak bisimilarity.

(ii) ∼ = ≈∅
i.e. strong bisimilarity is weak bisimilarity in absence of invisible actions.

(iii) τ1 ⊆ τ2⇒ ≈τ1 ⊆ ≈τ2 for any τ1, τ2 ⊆ A,
i.e. the more actions are invisible, the coarser the weak bisimilarity gets.

Proof Let F ,G, Φ, 〈S, A, α〉 and τ be as in the assumptions of the Lemma.

(i) Assume s ∼ t in 〈S,A, α〉. Since Φ preserves bisimilarity (Definition 3.1)
we have that s ∼ t in Φ(〈S, A, α〉). Next, since Ψτ preserves bisimilarity
we get s ∼ t in Ψτ ◦ Φ(〈S, A, α〉), which by Definition 3.3 means s ≈τ t in
〈S, A, α〉.

(ii) From (i) we get ∼ ⊆ ≈∅. For the opposite inclusion, note that h∅ :
A∗ → A∗ is the identity map, hence the natural transformation η∅ from
Corollary 3.2 is the identity natural transformation. Therefore the induced
functor Ψ∅ is the identity functor on CoalgA∗

G . Now assume s ≈∅ t in
〈S, A, α〉. This means s ∼ t in Ω∅(〈S,A, α〉), i.e. s ∼ t in Ψ∅ ◦Φ(〈S, A, α〉),
i.e. s ∼ t in Φ(〈S,A, α〉). Since, by Definition 3.1, every ∗-translation
reflects bisimilarity we get s ∼ t in 〈S, A, α〉.

(iii) Let τ1 ⊆ τ2. Consider the diagram

A∗
hτ2 //

hτ1

²²

Aτ2

Aτ1

hτ1,τ2

=={{{{{{{{

where hτ1,τ2 is the map deleting all occurrences of elements of τ2 in a
word of Aτ1 . The diagram commutes since first deleting all occurrences of

12

elements of τ1 followed by deleting all occurrences of elements of τ2, in a
word of A∗ is the same as just deleting all occurrences of elements of τ2. Let
ητ1 , ητ2 , ητ1,τ2 be the natural transformations induced by hτ1 , hτ2 , hτ1,τ2 ,
respectively (see Proposition 2.1 and Corollary 3.2). Then the following
diagram commutes.

GA∗
ητ2

+3

ητ1

®¶

GAτ2

GAτ1

ητ1,τ2

8@zzzzzzzz

zzzzzzzz

Let Ψτ1 , Ψτ2 , Ψτ1,τ2 be the functors induced by the natural transforma-
tions ητ1 , ητ2 , ητ1,τ2 , respectively. By Equation (3) it holds that

Ψτ2 = Ψτ1,τ2
◦ Ψτ1 (7)

and they all preserve bisimilarity. Now assume s ≈τ1 t in 〈S, A, α〉. This
means that s ∼ t in the system Ψτ1

◦ Φ(〈S,A, α〉). Then, since Ψτ1,τ2

preserves bisimilarity we have s ∼ t in the system Ψτ1,τ2
◦Ψτ1

◦Φ(〈S,A, α〉)
which by equation (7) is the system Ψτ2

◦Φ(〈S, A, α〉) and we find s ≈τ2 t
in 〈S, A, α〉. 2

For further use, we introduce some more notation. For any w ∈ Aτ , we
put Bw = h−1

τ ({w}) ⊆ A∗. We refer to the sets Bw as blocks. Note that
Bw = τ∗a1τ

∗ · · · τ∗akτ∗ for w = a1 . . . ak ∈ Aτ = (A \ τ)∗.

4 Weak bisimulation for LTSs

In this section we show that in the case of LTSs there exists a ∗-translation
according to the Definition 3.1, such that weak bisimulation in the concrete
case [28] coincides with weak bisimulation induced by this ∗-translation. First
we recall the standard definition of concrete weak bisimulation for LTSs.

Definition 4.1 Let 〈S,A,→〉 be an LTS. Let τ ∈ A be the invisible action. An
equivalence relation R ⊆ S × S is a weak bisimulation on 〈S, A, α〉 if and only
if 〈s, t〉 ∈ R implies that

if s
a−→ s′, then there exists t′ ∈ S with

t
τ−→ ∗ ◦ a−→ ◦

τ−→ ∗ t′ and 〈s′, t′〉 ∈ R

for all a ∈ A \ {τ}, and

if s
τ−→ s′, then there exists t′ ∈ S with t

τ−→ ∗ t′ and 〈s′, t′〉 ∈ R.

Two states s and t are called weakly bisimilar if and only if they are related
by some weak bisimulation relation. Notation s ≈` t.

13

We now present a definition of a ∗-translation that will give rise to a notion
of weak bisimulation that coincides with the standard one of Definition 4.1.
Recall that L, LA are the functors for LTSs, as introduced in Section 2.

Definition 4.2 Let Φ assign to every LTS, i.e. any LA-coalgebra 〈S, A, α〉, the
LA∗ coalgebra 〈S, A∗, α′〉 where for w = a1 . . . ak ∈ A∗, k > 0,

〈a1 . . . ak, s′〉 ∈ α′(s) ⇐⇒ s
a1−→ ◦

a2−→ ◦ · · · ◦ ak−→ s′

and 〈ε, s′〉 ∈ α′(s) ⇐⇒ s = s′. We use the notation s
w⇒ s′ for 〈w, s′〉 ∈ α′(s).

Hence, for w = a1 . . . ak, we have s
w⇒ s′ if and only if there exist states

s1, . . . , sk−1 such that

s
a1−→ s1

a2−→ s2 · · · ak−1−→ sk−1
ak−→ s′.

Furthermore, note that for a ∈ A, since no hiding applies, it holds that

s
a−→ s′ in 〈S, A, α〉 if and only if s

a⇒ s′ in 〈S, A, α′〉 = Φ(〈S, A, α〉)

i.e.,
〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s).

Proposition 4.3 The assignment Φ from Definition 4.2 is a ∗-translation.

Proof We need to prove that Φ is injective and reflects and preserves bisimi-
larity. Let Φ(〈S, A, α〉) = 〈S,A∗, α′〉, Φ(〈S, A, β〉) = 〈S,A∗, β′〉. Assume that
α′ = β′. Then, for any state s,

〈a, s′〉 ∈ α(s) ⇐⇒ 〈a, s′〉 ∈ α′(s) ⇐⇒ 〈a, s′〉 ∈ β′(s) ⇐⇒ 〈a, s′〉 ∈ β(s).

Hence α(s) = β(s), i.e., α = β.
For the reflection of bisimilarity, let s ∼ t in Φ(〈S,A, α〉) = 〈S, A∗, α′〉.

Hence there exists an equivalence bisimulation relation R such that 〈s, t〉 ∈ R
and (according to Definition 2.7) for all w ∈ A∗,

if s
w⇒ s′ then there exists t′ ∈ S such that t

w⇒ t′ and 〈s′, t′〉 ∈ R.
Assume s

a−→ s′ in 〈S, A, α〉. Then s
a⇒ s′ in 〈S, A, α′〉 and therefore there

exists t′ ∈ S with 〈s′, t′〉 ∈ R and t
a⇒ t′, i.e., t

a−→ t′. Hence, R is a bisimulation
on 〈S, A, α〉 i.e. s ∼ t in the original system.

For the preservation of bisimulation, let s ∼ t in 〈S, A, α〉 and let R be an
equivalence bisimulation relation such that 〈s, t〉 ∈ R. Assume s

w⇒ s′, for some
word w ∈ A∗. We show by induction on the length of w that there exists t′

with t
w⇒ t′ and 〈s′, t′〉 ∈ R. If w has length 0, then w = ε, s′ = s and we take

t′ = t. Assume w has length k + 1, i.e. w = a · w′ for a ∈ A,w′ ∈ A∗. Pick

s′′ such that s
a−→ s′′ w′⇒ s′. Since 〈s, t〉 ∈ R we can pick t′′ such that t

a−→ t′′

and 〈s′′, t′′〉 ∈ R. By the inductive hypothesis, for w′ we can choose t′ such

14

that t′′ w′⇒ t′ and 〈s′, t′〉 ∈ R. Note that t
a−→ t′′ w′⇒ t′, i.e., t

w⇒ t′. Hence R is a
bisimulation on 〈S,A∗, α′) and s ∼ t holds in the ∗-extension. 2

Note that if T is a functor induced by a natural transformation η, in the
context of Equation (3), and if 〈S,A, α〉, 〈S, A, β〉 are two systems such that, for
some s ∈ S, α(s) = β(s), then, clearly,

α′(s) = ηS(α(s)) = ηS(β(s)) = β′(s) (8)

for 〈S, A, α′〉 = T (〈S, A, α〉), 〈S, A, β′〉 = T (〈S, A, β〉).
Having ∗-translations induced by natural transformations is desirable, since

such *-translations are functorial and also obtained by a categorical construct.
However, the following simple example shows that the ∗-translation Φ from
Definition 4.2 violates (8). Therefore it can not be induced by a natural trans-
formation.

Example 4.4 Let S = {s1, s2, s3} and A = {a, b, c}. Consider the LTSs:

〈S, A, α〉 : s1
a−→ s2

b−→ s3 and 〈S,A, β〉 : s1
a−→ s2

c−→ s3.

Obviously α(s1) = β(s1). However, α′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ab, s3〉} while
β′(s1) = {〈ε, s1〉, 〈a, s2〉, 〈ac, s3〉}.

We next show that the coalgebraic and the concrete definitions coincide in
the case of LTS.

Theorem 4.5 Let 〈S, A, α〉 be an LTS. Let τ ∈ A be the invisible action and
s, t ∈ S any two states. Then s ≈{τ} t with respect to the pair 〈Φ, {τ}〉 if and
only if s ≈` t.

Proof Assume s ≈{τ} t for s, t ∈ S of an LTS 〈S,A, α〉. This means that s ∼ t

in the LTS 〈S, A{τ}, η
{τ}
S

◦ α′〉, i.e., there exists an equivalence bisimulation R
on this system with 〈s, t〉 ∈ R.

As usual, α′ is such that 〈S, A∗, α′〉 = Φ(〈S,A, α〉). Here we have η
{τ}
S =

L(h{τ}, idS) = P(h{τ}, idS) and

(η{τ}S
◦ α′)(s) = η

{τ}
S (α′(s))

= P(h{τ}, idS)(α′(s))
= {〈h{τ}(w), s′〉 | 〈w, s′〉 ∈ α′(s)}
= {〈u, s′〉 | ∃w ∈ Bu : s

w⇒ s′}

We denote the transition relation of the weak-τ -system 〈S, A{τ}, η
{τ}
S

◦ α′〉 by
⇒ τ , i.e., for w ∈ Aτ ,

s
w⇒ τ s′ ⇐⇒ 〈w, s′〉 ∈ (η{τ}S

◦ α′)(s).

15

The above shows that for a word w = a1 . . . ak ∈ Aτ

s
w⇒ τ s′ ⇐⇒ ∃v ∈ Bw = τ∗a1τ

∗ . . . τ∗akτ∗ : s
v⇒ s′.

We will show that the relation R is a weak bisimulation on 〈S, A, α〉 according
to Definition 4.1. Let s

a−→ s′ (a 6= τ). Then s
a⇒ s′, implying s

a⇒ τ s′. Since
R is a bisimulation on the weak-τ -system, there exists t′ such that t

a⇒ τ t′ and
〈s′, t′〉 ∈ R. We only need to note here that a⇒ τ = τ−→ ∗ ◦ a−→ ◦

τ−→ ∗. In case
s

τ−→ s′ we have s
τ⇒ s′ implying now s

ε⇒ τs′. Hence, there exists t′ such that
t

ε⇒ τ t′ and 〈s′, t′〉 ∈ R. Since ε⇒ τ = τ−→ ∗, we have proved that R is a weak
bisimulation on 〈S,A, α〉 according to Definition 4.1.

For the opposite, let R be a weak bisimulation on 〈S, A, α〉 according to
Definition 4.1 such that 〈s, t〉 ∈ R. It is easy to show that for any a ∈ A, if
s

τ−→ ∗ ◦ a−→ ◦
τ−→ ∗s′ then there exists t′ such that t

τ−→ ∗ ◦ a−→ ◦
τ−→ ∗t′ and

〈s′, t′〉 ∈ R. Hence, if s
a⇒ τ s′ then there exists t′ with t

a⇒ τ t′ and 〈s′, t′〉 ∈ R.
Based on this, a simple inductive argument on k leads to the conclusion that
for any word w = a1 . . . ak ∈ Aτ , if s

w⇒ τ s′ then there exists a t′ such that
t

w⇒ τ t′ and 〈s′, t′〉 ∈ R, i.e. R is a bisimulation on the weak-τ -system and hence
s ≈{τ} t. 2

5 Weak bisimulation for generative systems

In this section we deal with generative systems and their weak bisimilarity.
We first focus on the concrete definition of weak bisimulation by Baier and
Hermanns [7, 6, 8]. Inspired by it, we provide a functor that suits for a definition
of a ∗-translation for generative systems. This way we obtain a coalgebraic
definition of weak bisimulation for this type of systems. We show that our
definition, although at first sight much stronger, coincides with the definition
of Baier and Hermanns for finite systems. Unlike in the case of LTSs, for
generative systems the ∗-translation needs to leave its original class of systems,
which justifies the generality of the definition.

This section is divided into several parts that lead to the correspondence
result: First we introduce paths in a generative system and establish some
notions and properties of paths. Next we define a measure on the set of paths,
where we basically follow the lines of Baier and Hermanns [8, 6]. Furthermore,
we present the definition of weak bisimulation by Baier and Hermanns, and
we prove some properties of weak bisimulation relations that will be used later
on (without restricting to finite state systems as in [8, 6]). Then we define a
translation and prove that it is a ∗-translation providing us with a notion of
weak-τ -bisimulation. The final part of this section is devoted to the question
of correspondence of the notion of weak-τ -bisimulation defined by means of the
given ∗-translation and the concrete notion proposed by Baier and Hermanns.

16

5.1 Paths and cones in a generative system

Let 〈S, A, P 〉 be a generative system. A finite path π of 〈S,A, P 〉 is an al-
ternating sequence 〈s0, a1, s1, a2, . . . , ak, sk〉, where k ∈ N0, si ∈ S, ai ∈ A,
and P (si−1, ai, si) > 0, i = 1, . . . , k. We will denote a finite path π =
〈s0, a1, s1, a2, . . . , ak, sk〉 more suggestively by

s0
a1−→ s1

a2−→ s2 · · · sk−1
ak−→ sk .

Moreover, in the situation above, we put

length(π) = k, first(π) = s0, last(π) = sk, trace(π) = a1a2 · · · ak .

The path εs0 = (s0) will be understood as the empty path starting at s0. We
will often write just ε for an arbitrary empty path. Similar to the finite case,
an infinite path π of 〈S,A, P 〉 is an infinite sequence 〈s0, a1, s1, a2, . . .〉, where
si ∈ S, ai ∈ A and P (si−1, ai, si) > 0, i ∈ N, and will be written as

s0
a1−→ s1

a2−→ s2 · · ·

Again we set first(π) = s0. A path π is called complete if it is either infinite or
it is finite with last(π) a terminating state, i.e. P (last(π), ,) = 0.

The sets of all (finite or infinite) paths, of all finite paths and of all complete
paths will be denoted by Paths, FPaths and CPaths, respectively. Moreover, if
s ∈ S, we write

Paths(s) =
{

π ∈ Paths | first(π) = s
}
,

FPaths(s) =
{

π ∈ FPaths | first(π) = s
}
,

CPaths(s) =
{

π ∈ CPaths | first(π) = s
}
.

We next define sets of concatenated paths. If Π1, Π2 ⊆ FPaths, we define

Π1 ·Π2 =
{
π1 · π2 | π1 ∈ Π1, π2 ∈ Π2, last(π1) = first(π2)

}
,

where π1 · π2 ≡ s
a1−→ · · · ak−→ sk

ak+1−→ · · · an−→ sn for π1 ≡ s
a1−→ · · · ak−→ sk and

π2 ≡ sk
ak+1−→ · · · an−→ sn.

The set Paths(s) is partially ordered by the prefix relation. For π, π′ ∈
Paths(s) we write π ¹ π′ if and only if the path π is a prefix of the path π′.

Note that if π ≺ π′ then π is a finite path, and if π1 ¹ π and π2 ¹ π, then
either π1 ¹ π2 or π2 ¹ π1. The complete paths are exactly the maximal elements
in this partial order. For every π ∈ Paths(s), there exists a π′ ∈ CPaths(s) such
that π ¹ π′.

The following statement will be used at several occasions throughout this
section.

Lemma 5.1 For any state s ∈ S, the set FPaths(s) is at most countable.

17

Proof Let FPathsn(s) denote the set of finite paths starting from s with length
n. Clearly, FPaths(s) = ∪n∈N FPathsn(s). The statement follows from the
observation that for any state s and any n ∈ N the set FPathsn(s) is at most
countable. This observation can be proven by induction on n as follows. We
have FPaths0(s) = {ε} and

FPathsn+1(s) =
⋃

〈a,s′〉:P (s,a,s′)>0

s
a−→ s′ · FPathsn(s′)

which is at most countable by the inductive hypothesis and by the fact that
P (s, a, s′) > 0 for at most countably many a and s′ (see Lemma B.1 in Ap-
pendix B). 2

Definition 5.2 For a finite path π ∈ FPaths(s), let π↑ denote the set

π↑ = {ξ ∈ CPaths(s) | π ¹ ξ}

also called the cone of complete paths generated by the finite path π.

Note that always π↑ 6= ∅. Let

Cones(s) =
{
π↑ | π ∈ FPaths(s)

} ⊆ P(CPaths(s))

denote the set of all cones. By Lemma 5.1 this set is at most countable. For the
study of weak bisimulation for generative systems a thorough understanding of
the geometry of cones is crucial. To begin with, we have the following elementary
property:

Lemma 5.3 Let π1, π2 ∈ FPaths(s). Then the cones π1↑ and π2↑ are either
disjoint or one is a subset of the other. In fact,

π1↑ ∩ π2↑ =





π2↑ if π1 ¹ π2

π1↑ if π2 ¹ π1

∅ if π1 6¹ π2 and π2 6¹ π1

Moreover, we have π1↑ = π2↑ if and only if either

π1 ≡ s
a1−→ · · · ak−→ sk, π2 ≡ s

a1−→ · · · ak−→ sk
ak+1−→ sk+1 · · · an−→ sn (9)

for n ≥ k ≥ 0, and

P (si−1, ai, si) = 1, i = k + 1, . . . , n (10)

or vice-versa.

18

Proof Let π̂ ∈ π1↑ ∩ π2↑, π̂ ∈ CPaths(s). Then π1 ¹ π̂ and π2 ¹ π̂. This
implies that π1 ¹ π2 or π2 ¹ π1. Assume π1 ¹ π2. Then

π ∈ π2↑ ⇐⇒ π2 ¹ π =⇒ π1 ¹ π ⇐⇒ π ∈ π1↑

i.e., π2↑ ⊆ π1↑ and therefore π1↑ ∩ π2↑ = π2↑.
It is clear that (9) and (10) imply π1↑ = π2↑. Assume π1↑ = π2↑. Then

π1↑ ∩ π2↑ 6= ∅ and therefore π1 ¹ π2 or π2 ¹ π1. Assume π1 ¹ π2, π1 ≡
s

a1−→ · · · ak−→ sk, π2 ≡ s
a1−→ · · · ak−→ sk

ak+1−→ sk+1 · · · an−→ sn. If for some i ∈ {k +
1, . . . , n} it happens that P (si−1, ai, si) < 1, then there exists an action a′i ∈ A
and a state s′i ∈ S such that 〈a′i, s′i〉 6= 〈ai, si〉 and

π′2 ≡ s
a1−→ · · · ai−1−→ si−1

a′i−→ s′i

is a path in 〈S, A, P 〉. Since i ≥ k + 1 we have π1 ¹ π′2. However, this path
is not prefix related to π2, i.e., we have π′2 6¹ π2 and π2 6¹ π′2. Therefore
π′2↑ ∩ π1↑ = π′2↑ and π′2↑ ∩ π2↑ = ∅ contradicting π1↑ = π2↑. 2

Let Π ⊆ FPaths(s). We say that Π is minimal if for any two π1, π2 ∈ Π,
π1 6= π2, we have π1↑ ∩ π2↑ = ∅. Hence in a minimal set of paths Π no path of
Π is a proper prefix of another path of Π. We will express that Π is minimal by
writing min(Π). As example note that every singleton set {π}, π ∈ FPaths(s),
is minimal. Also every subset of CPaths(s) is minimal, too.

For Π ⊆ FPaths(s) we denote by Π↑ the set

Π↑ =
⋃

π∈Π

π↑ .

Then the fact min(Π) just means that Π↑ is actually the disjoint union of all
π↑, π ∈ Π, i.e.

min(Π) ⇐⇒ Π↑ =
⊔

π∈Π

π↑ ,

where, here and in the sequel, the symbol t denotes disjoint unions. It is an
immediate consequence of the definition that,

min(Π), Π′ ⊆ Π =⇒ min(Π′).

However, if Π1 and Π2 are minimal, their union need not necessarily be
minimal, even if Π1 ∩Π2 = ∅. We will use the notation

Π =
⊎

i∈I

Πi

to express that

Πi ⊆ FPaths(s), i ∈ I, Π =
⊔

i∈I

Πi and min(Π) .

19

Note that if Π =
⊎

i∈I Πi, also min(Πi) for all i ∈ I. In particular this notation
applies to minimal subsets Π written as the union of their one-element subsets:

min(Π) =⇒ Π =
⊎

π∈Π

{π}.

Observe that the following two properties hold, as can be readily checked.

• If Π =
⊎

i∈I Πi, then Π↑ =
⊔

i∈I Πi↑ =
⊔

i∈I,π∈Πi
π↑ .

• We have Π =
⊎

i∈I Πi if and only if

– ∀i ∈ I : min(Πi), and

– ∀i, j ∈ I : i 6= j =⇒ Πi ∩Πj = ∅, and

– ∀i, j ∈ I : i 6= j =⇒ ∀πi ∈ Πi, ∀πj ∈ Πj : πi 6¹ πj and πj 6¹ πi.

Let Π ⊆ FPaths(s). Put Π↓ = {π ∈ Π | ∀π′ ∈ Π : π′ 6≺ π}.

Lemma 5.4 For any subset Π ⊆ FPaths(s), it holds that Π↓ ⊆ Π, min(Π↓) and
Π↑ =

(
Π↓)↑.

Proof It is clear that Π↓ is minimal, and that Π↓ ⊆ Π. Therefore also
(
Π↓)↑ ⊆

Π↑. Take π ∈ Π. Since the prefix ordering does not allow for infinite descending
chains, there exists π′ ∈ Π↓ with π′ ¹ π. So we have π↑ ⊆ π′↑ and this way we
get Π↑ ⊆ (

Π↓)↑. 2

5.2 The measure Prob

We proceed with the construction of a probability measure Prob out of the dis-
tribution P of a generative system 〈S, A, P 〉 on a certain σ-algebra on CPaths(s).
This method was used in many papers, also in [8, 6], and before that in [37],
where the setting is slightly different and/or only a part of the story is given.
Here we give complete proofs for our setting. As a standard reference for mea-
sure theoretic notions and results we use the monograph [44]. An important
measure theoretic result is the extension theorem which states that any pre-
measure (σ-additive, monotone function with value zero for the empty set) on a
semi-ring extends in a unique way to a measure on the σ-field generated by the
semi-ring. Slightly different versions of this theorem apply to different defini-
tions of the notion “semi-ring”. For our purposes, the definition of a semi-ring
from [44] fits best. Namely, a family of subsets of a given set S is a semi-ring
if it contains the empty set, is closed under finite intersection and the set dif-
ference of any two of its elements is a disjoint union of at most countably many
elements of the semi-ring.

Lemma 5.5 The set Cones(s) ∪ {∅} is a semi-ring.

20

Proof Clearly, Cones(s) ∪ {∅} contains the empty set and it is closed under
intersection, by Lemma 5.3. We need to check that the set-difference of any
two of its elements is a disjoint union of at most countably many elements
of Cones(s) ∪ {∅}. Let π1↑, π2↑ ∈ Cones(s). We consider π1↑ \ π2↑. Since
π1↑ \ π2↑ = π1↑ \ (π1↑ ∩ π2↑), by Lemma 5.3, the only interesting case is
π1↑ ∩ π2↑ = π2↑ 6= π1↑ which implies π1 ≺ π2. Let

Π = {π | π = π′ · last(π′) a−→ s′, π1 ¹ π′ ≺ π2, π 6¹ π2}.

Then π1↑ \ π2↑ = Π↑ = tπ∈Π π↑. This union is at most countable since the set
Π is at most countable by Lemma 5.1. 2

Now we are ready to introduce the desired extension of P to a measure.
By Lemma 5.3, a function Prob : Cones(s) ∪ {∅} → [0, 1] is well-defined by
Prob(∅) = 0, Prob(ε↑) = Prob(CPaths(s)) = 1 and

Prob(C) = P (s, a, s′) · Prob(C ′), forC = π↑, π = s
a−→ s′ · π′, C ′ = π′↑

Lemma 5.6 The function Prob is a pre-measure1 on the semi-ring Cones(s)∪
{∅}.

Proof By definition Prob(∅) = 0. Further we need to check σ-additivity and
monotonicity.

For the σ-additivity, assume

π↑ =
⊔

i∈I

πi↑ (11)

for some at most countable index set I. We need to show that Prob(π↑) =∑
i∈I Prob(πi↑).
If |I| = 1, then the property is trivially satisfied. Therefore we assume that

|I|> 1. In particular this means that π is not terminating.
There exists (via a Lemma of Zorn argument) a partial function depth2 that

assigns to some finite paths an ordinal number, satisfying:

1. If ξ ∈ FPaths(s) is such that πi ¹ ξ for some i ∈ I, or if ξ terminates,
then depth(ξ) = 0.

2. Otherwise, if ξ is a finite path such that all its one step successors {ξ′ |
ξ ¹ ξ′, length(ξ′) = length(ξ)+1} have assigned depth then also ξ belongs
to the domain of depth and

depth(ξ) = sup{depth(ξ′) | ξ ¹ ξ′, length(ξ′) = length(ξ) + 1}+ 1. (12)

1In [44] pre-measures are also called measures.
2The function depth has also been defined and used in a proof of a similar property by

Segala [37].

21

Actually the function depth applied to a finite path ξ captures how deep
in the cone generated by ξ one must go in order to be sure that all extensions
of the path under consideration belong to some πi↑ for i ∈ I or terminate. In
other words, if depth(ξ) is defined, and if Ξ is the set of paths that extend ξ in
at least depth(ξ) steps, then any path that extends any path in Ξ belongs to
some of the cones πi↑ for i ∈ I or terminates.

We first show, by reducing to contradiction, that our starting finite path
π has been assigned a value for depth. Assume that π has not been assigned
a value for depth. Let π0 = π. For each i > 0 let πi be a path such that
length(πi) = length(πi−1) + 1, πi−1 ¹ πi and πi has not been assigned a value
for depth. Such a chain under the prefix ordering exists since if for some i all
paths that extend πi in one step would had been assigned depth, then πi would
also have been assigned a depth. Consider the infinite complete path π∞ such
that for all i > 0, πi ¹ π∞. By definition π∞ ∈ π↑. By (11), there exists i ∈ I
such that π∞ ∈ πi↑, implying that πi ¹ π∞ and hence πi = πn for some n ≥ 0.
However, then depth(πn) = depth(πi) = 0 contradicting that πn has no value
for depth assigned.

Let π̂ be any non-terminating path and let {πo | o ∈ O} be the set of paths
that extend π̂ in one step, which means that

∀o ∈ O : π̂ ≺ πo, length(πo) = length(π̂) + 1. (13)

Then
π̂↑ =

⊔

o∈O

πo↑ (14)

and
∑

o∈O

Prob(πo↑) =
∑

a∈A,s′∈S

Prob(π̂↑) · P (last(π̂), a, s′)

= Prob(π̂↑) ·
∑

a∈A,s′∈S

P (last(π̂), a, s′)

= Prob(π̂↑) (15)

since π̂ does not end in a terminating state, i.e.
∑

a∈A,s∈S P (last(π̂), a, s) = 1.
We will now show, by induction on depth, that if π̂ is a finite path which

has been assigned a value for depth and if

π̂↑ =
⊔

i∈I′⊆I

πi↑, (16)

for some I ′ ⊆ I, then Prob(π̂↑) =
∑

i∈I′⊆I Prob(πi↑). Assume π̂ is a path with
depth(π̂) = 0 satisfying the assumption above. Then either π̂ terminates or
π̂↑ = πi↑ for some i ∈ I ′ and therefore |I ′| = 1 and the additivity holds trivially.
Now assume depth(π̂) = α and α is a successor ordinal (by definition α can not
be a limit ordinal). This implies that π̂ is not terminating. Moreover assume
that the property holds for any path of the discussed form with depth smaller
than α and let {πo | o ∈ O} be the set of paths that extend π̂ in one step.

22

By (16) we have that
∀i ∈ I ′ : π̂ ¹ πi. (17)

Moreover, from (16) and (14), using Lemma 5.3 we easily conclude that

∀i ∈ I ′,∃!o ∈ O : πo ¹ πi (18)

and
∀o ∈ O, ∃i ∈ I ′ : πo ¹ πi. (19)

Let
I ′o = {i ∈ I ′ | πo ¹ πi}.

From (16), (18) and (19), we get that I ′o 6= ∅,

I ′ =
⊔

o∈O

I ′o and πo↑ =
⊔

i∈I′o

πi↑ for o ∈ O. (20)

Then we get

Prob(π̂↑) (15)
=

∑

o∈O

Prob(πo↑)

(I.H.)
=

∑

o∈O

∑

i∈I′o

Prob(πi↑)

(20)
=

∑

i∈I′
Prob(πi↑).

where the inductive hypothesis is applicable since by (12) and (13), depth(πo)<α
for all o ∈ O and I ′o ⊆ I ′ ⊆ I. This completes the proof of σ-additivity.

To see that Prob is monotonic assume π1↑ ⊆ π2↑. Then, by Lemma 5.3, we
have two possibilities. The first one is π2 ≺ π1 and since P (s, a, t) ≤ 1 for all
s, t ∈ S, a ∈ A, from the definition of Prob we get Prob(π1↑) ≤ Prob(π2↑). The
second possibility is π1↑ = π2↑, in which case Prob(π1↑) = Prob(π2↑). 2

Corollary 5.7 The function Prob extends uniquely to a probability measure on
the σ-algebra on CPaths(s) generated by Cones(s) ∪ {∅}. We will denote this
measure again by Prob. 2

Remark 5.8 Note that, although paths are more or less just alternating se-
quences of elements of S and A, whether an alternating sequence of states and
actions is a path depends on the distribution P . Therefore the function Prob
itself, but also the σ-algebra where it is defined and in fact already the base set
CPaths(s) depends heavily on P .

The measure Prob induces a function on sets of finite paths, which we will
also denote by Prob. We define Prob : P(FPaths(s)) → [0, 1] by

Prob(Π) = Prob(Π↑).

23

Note that Π↑ is measurable since it is a countable union of cones. This notation
is not in conflict with the already existing notation of the measure Prob. In fact,
P(FPaths(s)) ∩ P(CPaths(s)) consists entirely of Prob-measurable sets and on
such sets both definitions coincide. To see this, note that if π ∈ FPaths(s) ∩
CPaths(s), then π↑ = {π}. Thus, if Π ⊆ FPaths(s) and Π ⊆ CPaths(s), we
have

Π =
⊔

π∈Π

{π} =
⊔

π∈Π

π↑ = Π↑ ,

and this union is at most countable.
It will always be clear from the context whether we mean the measure Prob

or the just defined function Prob on sets of finite paths. Still, there is a word
of caution in order: The function Prob : P(FPaths(s)) → [0, 1] is, in general,
not additive. However, looking at the properties of] introduced above (on
page 19), we find that

Π =
⊎

i∈I

Πi =⇒ Prob(Π) =
∑

i∈I

Prob(Πi) .

For this reason, we will overload the notation] and use it also for sets of cones
generated by sets of finite paths, i.e. from now on we will freely write

Π↑ =
⊎

i∈I

Πi↑

if and only if it holds that Π =
⊎

i∈I Πi for Π, Πi ⊆ FPaths(s).

We obtain that Prob(Π) =
∑

π∈Π Prob(π↑) for every minimal set Π.
Moreover, by Lemma 5.4, we always have Prob(Π) = Prob(Π↓).

We next introduce some particular sets of paths. For s ∈ S, S′, S′′ ⊆ S with
S′ ⊆ S′′, and W,W ′ ⊆ A∗ with W ⊆ W ′, by

s
W→¬W ′
¬S′′

S′

we denote the set of all finite paths that start in s, have a trace in W , end up in
S′, without passing a state in S′′ having just performed a trace in the set W ′.
Formally,

s
W→¬W ′
¬S′′

S′ =
{

π ∈ FPaths(s) | last(π) ∈ S′, trace(π) ∈ W

∀ ξ ≺ π : trace(ξ) 6∈ W ′ ∨ last(ξ) 6∈ S′′

}
.

We write Prob(s,W,¬W,S′,¬S′′) = Prob(s W→¬W ′
¬S′′

S′). Since S′ ⊆ S′′ and

W ⊆ W ′ we always have min(s W→¬W ′
¬S′′

S′). For notational convenience we will

24

drop redundant arguments whenever possible. Put

s
W→¬W ′ S′ = s

W→¬W ′
¬S′

S′,

s
W→¬S′′ S′ = s

W→¬W
¬S′′

S′,

s
W→ S′ = s

W→¬W
¬S′

S′ ,

(21)

and, correspondingly,

Prob(s,W,¬W ′, S′) = Prob(s, W,¬W ′, S′,¬S′),
Prob(s,W, S′,¬S′′) = Prob(s, W,¬W,S′,¬S′′),
Prob(s,W, S′) = Prob(s, W,¬W,S′,¬S′) .

(22)

Note that

s
W→ S′ =

{
π ∈ FPaths(s) | trace(π) ∈ W, last(π) ∈ S′

}↓
and hence

Prob(s,W, S′) = Prob(s W→ S′)
= Prob({π ∈ FPaths(s) | trace(π) ∈ W, last(π) ∈ S′}).(23)

Also, for a ∈ A, t ∈ S, we have

Prob(s, {a}, {t}) =
{

Prob(s a−→ t) = P (s, a, t), if s
a−→ t

Prob(∅) = 0, otherwise
(24)

Let S′, S′′,W,W ′ be as above. Suppose F ⊆ S. Then we put

F
W→¬W ′
¬S′′

S′ =
⊔

s∈F

s
W→¬W ′
¬S′′

S′ ⊆ FPaths

In case that for every s ∈ F the value of Prob(s,W,¬W ′, S′,¬S′′) is the same,
we speak of this value as Prob(F,W,¬W ′, S′,¬S′′). Also, in this context, we
shall freely apply shorthand as in (21) and (22).

The next technical property concerning sets of concatenated paths will be used
at several occasions in the paper. Note that, whenever a concatenation π1 · π2

is defined, we have Prob({π1 · π2}) = Prob({π1}) · Prob({π2}).
Proposition 5.9 Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths and assume that the set of
states S is represented as a disjoint union S =

⊔
i∈I Si . Denote Π1,Si = {π1 ∈

Π1 | last(π1) ∈ Si}, Π2,t = {π2 ∈ Π2 | first(π2) = t}. Assume that for every
i ∈ I

Prob(Π2,t′) = Prob(Π2,t′′), t′, t′′ ∈ Si .

Moreover, assume that Π1,Π2 and Π1 ·Π2 are minimal. Then, for every choice
of (ti)i∈I ∈

∏
i∈I Si, we have

Prob(Π1 ·Π2) =
∑

i∈I

Prob(Π1,Si) · Prob(Π2,ti) .

25

Proof Denote by Π2,Si = {π2 ∈ Π2 | first(π2) ∈ Si} and by Π1,t = {π1 ∈ Π1 |
last(π1) = t}. Under the assumptions of the proposition, we have

Prob(Π1 ·Π2) = Prob(
⊎

π∈Π1·Π2

π↑)

= Prob(
⊎

i∈I

(
⊎

π∈Π1,Si
·Π2,Si

π↑))

= Prob(
⊎

i∈I

(
⊎

t∈Si

(
⊎

π∈Π1,t·Π2,t

π↑)))

=
∑

i∈I

∑

t∈Si

∑

π∈Π1,t·Π2,t

Prob(π↑)

Since, by minimality, Π1,t ×Π2,t
∼= Π1,t ·Π2,t via (π1, π2) 7→ π1 · π2, we have

∑

π∈Π1,t·Π2,t

Prob(π↑) =
∑

(π1,π2)∈Π1,t×Π2,t

Prob(π1 · π2↑)

=
∑

π1∈Π1,t

∑

π2∈Π2,t

Prob(π1↑) Prob(π2↑)

=
∑

π1∈Π1,t

Prob(π1↑) ·
∑

π2∈Π2,t

Prob(π2↑)

= Prob(Π1,t) · Prob(Π2,t) .

Since, by assumption, for every i ∈ I the value of Prob(Π2,t) does not depend
on t ∈ Si, it follows that

Prob(Π1 ·Π2) =
∑

i∈I

∑

t∈Si

Prob(Π1,t) · Prob(Π2,t)

=
∑

i∈I

(
Prob(Π2,ti) ·

∑

t∈Si

Prob(Π1,t)
)

=
∑

i∈I

Prob(Π2,ti) Prob(Π1,Si) .

2

It is worth to explicitly note the particular case of this proposition when
|I| = 1.

Corollary 5.10 Let Π1 ⊆ FPaths(s), Π2 ⊆ FPaths. Let Π2,t = {π2 ∈ Π2 |
first(π2) = t}. Then, if min(Π1), min(Π2) and min(Π1 · Π2), and if for any
t′, t′′ ∈ first(Π2), Prob(Π2,t′) = Prob(Π2,t′′), we have that

Prob(Π1 ·Π2) = Prob(Π1) · Prob(Π2,t)

for arbitrary t ∈ first(Π2). 2

26

For further reference, we state the following simple property.

Proposition 5.11 Consider a generative system 〈S,A, P 〉. Let s ∈ S, W ⊆ A∗

and S′ ⊆ S such that it partitions as S′ = ti∈ISi. Then

Prob(s,W, S′) =
∑

i∈I

Prob(s,W, Si,¬S′).

Proof The result follows from the observation s
W−→S′ =

⊎
i∈I s

W−→ ¬S′Si. 2

5.3 The concrete weak bisimulation

In this subsection we recall the original definition of weak bisimulation and
branching bisimulation for generative systems proposed by Baier and Hermanns
and we establish some properties of these relations that are essential for the
correspondence result in Section 5.5 below.

Definition 5.12 [7, 6, 8] Let 〈S, A, P 〉 be a generative system. Let τ ∈ A be
the invisible action. An equivalence relation R ⊆ S × S is a weak bisimulation
on 〈S, A, P 〉 if and only if 〈s, t〉 ∈ R implies that for all actions a ∈ A \ {τ} and
for all equivalence classes C ∈ S/R:

Prob(s, τ∗aτ∗, C) = Prob(t, τ∗aτ∗, C) (25)

and for all C ∈ S/R:

Prob(s, τ∗, C) = Prob(t, τ∗, C). (26)

Two states s and t are weakly bisimilar if and only if they are related by some
weak bisimulation relation. Notation s ≈g t.

Note the analogy between the transfer conditions (25), (26) and (4). The
definition of branching bisimulation for generative systems is given below.

Definition 5.13 [7, 6, 8] Let 〈S,A, P 〉 be a generative system. Let τ ∈ A be the
invisible action. An equivalence relation R ⊆ S × S is a branching bisimulation
on 〈S, A, P 〉 if and only if 〈s, t〉 ∈ R implies that for all actions a ∈ A \ {τ} and
for all equivalence classes C ∈ S/R:

Prob(s, τ∗a,C) = Prob(t, τ∗a, C) (27)

and for all C ∈ S/R:

Prob(s, τ∗, C) = Prob(t, τ∗, C). (28)

Two states s and t are branching bisimilar if and only if they are related by
some branching bisimulation relation. Notation s ≈br

g t.

27

Baier and Hermanns have shown [6, 8] the following correspondence result
for finite systems, i.e. systems with finite set of states.

Proposition 5.14 Any weak bisimulation on a finite generative system is a
branching bisimulation and vice versa. Hence, branching bisimilarity and weak
bisimilarity coincide on finite systems. 2

Also for arbitrary generative systems branching bisimilarity implies weak
bisimilarity, i.e., the proof of this direction of Proposition 5.14 does not require
finiteness, as shown below.

Proposition 5.15 Any branching bisimulation on a generative system is a weak
bisimulation as well.

Proof The property follows since we have s
τ∗aτ∗−→ C =

⊎
C′∈S/R s

τ∗a−→C ′ ·
C ′ τ∗−→C given a branching bisimulation R, s ∈ S, a ∈ A and C ∈ S/R. 2

Whether a coincidence result as in Proposition 5.14 holds for arbitrary
systems is an open question. The proof for finite systems can not be extended
to arbitrary systems - in particular in Lemma 7.5.4 of [6] we can not obtain
regularity for arbitrary matrices. On the other hand, up to now, an example
showing the difference between weak and branching bisimilarity for arbitrary
systems is not known to us. Therefore, we distinguish between the two notions.

Let R be a weak or branching bisimulation on 〈S,A, P 〉. Define a relation
→ on S/R by

C1 → C2 ⇐⇒ Prob(C1, τ
∗, C2) = 1

and denote by ↔ the equivalence closure of →, i.e., ↔ = (→ ∪ ←)∗.

A weak or branching bisimulation on 〈S,A, P 〉 is called complete, if

Prob(C1, τ
∗, C2) = 1 ⇐⇒ C1 = C2

for all classes C1, C2 ∈ S/R. Hence, if R is a complete weak or branching
bisimulation then for any two different classes C1, C2 ∈ S/R it holds that
Prob(C1, τ

∗, C2) < 1.
A similar result to our next property is also stated in [8, 6] without a proof.

It is essential for the correspondence result below and non-trivial, so we provide
a detailed proof. To this we devote the remaining part of this subsection.

Proposition 5.16 Let 〈S, A, P 〉 be a generative system and let s ≈g t or s ≈br
g

t. Then there exists a complete weak or a complete branching bisimulation R,
respectively, relating s and t.

We will gradually build up the proof of Proposition 5.16, by a sequence of
lemmas showing properties of the → relation.

28

Lemma 5.17 The relation → corresponding to a weak or branching bisimula-
tion R is reflexive and transitive.

Proof Reflexivity follows since s
τ∗−→C = {ε} for any class C, state s ∈ C, and

hence Prob(C, τ∗, C) = Prob(s, τ∗, C) = 1, i.e. C → C for any class C.
Assume C1 → C2, C2 → C3, and fix a state s ∈ C1. Using Corollary 5.10

and (23), since the set s
τ∗−→C2 · C2

τ∗−→C3 is minimal, we get

1 = Prob(s τ∗−→C2) · Prob(C2
τ∗−→C3)

= Prob(s τ∗−→C2 · C2
τ∗−→C3)

≤ Prob({π ∈ FPaths(s) | trace(π) ∈ τ∗, last(π) ∈ C3})
= Prob(C1

τ∗−→C3)
≤ 1.

Hence Prob(C1
τ∗−→C3) = 1. 2

We next investigate in more detail the behavior of the → relation.

Lemma 5.18 Let R be a weak or branching bisimulation on 〈S, A, P 〉. Let
C1, C2, C3 be different elements of S/R and assume C1 → C2. Then either (i)
or (ii) holds.

(i) ∀π ∈ C1
τ∗−→C3, ∃π′ ∈ C1

τ∗−→C2 : π′ ≺ π,
i.e. all τ∗ paths from C1 to C3 pass C2.

(ii) C3 → C2

Proof Assume C1 → C2 and not (i). Let π ∈ C1
τ∗−→C3 be a path that does

not pass C2. Let s = first(π). Since Prob(s, τ∗, C2) = 1, also

Prob(π↑ ∪
⊎

π̄∈s
τ∗−→C2

π̄↑) = 1

implying that, by additivity and Prob(π↑) > 0,

π↑ ∩
⊎

π̄∈s
τ∗−→C2

π̄↑ 6= ∅

i.e., there exists π̄ ∈ s
τ∗−→C2 such that π↑ ∩ π̄↑ 6= ∅ which implies that π ≺ π̄

or π̄ ≺ π. Note that π 6= π̄ since C2 and C3 are different. Also the case π̄ ≺ π
is excluded by assumption. Now,

π↑ ∪
⊎

π̄∈s
τ∗−→C2

π̄↑ =


π↑ ∪

⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑


 t

⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑=∅

π̄↑.

29

Hence,
Prob(π↑ ∪

⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑) + Prob(
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑=∅

π̄↑) = 1

and, on the other hand, since Prob(s, τ∗, C2) = 1,

Prob(
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑) + Prob(
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑=∅

π̄↑) = 1

implying
Prob(π↑ ∪

⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑) = Prob(
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑)

and, since for any π̄ ∈ s
τ∗−→C2 with π̄↑ ∩ π↑ 6= ∅ we have (as before) π ≺ π̄, i.e.

π̄↑ ⊆ π↑, we get that

Prob(π↑) = Prob(π↑ ∪
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑) = Prob(
⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑). (29)

Consider the set of paths that extend π to a path in s
τ∗−→C2

Π = {π̂ | π · π̂ ∈ s
τ∗−→C2}.

Recall that last(π) ∈ C3. Then

Π ⊆ last(π) τ∗−→C2 (30)

and therefore the set Π is minimal and Π ⊆ C3
τ∗−→C2. For any π̂ ∈ Π such that

π · π̂ = π̄, we have Prob(π̂) = Prob(π̄)
Prob(π) . Therefore

Prob(Π) =
∑

π̂∈Π

Prob(π̂)

=
1

Prob(π)
·

∑

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

Prob(π̄)

(∗)
=

1
Prob(π↑) · Prob(

⊎

π̄∈s
τ∗−→C2

π̄↑∩π↑6=∅

π̄↑)

(29)
= 1

where (∗) holds by the minimality of the set {π̄ | π̄ ∈ s
τ∗−→C2, π̄↑ ∩ π↑ 6= ∅}.

Hence, by (30),

Prob(C3
τ∗−→C2) ≥ Prob(Π) = 1,

30

i.e. C3 → C2. 2

The next lemma states that, given that C1 → C2, if a path leaves a class C1

with a trace that does not consist entirely of τ ’s, then this path must pass C2

after performing a τ -trace.

Lemma 5.19 Let R be a weak or branching bisimulation on 〈S, A, P 〉. Let

C1, C2 be two elements of S/R and assume C1 → C2. If for s ∈ C1, π ∈ s
τ∗a−→S,

then there exists π′ ∈ C1
τ∗−→C2 such that π′ ≺ π.

Proof A similar argument as for Lemma 5.18 applies here as well. Assume
π ∈ s

τ∗a−→S. Since Prob(s, τ∗, C2) = 1, also

Prob(π↑ ∪
⊎

π̄∈s
τ∗−→C2

π̄↑) = 1

implying that
π↑ ∩

⊎

π̄∈s
τ∗−→C2

π̄↑ 6= ∅

i.e., there exists π̄ ∈ s
τ∗−→C2 such that π↑ ∩ π̄↑ 6= ∅ which implies that π̄ ≺ π

(since π ¹ π̄ is excluded by the form of the traces). 2

Our next lemma shows a semi-Euclidean property of the → relation.

Lemma 5.20 Let R be a weak or branching bisimulation on 〈S, A, P 〉 and let
C1, C2, C3 ∈ S/R. If C1 → C2 and C1 → C3, then C2 → C3 or C3 → C2.

Proof From Lemma 5.18 we get that either C3 → C2, or each path from C1 to
C3 with a trace in τ∗ passes C2. Hence, in the latter case, we have

C1
τ∗−→C3 ⊆ C1

τ∗−→C2 · C2
τ∗−→C3,

thus from Corollary 5.10,

Prob(C1, τ
∗, C3) ≤ Prob(C1, τ

∗, C2) · Prob(C2, τ
∗, C3)

which leads to 1 ≤ Prob(C2, τ
∗, C3) i.e. C2 → C3. 2

Next we establish a “sink” property for two → connected classes.

Lemma 5.21 Let R be a weak bisimulation or a branching bisimulation on
〈S, A, P 〉. If C1 ↔ C2, then there exists C such that C1 → C and C2 → C.

31

Proof We prove this by induction on the length of the sequence of → and ←
connecting C1 and C2. For a sequence of length 0, we have C1 = C2 and the
statement holds trivially, by reflexivity, with C = C1 = C2. Assume C1 ↔ C2

via a sequence of → and ← of length k + 1. Then there is a C3 such that
C1 ↔ C3 via a sequence of → and ← of length k, and, C2 → C3 or C3 → C2.
By the inductive hypothesis, there exists C such that C1 → C and C3 → C.
Now, if C2 → C3, then also, by transitivity, C2 → C. If, on the other hand,
C3 → C2, then since also C3 → C, by Lemma 5.20, we get either C → C2

implying C1 → C2 which gives the result with C = C2, or C2 → C. 2

Lemma 5.21, by a straightforward induction on the number of elements
extends to any finite set of → connected classes.

Lemma 5.22 Let R be a weak or branching bisimulation on 〈S, A, P 〉. Let
F ⊆ S/R be a finite set of classes, with the property that for all C1, C2 ∈ F ,
C1 ↔ C2. Then there exists a class C ∈ S/R such that for all C ′ ∈ F , C ′ → C.

¤

The next result shows that we can join → connected classes of a weak or
branching bisimulation and still have a weak or branching bisimulation, respec-
tively. In the sequel by [C]↔ we denote the ↔ - equivalence class of C.

Lemma 5.23 Let R be a weak or branching bisimulation on 〈S, A, P 〉. Let
C0 ∈ S/R be a fixed class such that U = [C0]↔ 6= {C0}. Define an equivalence
R′ on S by

〈s, t〉 ∈ R′ ⇐⇒ 〈s, t〉 ∈ R ∨ {s, t} ⊆
⋃

C∈U

C.

Then R′ is a weak or branching bisimulation, respectively, and R ⊂ R′.

Proof We prove only the case of weak bisimulation. For branching bisimulation
the proof is almost the same, only simpler at several points. We need to prove
that for all a ∈ A, all K1,K2 ∈ S/R′ and for all s, t ∈ K1

Prob(s, τ∗âτ∗,K2) = Prob(t, τ∗âτ∗,K2)

where â = a if a 6= τ and τ̂ = ε, the empty word. There are several cases:

Case 1. K1,K2 ∈ S/R.
The statement holds since R is a weak bisimulation relation.

Case 2. K1 ∈ S/R,K2 = ∪C∈UC.
If U = [C0]↔ contains a sink C for U , i.e. for all C ′ ∈ U we have C ′ → C,

we can write

s
τ∗âτ∗−→ C = s

τ∗âτ∗−→ ¬K2C]
⊎

C′∈ U−{C}
s

τ∗âτ∗−→ ¬K2C
′ · C ′ τ∗−→C

32

and since there are at most countably many R-classes C ′ ∈ U − {C} for which

s
τ∗âτ∗−→ ¬K2C

′ 6= ∅, we get

Prob(s, τ∗âτ∗, C) = Prob(s, τ∗âτ∗, C,¬K2)

+
∑

C′∈U−{C}
Prob(s, τ∗âτ∗, C ′,¬K2)

=
∑

C′∈U

Prob(s, τ∗âτ∗, C ′,¬K2)

= Prob(s, τ∗âτ∗,K2).

The last equation holds since

s
τ∗âτ∗−→ K2 =

⊎

C′∈ U

s
τ∗âτ∗−→ ¬K2C

′.

In the same way we get Prob(t, τ∗âτ∗, C) = Prob(t, τ∗âτ∗,K2), thus

Prob(s, τ∗âτ∗,K2) = Prob(t, τ∗âτ∗,K2).

Note that we only used that U has a sink, and not that it is a whole class
of the equivalence relation ↔.

On the other hand, if U does not contain an R-class which is a sink (and
this can only happen for infinite U because of Lemma 5.22), we use an ap-
proximation argument. Since there are at most countably many paths outgoing
from s, there exists a countable set Us ⊆ U such that Prob(s, τ∗âτ∗,∪C∈UsC) =
Prob(s, τ∗âτ∗,∪C∈UC). For the same reason, there exists Ut ⊆ U , a countable
set with the property Prob(t, τ∗âτ∗,∪C∈UtC) = Prob(t, τ∗âτ∗,∪C∈UC). Taking
U ′ = Us ∪ Ut we get a countable set, such that both

Prob(s, τ∗âτ∗,∪C∈U ′C) = Prob(s, τ∗âτ∗, K2) (31)

and
Prob(t, τ∗âτ∗,∪C∈U ′C) = Prob(t, τ∗âτ∗,K2). (32)

Let {Ci | i ∈ N} be an enumeration of U ′. We will define a chain of subsets of
U in the following way. Put U1 = {C1} and

Un+1 = Un ∪ {Cn+1} ∪ {Cn+1}

where Cn+1 ∈ S/R is a sink for Un∪{Cn+1}. Such a sink exists by Lemma 5.22,
and it belongs to U , since U is a ↔ equivalence class. We have Un ⊆ Un+1 for
every natural number n, and also

U ′ ⊆
⋃

n∈N
Un ⊆ U.

33

Next we denote some sets of finite paths. Let

Πn
s = {π | first(π) = s, trace(π) ∈ τ∗âτ∗, last(π) ∈ ∪C∈Un

C}
ΠU

s = {π | first(π) = s, trace(π) ∈ τ∗âτ∗, last(π) ∈ ∪C∈U C}
ΠU ′

s = {π | first(π) = s, trace(π) ∈ τ∗âτ∗, last(π) ∈ ∪C∈U ′C}

and similarly we use Πn
t , ΠU

t , ΠU ′
t . We have

ΠU ′
s ⊆

⋃

n∈N
Πn

s ⊆ ΠU
s

and similar holds for t in place of s. Furthermore, by (31) and (23) we have
Prob(ΠU ′

s) = Prob(ΠU
s), hence

Prob(∪n∈NΠn
s) = Prob(s, τ∗âτ∗,K2).

Also, by (32),
Prob(∪n∈NΠn

t) = Prob(t, τ∗âτ∗,K2).

Now since Πn
s ⊆ Πn+1

s and Πn
t ⊆ Πn+1

t we get that

Prob(∪n∈NΠn
s) = lim

n→∞
Prob(Πn

s)

= lim
n→∞

Prob(s, τ∗âτ∗,∪C∈UnC)

(∗)
= lim

n→∞
Prob(t, τ∗âτ∗,∪C∈UnC)

= Prob(∪n∈NΠn
t)

where (∗) holds since each Un is a set of R-classes that contains a sink, which
completes the proof of this case.

Case 3. K1 = ∪C∈UC, K2 ∈ S/R′

Consider s, t ∈ K1. There exist R-classes C1 and C2 such that s ∈ C1 and
t ∈ C2. We have C1 ↔ C2. By Lemma 5.21, there also exists an R-class C
such that C1 → C and C2 → C, and moreover C ∈ U , again since U is a ↔
equivalence class.

If K2 = K1, then we have

Prob(s, τ∗,K2) = Prob(t, τ∗,K2) = 1.

If K2 6= K1 then K2 ∈ S/R and C = K2. So, by Lemma 5.18 any τ∗ path from
Ci to K2 must pass C, for i ∈ {1, 2}. Hence,

Ci
τ∗−→K2 ⊆ Ci

τ∗−→C · C τ∗−→K2. (33)

This implies Ci
τ∗−→C = Ci

τ∗−→ ¬(K2∪C)C since, if a τ∗ path from Ci to C passes
K2 on the way, then either it was not minimal, i.e. it has a prefix that is also a

34

τ∗ path from Ci to C, or K2 → C which is not possible, since K2 6= K1. Note
that in (33) also equality holds. Hence, in this case we have

Prob(s, τ∗,K2) = Prob(s τ∗−→K2)
= Prob(C1, τ

∗, C) · Prob(C, τ∗,K2)
= Prob(C, τ∗,K2)
= Prob(C2, τ

∗, C) · Prob(C, τ∗,K2)
= Prob(t, τ∗,K2).

Next we consider paths with traces in τ∗aτ∗. For i ∈ {1, 2}, and K2 ∈ S/R′

arbitrary (K2 = K1 is also possible), by Lemma 5.19 we have

Ci
τ∗aτ∗−→ K2 ⊆ Ci

τ∗−→C · C τ∗aτ∗−→ K2.

Here also equality holds, since no path on the right hand side can have a proper
prefix in Ci

τ∗aτ∗−→ K2. Hence, similar as before,

Prob(s, τ∗aτ∗, K2) = Prob(C, τ∗aτ∗,K2) = Prob(t, τ∗aτ∗,K2).

The notation Prob(C, τ∗aτ∗,K2) if K2 = K1 is justified by Case 2. 2

We need one more property in order to prove Proposition 5.16.

Lemma 5.24 Let R be a weak (respectively branching) bisimulation on
〈S, A, P 〉. Consider the set

{R′ | R′ is a weak (resp. branching) bisimulation on 〈S,A, P 〉, R′ ⊇ R}

ordered by inclusion. Every chain of this ordered set has an upper bound.

Proof We present the proof for weak bisimulation. The branching case is com-
pletely analogous. Let {Ri | i ∈ I} be a chain of elements of W, where I is also
a chain of indices, and Ri ⊆ Rj for i ≤ j. We show that ∪i∈IRi ∈ W. Note that
if C ∈ S/ ∪i∈I Ri is a class, then C = ∪i∈ICi where Ci ∈ S/Ri, and Ci ⊆ Cj

for i ≤ j.
The simplest case is when the chain has a largest element, say Rm and

hence also C = Cm and the property Prob(s, τ∗âτ∗, C) = Prob(t, τ∗âτ∗, C) for
〈s, t〉 ∈ ∪i∈IRi holds for Rm is a weak bisimulation.

We next treat the case when I is a countable set, ordered as the natural
numbers, I = N, i.e., {Ri | i ∈ N} is a countable chain, with Ri ⊆ Ri+1. Let
〈s, t〉 ∈ ∪i∈NRi. Then there exists j such that 〈s, t〉 ∈ Rj , but also 〈s, t〉 ∈ Rn

for all n ≥ j. Consider the sets of paths

Πs = ∪{π↑ | first(π) = s, trace(π) = τ∗âτ∗, last(π) ∈ C}
Πi

s = ∪{π↑ | first(π) = s, trace(π) = τ∗âτ∗, last(π) ∈ Ci}, i ∈ N

35

Similarly, we use Πt and Πi
t. We have Πs = ∪i∈N Πi

s and Πi
s ⊆ Πi+1

s for all i.
Hence,

Prob(s, τ∗âτ∗, C) = Prob(Πs)
= Prob(∪i∈N Πi

s)
(a)
= lim

n→∞
Prob(Πn

s)

= lim
n→∞

Prob(s, τ∗âτ∗, Cn)

(b)
= lim

n→∞
Prob(t, τ∗âτ∗, Cn)

= Prob(t, τ∗âτ∗, C)

where (a) holds since Prob is a measure, and (b) holds since for n ≥ j we have:
〈s, t〉 ∈ Rn, Cn is an Rn-class, and Rn is a weak bisimulation.

We further show that if I is a countable chain of sets {Ci | i ∈ I}, then
there exists a sub-chain I ′ of I with ∪i∈ICi = ∪i∈I′Ci and I ′ is either finite or
isomorphic to ω, the order type of the natural numbers. We give the construction
of I ′. Given a countable chain I, denote by f : N→ I the bijection that exists
since I is countable. Define a sequence of finite sub-chains of I by I0 = {f(0)}
and

In+1 =
{

In ∪ {f(n + 1)} ∀i ∈ In : f(n + 1) > i
In otherwise.

Put
I ′ =

⋃

n∈N
In.

It is straightforward to see that either I ′ is a finite chain, or I ′ is isomorphic to
ω and in any case ⋃

i∈I

Ci =
⋃

i∈I′
Ci.

Assume now that {Ri | i ∈ I} is an arbitrary chain inW. Let 〈s, t〉 ∈ ∪i∈IRi,
and let C ∈ S/ ∪i∈I Ri. Then C = ∪i∈ICi. Let

Πs = {π | first(π) = s, trace(π) = τ∗âτ∗, last(π) ∈ C = ∪i∈ICi}
Πt = {π | first(π) = t, trace(π) = τ∗âτ∗, last(π) ∈ C = ∪i∈ICi}

Let in be a function, in : Πs∪Πt → I such that last(π) ∈ Cin(π). Such a function
exists by the definition of Πs and Πt. Then the set I ′ = in(Πs ∪ Πt) ⊆ I is at
most countable since such are Πs and Πt. Furthermore, let

Π′s = {π | first(π) = s, trace(π) = τ∗âτ∗, last(π) ∈ C = ∪i∈I′Ci}
Π′t = {π | first(π) = t, trace(π) = τ∗âτ∗, last(π) ∈ C = ∪i∈I′Ci}

By the construction of I ′ we have that Πs = Π′s and Πt = Π′t and

Prob(s, τ∗âτ∗, C) = Prob(Πs) = Prob(Π′s)
(∗)
= Prob(Π′t) = Prob(t, τ∗âτ∗, C).

36

The equality marked by (∗) holds since Prob(Π′s) = Prob(s, τ∗âτ∗,∪i∈I′Ci)
and Prob(Π′t) = Prob(t, τ∗âτ∗,∪i∈I′Ci), and as proved above, in the case of a
finite chain of classes or a countable chain of classes of order type ω, we have
Prob(s, τ∗âτ∗,∪i∈I′Ci) = Prob(t, τ∗âτ∗,∪i∈I′Ci). 2

Finally, Proposition 5.16 follows from the lemmas 5.17-5.24.

Proof [of Proposition 5.16]The set

{R′ | R′ is a weak (resp. branching) bisimulation on 〈S, A, P 〉, R′ ⊇ R}

is nonempty, as it contains R. By Lemma 5.24 we can apply Zorn’s Lemma
and obtain that this set has a maximal element. Let it be R̃. Assume R̃ is not
complete, i.e. there exists two different classes C1, C2 ∈ S/R̃ such that C1 → C2.
Then by Lemma 5.23 we can construct a weak or branching bisimulation R̃′ ⊃ R̃,
respectively, which contradicts the maximality of R̃. Hence R̃ is complete i.e. for
any two different C1, C2 ∈ S/R̃ we have Prob(C1, τ

∗, C2) < 1, and since R ⊆ R̃
it relates s and t which completes the proof. 2

5.4 Weak coalgebraic bisimulation for generative systems

In this subsection we provide a coalgebraic definition of weak bisimulation for
generative systems, according to the approach from Section 3. For this we need
a ∗-translation that will transform the generative systems with action set A
into systems with action set A∗. Unlike for LTSs, the ∗-translation employed
will yield coalgebras of a different type.

Let G∗ be the bifunctor defined by

G∗(A,S) = P(A)× P(S) → [0, 1]

on objects 〈A,S〉 and for morphisms 〈f1, f2〉 : 〈A, S〉 → 〈B, T 〉 by

G∗〈f1, f2〉 = (ν 7→ ν ◦ (f−1
1 × f−1

2) | ν : P(A)× P(S) → [0, 1]).

Consider the Set functor G∗A corresponding to G∗, so that

G∗A(S) = (P(A)× P(S) → [0, 1])

and for a mapping f : S → T ,

G∗Af(ν) = ν ◦ (id−1
A × f−1)

for ν : P(A)× P(S) → [0, 1].
We will use the functor G∗A to model the ∗-translation of generative systems.

Therefore we are interested in characterizing equivalence bisimulations for this
functor. In order to apply the results from Section 2 we need the following
proposition. We dedicate Appendix C to its proof.

37

Proposition 5.25 The functor G∗A weakly preserves total pullbacks, but it does
not preserve weak pullbacks. 2

Let R be an equivalence relation on a set S. A subset M ⊆ S is an
R-saturated set if for all s ∈ M the whole equivalence class of s is contained
in M . We denote by Sat(R) the set of all R-saturated sets, Sat(R) ⊆ P(S).
Actually, M is a saturated set if and only if M = ∪i∈ICi for Ci ∈ S/R. Hence
there is a one-to-one correspondence between the R-saturated sets and the
elements of P(S/R).

The next lemma contains a transfer condition for equivalence bisimulations
for systems of type G∗A. Its proof follows the approach discussed in Section 2
(see Lemma 2.11 and Lemma 2.12).

Lemma 5.26 An equivalence relation R on a set S is a bisimulation on the G∗A
system 〈S, A, α〉 if and only if

〈s, t〉 ∈ R =⇒ ∀A′ ⊆ A, ∀M ∈ Sat(R) : α(s)(A′,M) = α(t)(A′,M).

Proof Consider the pullback P of the cospan

G∗AS
G∗Ac // G∗A(S/R) G∗AS

G∗Acoo

where c is the canonical projection of S onto S/R. We have 〈µ, ν〉 ∈ P if and
only if G∗Ac(µ) = G∗Ac(ν), i.e. µ◦(id−1

A ×c−1) = ν ◦(id−1
A ×c−1). This is equivalent

to
∀A′ ⊆ A,∀M ⊆ S/R : µ(A′, c−1(M)) = ν(A′, c−1(M))

and, since c−1 : P(S/R) → Sat(R) is a bijection, we get an equivalent condition

∀A′ ⊆ A, ∀M ∈ Sat(R) : µ(A′,M) = ν(A′,M).

Now, using Lemma 2.11, and Proposition 5.25, we obtain the stated character-
ization. 2

We proceed by presenting a suitable ∗-translation for generative systems.
The translation will yield a system of type G∗A∗ . Recall that generative systems
are coalgebras of the functor GA = D(A× Id) + 1.

Definition 5.27 Let Φg assign to every generative system 〈S,A, P 〉, i.e. any
GA-coalgebra 〈S,A, α〉, the G∗A∗-coalgebra 〈S,A∗, α′〉, where for W ⊆ A∗ and
S′ ⊆ S, α′(s)(W,S′) = Prob(s,W, S′).

In order to show that the translation defined above is indeed a ∗-translation
we need the following property.

38

Lemma 5.28 Let 〈S, A, α〉, i.e. 〈S,A, P 〉, be a GA system, R a bisimulation
equivalence on 〈S,A, α〉 and 〈s, t〉 ∈ R. For k ∈ N, Ci ∈ S/R and ai ∈ A,
i ∈ {1, . . . , k}, let s

a1−→C1 · · · ak−→Ck denote the set of paths

s
a1−→C1 · · · ak−→Ck = {s a1−→ s1 · · · ak−→ sk | si ∈ Ci, i = 1, . . . , k}.

Then s
a1−→C1 · · · ak−→Ck is minimal and

Prob(s a1−→C1 · · · ak−→Ck) = Prob(t a1−→C1 · · · ak−→Ck) (34)

Proof The fact that s
a1−→C1 · · · ak−→Ck is minimal is clear, since all paths in

this set have the same length. We use induction on k to establish (34). For
k = 1 the statement is

∑
s′∈C1

P (s, a1, s
′) =

∑
s′∈C1

P (t, a1, s
′) and it holds

since R is a bisimulation relation and 〈s, t〉 ∈ R. Consider

s
a1−→C1 · · · ak+1−→ Ck+1 = s

a1−→C1 · · · ak−→Ck · Ck
ak+1−→ Ck+1.

By the inductive hypothesis,

Prob(s a1−→C1 · · · ak−→Ck) = Prob(t a1−→C1 · · · ak−→Ck).

By the bisimulation condition for generative systems,

Prob(t′
ak+1−→ Ck+1) = Prob(t′′

ak+1−→ Ck+1)

for all t′, t′′ ∈ Ck. Hence, by Corollary 5.10, we get

Prob(s a1−→C1 · · · ak−→Ck · Ck
ak+1−→ Ck+1)

= Prob(s a1−→C1 · · · ak−→Ck) · Prob(Ck
ak+1−→ Ck+1)

= Prob(t a1−→C1 · · · ak−→Ck) · Prob(Ck
ak+1−→ Ck+1)

= Prob(t a1−→C1 · · · ak−→Ck · Ck
ak+1−→ Ck+1).

2

We can now show that the defined map is a ∗-translation.

Proposition 5.29 The assignment Φg from Definition 5.27 is a ∗-translation.

Proof We need to check that Φg is injective and preserves and reflects bisimi-
larity. For injectivity, assume Φg(〈S, A, α〉) = Φg(〈S,A, β〉) = 〈S,A∗, α′〉. Then,
by the definition of Prob, cf. (24), we get that for any s, t ∈ S and any a ∈ A,
α(s)(〈a, t〉) = P (s, a, t) = Prob(s, {a}, {t}) = α′(s)({a}, {t}) = β(s)(〈a, t〉).

Reflection of bisimilarity is direct from Lemma 5.26: Assume s ∼ t in
Φg(〈S, A, α〉) = 〈S,A∗, α′〉 and assume that R is an equivalence bisimulation
on 〈S,A∗, α′〉 such that 〈s, t〉 ∈ R. By Lemma 5.26, we get that for W ⊆ A∗

and for M ∈ Sat(R),
α′(s)(W,M) = α′(t)(W,M). (35)

39

In particular, for all a ∈ A and all C ∈ S/R, we have

α′(s)({a}, C) = α′(t)({a}, C). (36)

By the definition of α′ and Prob we have

α′(s)({a}, C) = Prob(s, {a}, C) =
∑

s′∈C

P (s, a, s′) =
∑

s′∈C

α(s)(〈a, s′〉)

and therefore, for all a ∈ A and all C ∈ S/R,
∑

s′∈C

α(s)(〈a, s′〉) =
∑

s′∈C

α(t)(〈a, s′〉) (37)

which means that R is a bisimulation equivalence on the generative system
〈S, A, α〉, i.e. s ∼ t in the original system.

The proof of preservation of bisimilarity uses Lemma 5.28. Let s ∼ t in the
generative system 〈S, A, α〉. Then there exists an equivalence bisimulation R
with 〈s, t〉 ∈ R. The relation R induces an equivalence Rs on FPaths(s) defined
by

〈s a1−→ s1 · · · ak−→ sk , s
a′1−→ s′1 · · ·

a′
k′−→ s′k′〉 ∈ Rs

if and only if k = k′, ai = a′i and 〈si, s
′
i〉 ∈ R for i = 1, . . . , k. The classes of Rs

are exactly the sets s
a1−→C1 · · · ak−→Ck for Ci ∈ S/R and ai ∈ A.

Assume M ∈ Sat(R) and W ⊆ A∗. We show that the set s
W−→M is sat-

urated with respect to Rs. Namely, let π ≡ s
a1−→ s1 · · · ak−→ sk ∈ s

W−→M
and let π′ ≡ s

a1−→ s′1 · · · ak−→ s′k be a path such that 〈π, π′〉 ∈ Rs. Then
trace(π) = trace(π′), first(π) = first(π′) and 〈last(π), last(π′)〉 ∈ R. Since
M is saturated, last(π′) ∈ M for last(π) ∈ M . Furthermore, π′ does not have a
proper prefix with trace in W and last in M , since this would imply that π has
such a prefix, contradicting π ∈ s

W−→M . Hence, π′ ∈ s
W−→M .

Therefore, the set s
W−→M is a disjoint union of some Rs classes and, since

s
W→ M is minimal, we can write

s
W→ M =

⊎

i∈I

s
ai1→ Ci1 · · ·

aiki→ Ciki ,

and it follows that Prob(s,W,M) =
∑

i∈I Prob(s ai1−→Ci1 · · · aik−→Cik). Sim-

ilarly, t
W→ M is a disjoint union of some Rt classes, for Rt being an equivalence

on FPaths(t), defined as Rs with t instead of s. Using that R is a bisimulation
and 〈s, t〉 ∈ R, it is not difficult to see that actually

t
W→ M =

⊎

i∈I

t
ai1→ Ci1 · · ·

aiki→ Ciki .

By Lemma 5.28, we get that Prob(s,W,M) = Prob(t,W,M), i.e.
α′(s)(W,M) = α′(t)(W,M) proving that R is a bisimulation on 〈S,A∗, α′〉 and
s ∼ t in the ∗-extension 〈S, A∗, α′〉. 2

40

The ∗-translation Φg is also not induced by a natural transformation, as
the systems of Example 4.4 (Section 4) when each transition is considered as
probabilistic with probability 1 show.

Remark 5.30 The ∗-translation Φg together with a subset τ ⊆ A determines
a weak-τ -bisimulation. For a generative system 〈S,A, α〉, the weak-τ -system is

Ψτ ◦ Φg(〈S,A, α〉) = Ψτ (〈S, A∗, α′〉) = 〈S, Aτ , α′′〉
where α′′(s) : P(Aτ)× P(S) → [0, 1] is given by

α′′(s) = ητ
S(α′(s)) = G∗〈hτ , idS〉(α′(s)) = α′(s) ◦ (h−1

τ × id−1
S).

Hence for X ⊆ Aτ and S′ ⊆ S,

α′′(s)(X, S′) = α′(s)(h−1
τ (X), S′) = α′(s)(

⋃

w∈X

Bw, S′) = Prob(s,
⋃

w∈X

Bw, S′),

where, Bw is the block Bw = τ∗a1τ
∗ . . . τ∗akτ∗ = h−1

τ ({w}), for a word w =
a1 . . . ak ∈ Aτ .

Therefore, from Lemma 5.26 we get that an equivalence relation R is a
weak-τ -bisimulation w.r.t. 〈Φg, τ〉 on the generative system 〈S, A, α〉 if and only
if 〈s, t〉 ∈ R implies that for any collection (Bi)i∈I of blocks writing Bi as a
shorthand for Bwi for some word wi ∈ A∗, and any collection (Cj)j∈J of classes
Cj ∈ S/R,

Prob(s,
⋃

i∈I

Bi,
⋃

j∈J

Cj) = Prob(t,
⋃

i∈I

Bi,
⋃

j∈J

Cj). (38)

Sets of the form ∪i∈IBi will be called saturated blocks.

5.5 Correspondence results

We are now able to state and prove the correspondence results for generative
systems. The first statement is obvious from the definitions.

Theorem 5.31 Let 〈S, A, α〉 be a generative system. Let τ ∈ A be the invisible
action and s, t ∈ S any two states. Then s ≈{τ} t according to Definition 3.3
with respect to the pair 〈Φg, {τ}〉 implies s ≈g t according to Definition 5.12.

Proof The statement holds trivially, having in mind Definition 5.12 and Re-
mark 5.30, equation (38), since τ∗ as well as τ∗aτ∗, for any a ∈ A \ {τ} is a
saturated block and also each R-equivalence class is an R saturated set. Hence
≈{τ} is at least as strong as ≈g, ≈{τ}⊆≈g. 2

In the opposite direction we have that coalgebraic weak bisimilarity is im-
plied by branching bisimilarity.

Theorem 5.32 Let 〈S, A, α〉 be a generative system. Let τ ∈ A be the invisible
action and s, t ∈ S any two states. Then s ≈br

g t according to Definition 5.13
implies s ≈{τ} t according to Definition 3.3 with respect to the pair 〈Φg, {τ}〉.

41

In order to build the proof of the theorem, we present a sequence of lemmas.

Lemma 5.33 Let 〈S,A, P 〉 be a generative system and let s ≈br
g t. If R is a

branching bisimulation relating s and t, then for all a1, . . . , ak ∈ A\{τ} and for
all classes C ∈ S/R

Prob(s, τ∗a1τ
∗ . . . τ∗akτ∗, C) = Prob(t, τ∗a1τ

∗ . . . τ∗akτ∗, C).

Proof Let R be a branching bisimulation on 〈S, A, P 〉 such that 〈s, t〉 ∈ R. We
prove, by induction on k, that

Prob(s, τ∗a1τ
∗ . . . τ∗ak, C) = Prob(t, τ∗a1τ

∗ . . . τ∗ak, C).

For k ∈ {0, 1} the property holds by Definition 5.13. Let B =
τ∗a1τ

∗ . . . τ∗ak. Assume Prob(s,B, C) = Prob(t, B,C) for all C ∈ S/R and
let B′ = τ∗a1τ

∗ . . . τ∗akτ∗ak+1. We have

s
B′−→C =

⊎

C′∈S/R

s
B−→C ′ · C ′ τ∗ak+1−→ C

and, since R is a branching bisimulation, for any class C ′ ∈ S/R and for any
t′, t′′ ∈ C ′ we have Prob(t′, τ∗ak+1, C) = Prob(t′′, τ∗ak+1, C) and we may write
this common value as Prob(C ′, τ∗ak+1, C). Hence, we may apply Corollary 5.10
and we get,

Prob(s,B′, C) =
∑

C′∈S/R

Prob(s,B, C ′) · Prob(C ′, τ∗ak+1, C)

(IH)
=

∑

C′∈S/R

Prob(t, B, C ′) · Prob(C ′, τ∗ak+1, C)

= Prob(t, B′, C).

Finally, the property holds since we have, for B = τ∗a1τ
∗ . . . τ∗akτ∗ and B′ =

τ∗a1τ
∗ . . . τ∗ak,

s
B−→C =

⊎

C′∈S/R

s
B′−→C ′ · C ′ τ∗−→C.

2

Lemma 5.34 Assume that R is a complete branching bisimulation on a gen-
erative system 〈S, A, α〉, i.e. 〈S, A, P 〉, with 〈s, t〉 ∈ R. For any saturated
set M = tn

i=1Ci consisting of finitely many classes Ci ∈ S/R, for any block
B = τ∗a1τ

∗ . . . τ∗akτ∗ where a1, . . . , ak ∈ A \ {τ} and for any i ∈ {1, . . . , n},

Prob(s,B,Ci,¬M) = Prob(t, B, Ci,¬M).

42

Proof We use induction on n, the number of classes that M con-
tains. For n = 1 the property is simply Lemma 5.33. Assume
Prob(s,B, Ci,¬M) = Prob(t, B,Ci,¬M) for any R-saturated set M be-
ing a union of less than n classes, and each class Ci ⊆ M . Let M be
an R-saturated set which is a union of n classes, i.e. M = tn

i=1Ci for
some Ci ∈ S/R. We use the following notation, for i ∈ {1, . . . , n} and
j ∈ {1, . . . , i− 1, i + 1, . . . , n} :

Vi = Prob(s,B,Ci)
Lem.5.33= Prob(t, B,Ci)

Gj
i = Prob(s, B,Cj ,¬ tn

k=1,k 6=i Ck) IH= Prob(t, B,Cj ,¬ tn
k=1,k 6=i Ck).

Therefore, it is justified to put

T j
i = Prob(Cj , τ

∗, Ci)

Hj
i = Prob(Ci, τ

∗, Cj ,¬ tn
k=1,k 6=i Ck).

We define a function ω : s
B→ S → {1, 2}∗. The function ω will, in a

sense, trace the classes that a path visits with a word in B. Two auxiliary
functions ω̃ and d will be needed for the definition of ω. We can explain the
definition of the maps d, ω̃ and ω as follows: The map ω̃ takes a path with a
trace in B and encodes the sequence of the classes that are visited by the path,
after a word in B has already been performed. The encoding is 1 if the class
under consideration, Ci, has been visited and 2 if any other class from M has
been visited, there is no record of classes outside M . Then the map d removes
adjacent multiple occurrences of 1 and 2 in the word obtained by ω̃, except for
the multiple occurrences at the end of the word. The intuition is that multiple
occurrences at the end of the word indicate that the paths mapped are of a
different nature. For example, ω−1({11}) is not a minimal set of paths whereas
ω−1({1}) is and we need to distinguish between them. Basically, the map d is
computed by the normal algorithm {112 → 12, 221 → 21}. We put ω = d ◦ ω̃.

More precisely, ω̃ :
(
s

B→ S
)
→ {1, 2}∗ is defined by

ω̃(π · last(π) a→ r) =





1 r ∈ Ci, π 6∈ s
B→ S

2 r ∈ M \ Ci, π 6∈ s
B→ S

ε r 6∈ M, π 6∈ s
B→ S

ω̃(π) · 1 r ∈ Ci, π ∈ s
B→ S

ω̃(π) · 2 r ∈ M \ Ci, π ∈ s
B→ S

ω̃(π) r 6∈ M, π ∈ s
B→ S

and if ε ∈ s
B→ S, then ω̃(ε) = ε.

43

Let d : {1, 2}∗ → {1, 2}∗ and d′ : {1, 2}∗ → {1, 2}∗ be defined in the following
way, for u, v ∈ {1, 2}∗ and x, y ∈ {1, 2}:

d(u · x) =
{

d(u) · x u = v · x
d′(u) · x u = v · y, y 6= x

d′(u · x) =
{

d′(u) u = v · x
d′(u) · x u = v · y, y 6= x

and d(ε) = d′(ε) = ε. It is important to note that

ω−1({1}) = s
B→¬M Ci.

Hence, we need to calculate Prob(ω−1({1})). By the definition of ω we easily
get that

ω−1({1, 21}) = ω−1({1})] ω−1({21}).
Therefore, we try to express Prob(ω−1({1, 21})) and Prob(ω−1({21})) in terms
of Vi, G

j
i , T

j
i and Hj

i . It is obvious that Prob(ω−1({1, 21})) = Prob(s,B, Ci) =
Vi. A more careful inspection shows that

ω−1({21})]



n⊎

j=1,j 6=i

ω−1({1}) · Ci
τ∗→¬M\Ci

Cj
τ∗→ Ci




=
n⊎

j=1,j 6=i

s
B→¬M\Ci

Cj
τ∗→ Ci.

This, together with Proposition 5.9 and Corollary 5.10, implies that

Prob(ω−1({21})) =
n∑

j=1,j 6=i

Gj
i · T j

i − Prob(ω−1({1})) ·
n∑

j=1,j 6=i

Hj
i · T j

i

and we get

Prob(ω−1({1}))
= Prob(ω−1({1, 21}))− Prob(ω−1({21}))

= Vi −



n∑

j=1,j 6=i

Gj
i · T j

i − Prob(ω−1({1})) ·
n∑

j=1,j 6=i

Hj
i · T j

i


 .

Let ρ =
∑n

j=1,j 6=i Hj
i · T j

i . Let Ti = maxn
j=1,j 6=i T j

i . By the completeness of R,
T j

i < 1 for all j 6= i and therefore Ti < 1. Furthermore, by Proposition 5.11,

n∑

j=1,j 6=i

Hj
i = Prob(Ci, τ

∗,
n⊔

j=1,j 6=i

Cj) ≤ 1.

44

Hence,

ρ =
n∑

j=1,j 6=i

Hj
i · T j

i ≤ Ti ·
∑

j=1,j 6=i

Hj
i ≤ Ti < 1.

We have

Prob(s,B,Ci,¬M) = Vi −
n∑

j=1,j 6=i

Gj
i · T j

i + Prob(s,B, Ci,¬M) · ρ

and, since ρ < 1, we obtain

Prob(s,B, Ci,¬M) =
Vi −

∑n
j=1,j 6=i Gj

i · T j
i

1− ρ
.

The expression on the right side does not depend on the starting state s and we
get

Prob(s,B, Ci,¬M) = Prob(t, B, Ci,¬M)

which completes the proof. 2

Next we extend the property captured by Lemma 5.34 to arbitrary R-
saturated sets.

Lemma 5.35 Assume that R is a complete branching bisimulation on a gen-
erative system 〈S,A, α〉, i.e. 〈S, A, P 〉, with 〈s, t〉 ∈ R. For any R-saturated set
M , for any block B = τ∗a1τ

∗ . . . τ∗akτ∗ where a1, . . . , ak ∈ A \ {τ} and for any
class C ⊆ M

Prob(s,B, C,¬M) = Prob(t, B, C,¬M).

Proof
Let C ⊆ M . We will show that we can assume that M contains at most

countably many classes. Let S′ be the set of states that are reachable from s
by a finite path. This set is at most countable since each finite path contributes
to S′ with finitely many states, and there are at most countably many paths
starting in s according to Lemma 5.1. Let Ms be the smallest R-saturated set
containing S′∩M and C. Since S′∩M is at most countable, the set Ms contains
at most countably many classes and Prob(s, B,C,¬M) = Prob(s,B, C,¬Ms).
In the same way we get a saturated set Mt containing at most countably many
classes such that Prob(t, B, C,¬M) = Prob(t, B,C,¬Mt). Then M ′ = Ms∪Mt

is a saturated set containing at most countably many classes. Moreover,

Prob(s,B, C,¬M ′) = Prob(s,B, C,¬M),

Prob(t, B, C,¬M ′) = Prob(t, B, C,¬M).

So, assume M = ti≥0Ci, and C = Ci0 . Note that

s
B→¬M C =

⋂

k≥i0

s
B→¬Uk

C

45

for Uk = C0 ∪ · · · ∪ Ck, and the intersection is clearly countable. Moreover, let
J = {I | I ⊆ N \ {0, . . . , i0 − 1}, I is finite}. If I ∈ J with m = max(I), then

⋂

i∈I

s
B→¬Ui C = s

B→¬Um C.

We use the following simple property from measure theory: If µ is a probability
measure on some set and if A = ∩n∈NAn is a measurable set which is a countable
intersection of measurable sets, then µ(A) = inf{µ(∩i∈IAi) | I ⊆ N, I finite }.
Hence,

Prob(s, B,C,¬M)

= inf{Prob(∩i∈Is
B→¬Ui

C) | I ∈ J}
= inf{Prob(s,B, C,¬Um) | I ∈ J,m = max(I)}

Lem.5.34= inf{Prob(t, B, C,¬Um) | I ∈ J,m = max(I)}
= Prob(t, B,C,¬M).

2

By Lemma 5.35, noting that Prob(s,B, M) = Prob(s, B,ti∈ICi) =∑
i∈I Prob(s,B, Ci,¬M), we get the following property.

Corollary 5.36 Assume that R is a complete branching bisimulation on a gen-
erative system 〈S, A, α〉, i.e. 〈S, A, P 〉, with 〈s, t〉 ∈ R. For any R-saturated
set M it holds that

Prob(s, B,M) = Prob(t, B, M),

for any block B = τ∗a1τ
∗ . . . τ∗akτ∗ with a1, . . . , ak ∈ A \ {τ}. 2

We proceed to saturated blocks. Again, we first treat saturated blocks con-
taining finitely many blocks and then extend to arbitrary saturated blocks.

Lemma 5.37 Assume that R is a complete branching bisimulation on a gen-
erative system 〈S,A, α〉, i.e. 〈S, A, P 〉, with 〈s, t〉 ∈ R. For any R-saturated set
M and for any saturated block W = tn

i=1Bi containing finitely many blocks, it
holds that

Prob(s,W,M) = Prob(t,W,M).

Proof Note that

Prob(s, W,M) =
n∑

i=1

Prob(s,Bi,¬W,M)

since

s
W−→M =

n⊎

i=1

s
Bi−→ ¬W M,

46

and also

Prob(s,Bi,¬W,M) =
∑

j : Cj⊆M

Prob(s, Bi,¬W,Cj ,¬M)

since
s

Bi−→ ¬W M =
⊎

Cj⊆M

s
Bi→¬W¬M

Cj ,

as in Proposition 5.11. (Here, Cj stands for an equivalence class of R and M
is a disjoint union of classes.) The summation is possible since all but at most
countably many summands are empty. Hence it suffices to prove that

Prob(s,Bi,¬W,Cj ,¬M) = Prob(t, Bi,¬W,Cj ,¬M)

for any Bi, i ∈ {1, . . . , n} and any class Cj ⊆ M . For any i, let wi ∈ A \ {τ}∗,
wi = ai1 . . . aiki be the word such that Bi = Bwi = τ∗ai1τ

∗ · · · τ∗aikiτ
∗. The

prefix ordering on the set of words {w1, . . . , wn} induces an ordering on the set
of blocks {B1, . . . , Bn} given by Bi ≺ Bj if and only if wi ≺ wj . If Bi ≺ Bj ,
by Bj−i we denote the block corresponding to wj−i, the unique word satisfying
wi ·wj−i = wj . We are going to prove, by induction on the number of elements
in the set {i ∈ {1, . . . , n} | Bi ≺ Bj}, that

s
Bj→¬M C = s

Bj→¬W¬M
C]


 ⊎

Bi≺Bj

⊎

C′⊆M

s
Bi→¬W¬M

C ′
Bj−i→ ¬M C


 (39)

where C ′ ⊆ M is a class. First of all we have to make sure that the right hand
side of the equation is well defined, i.e. that the unions are really disjoint and
minimal. By the definition of the involved sets of paths a careful inspection
shows that it is indeed the case. It is rather obvious that the right hand side
is contained in the left hand side since all the paths of the right hand side do
start in s, have a trace in Bj and end up in C, without reaching M before
with a prefix whose trace is also in Bj . For the opposite inclusion we use an
inductive argument. Assume Bj has no (strict) prefixes in {B1, . . . , Bn}. Then

the equation becomes s
Bj→¬M C = s

Bj→¬W¬M
C and it holds since, by assumption,

no path which has a trace in Bj can have a strict prefix with a trace in W

which does not belong to Bj . For the inductive step, assume π ∈ s
Bj→¬M C and

π 6∈ s
Bj→¬W¬M

C. This means that π has a prefix that has a trace in ∪n
i=1,i 6=jBi

and ends in M . So, π ∈ s
Bk→ C ′

Bj−k→ ¬M C for some k and for some class

C ′ ⊆ M . We want to show that π ∈]Bi≺Bj]C′⊆M s
Bi→¬W¬M

C ′
Bj−i→ ¬M C.

We can assume that π ∈ s
Bk→¬M C ′

Bj−k→ ¬M C by taking C ′ to be the first
class of M that π hits after having performed a trace in Bk. Now Bk, being a
proper prefix of Bj , has less prefixes than Bj and therefore, by the inductive
hypothesis, either

π ∈ s
Bk→¬W¬M

C ′
Bj−k→ ¬M C

47

or there exist r ∈ {1, . . . , n} and a class C ′′ ⊆ M such that

π ∈ s
Br→¬W¬M

C ′′
Bk−r→ ¬M C ′

Bj−k→ ¬M C,

i.e. π ∈ s
Br→¬W¬M

C ′′
Bj−r→ ¬M C, which completes the proof of equation (39).

Now, by the same inductive argument, if Bj has no proper prefixes, then

Prob(s,Bj ,¬W,C,¬M) = Prob(s,Bj , C,¬M)
Lem.5.35= Prob(t, Bj , C,¬M)

= Prob(t, Bj ,¬W,C,¬M).

Assume that Prob(s,Bi,¬W,C,¬M) = Prob(t, Bi,¬W,C,¬M) for all Bi ≺ Bj .
Then by (39), by Proposition 5.9 and by Lemma 5.35, we get

Prob(s,Bj ,¬W,C,¬M)
= Prob(s, Bj , C,¬M)

−
∑

Bi≺Bj

∑

C′⊆M

Prob(s,Bi,¬W,C ′,¬M) · Prob(C ′, Bj−i, C,¬M)

(IH)
= Prob(t, Bj , C,¬M)

−
∑

Bi≺Bj

∑

C′⊆M

Prob(t, Bi,¬W,C ′,¬M) · Prob(C ′, Bj−i, C,¬M)

= Prob(t, Bj ,¬W,C,¬M)

which completes the proof. 2

We next extend the last property to arbitrary saturated blocks.

Lemma 5.38 Assume that R is a complete branching bisimulation on a gen-
erative system 〈S,A, α〉, i.e. 〈S, A, P 〉, with 〈s, t〉 ∈ R. For any R-saturated set
M and for any saturated block W

Prob(s,W,M) = Prob(t,W,M).

Proof We first consider the countable case. Let W = tn∈NBn. Let

Πs
n = {π | first(π) = s, last(π) ∈ M, trace(π) ∈ Bn}

Πt
n = {π | first(π) = t, last(π) ∈ M, trace(π) ∈ Bn}.

48

Then

Prob(s,W,M) = Prob(s,tn∈NBn,M)
= Prob((∪n∈NΠs

n) ↓)
= Prob(∪n∈NΠs

n)
(∗)
= sup{Prob(∪i∈IΠs

i) | I ⊆ N, I finite }
= sup{Prob(s,WI ,M) | WI = ti∈IBi, I finite }
= sup{Prob(t,WI ,M) | WI = ti∈IBi, I finite }
= Prob(t,W,M),

where the equality (∗) holds because of the following elementary property from
measure theory: Let µ be a measure on some set, and let A = ∪n∈NAn be a
measurable set which is a countable union of measurable sets. Then µ(A) =
sup{µ(∪i∈IAi) | I ⊆ N, I finite}.

If W = ti∈IBi contains arbitrary many blocks then there exists a countable
index set Is ⊆ I and a saturated set Ws = ti∈IsBi such that Prob(s,W,M) =
Prob(s,Ws,M) using Lemma 5.1. For the same reason, there exists a count-
able index set It ⊆ I and a corresponding saturated set Wt = ti∈ItBi

with Prob(t,W,M) = Prob(t,Wt,M). Hence Prob(s,W,M) = Prob(s, Ws ∪
Wt, M) = Prob(t,Ws ∪Wt, M) = Prob(t,W,M) since Ws ∪Wt is countable. 2

Finally, we can prove Theorem 5.32.

Proof [of Theorem 5.32] Assume s ≈br
g t in a system 〈S,A, α〉. Let R be a

branching bisimulation according to Definition 5.13 such that 〈s, t〉 ∈ R. By
Proposition 5.16, we can assume that R is complete. By Lemma 5.38, we
get that the transfer condition (38) of Remark 5.30 holds, and hence R is a
coalgebraic weak bisimulation witnessing that s ≈{τ} t. 2

By Theorem 5.31, Theorem 5.32, and Proposition 5.14 we get the following
corollary which gives us the correspondence result for finite systems.

Corollary 5.39 For finite generative systems, coalgebraic weak bisimilarity
≈{τ} according to Definition 3.3, with respect to the pair 〈Φg, {τ}〉, coincides
with concrete weak bisimilarity ≈g according to Definition 5.12. 2

6 Concluding remarks

In this paper, we have proposed a coalgebraic definition of weak bisimulation
for action-type systems. For its justification we have considered the case of
familiar labelled transition systems and of generative probabilistic systems, and
we have compared our notion to the concrete definitions. In particular, we have
obtained that the coalgebraic definition of weak bisimulation (for a suitably
chosen ∗-extension) for LTSs coincides with the standard definition of weak
bisimulation.

49

For generative probabilistic systems, the situation is more complex. Most of
the work and technical difficulties of this paper are related to the correspondence
results for generative probabilistic systems. As the standard notion of concrete
weak bisimulation we have adopted the one proposed by Baier and Hermanns.
The same authors also propose a notion of branching bisimulation. Their inves-
tigations and results are limited to finite systems where, as the authors show,
the concrete notions of weak and branching bisimulation coincide. On the other
hand, we provide a coalgebraic definition of weak bisimulation for generative
systems that is not limited to finite systems. The situation is as follows:

concrete branching ⊆ coalgebraic weak ⊆ concrete weak

As mentioned before, in case of finite systems, we have

concrete branching = concrete weak.

So, in the finite case, that was considered for the concrete notions, all three
notions: coalgebraic weak, concrete weak, and concrete branching coincide. The
situation for the infinite case remains to be unravelled, although it seems that
the coincidence of concrete branching and concrete weak bisimulation will carry
over to a wide class of well-behaved infinite systems.

It is clear that the present approach is not the final word to the weak bisimu-
lation problem for coalgebras. In particular, the main issue here is that one has
to come up with a suitable definition of a ∗-translation oneself, in order to obtain
a weak bisimulation for a class of coalgebras of a given type. Ideally, a coalge-
braic construction would automatically induce the ∗-translation. A method for
systematically obtaining ∗-translations is a topic for further research.

Acknowledgement We thank Holger Hermanns for careful reading and useful
comments on previous drafts of this paper.

References

[1] P. Aczel and N. Mendler. A final coalgebra theorem. In D.H. Pitt, D.E.
Rydeheard, P. Dybjer, A.M. Pitts, and A. Poigné, editors, Proc. CTCS’89,
pages 357–365. LNCS 389, 1989.

[2] A. Aldini. Probabilistic information flow in a process algebra. In
K.G. Larsen and M. Nielsen, editors, Proc. CONCUR’01, pages 152–168.
LNCS 2154, 2001.

[3] S. Andova, J.C.M. Baeten, and T.A.C. Willemse. A complete axiomatiza-
tion of branching bisimulation for probabilistic systems with an application
in protocol verification. In C. Baier and H. Hermanns, editors, Proc. CON-
CUR’06, pages 327–342. LNCS 4137, 2006.

[4] S. Andova and T.A.C. Willemse. Equivalences for silent transitions in
probabilistic systems. In Proc. EXPRESS’04, pages 53–66. ENTCS 128(2),
2005.

50

[5] S. Andova and T.A.C. Willemse. Branching bisimulation for probabilistic
systems: characteristics and decidability. Theoretical Computer Science,
356:325–355, 2006.

[6] C. Baier. On Algorithmic Verification Methods for Probabilistic Systems.
Habilitationsschrift, FMI, Universität Mannheim, 1998.

[7] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic pro-
cesses. In O. Grumberg, editor, Proc. CAV’97, pages 119–130. LNCS 1254,
1997.

[8] C. Baier and H. Hermanns. Weak bisimulation for fully probabilistic pro-
cesses. Technical Report TR–CTIT–12, Twente University, 1999.

[9] C. Baier, J.-P. Katoen, H. Hermanns, and V. Wolf. Comparative branching-
time semantics for Markov chains. Information and Computation, 200:149–
214, 2005.

[10] F. Bartels, A. Sokolova, and E.P. de Vink. A hierarchy of probabilistic
system types. In H. Peter Gumm, editor, Proc. CMCS’03. ENTCS 82(1),
2003.

[11] F. Bartels, A. Sokolova, and E.P. de Vink. A hierarchy of probabilistic
system types. Theoretical Computer Science, 327:3–22, 2004.

[12] F. Borceux. Handbook of Categorial Algebra, volume 1. Cambridge Univer-
sity Press, 1994.

[13] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. The metric
analogue of weak bisimulation for probabilistic processes. In G. Plotkin,
editor, Proc. LICS’02, pages 413–422. IEEE, 2002.

[14] J. Desharnais, V. Gupta, R. Jagadeesan, and P. Panangaden. Weak bisimu-
lation is sound and complete for PCTL. In L. Brim, P. Jancar, M. Ket́ınský,
and A. Kuera, editors, Proc. CONCUR’02, pages 355–370. LNCS 2421,
2002.

[15] M. Fiore, G.L. Cattani, and G. Winskel. Weak bisimulation and open
maps. In Proc. LICS’99, Trento, pages 67–76. IEEE, 1999.

[16] R. J. van Glabbeek, S. A. Smolka, B. Steffen, and C. M. N. Tofts. Reac-
tive, generative, and stratified models of probabilistic processes. In Proc.
LICS’90, Philadelphia, pages 130–141. IEEE, 1990.

[17] R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and
stratified models of probabilistic processes. Information and Computation,
121:59–80, 1995.

[18] H. Peter Gumm. Functors for coalgebras. Algebra Universalis, 45:135–147,
2001.

51

[19] H.P. Gumm. Elements of the general theory of coalgebras. Technical Report
LUATS’99, Rand Afrikaans University, 1999.

[20] H. A. Hansson. Time and Probability in Formal Design of Distributed
Systems. PhD thesis, Uppsala Universitet, 1991.

[21] B.P.F. Jacobs and J.J.M.M. Rutten. A tutorial on (co)algebras and
(co)induction. Bulletin of the EATCS, 62:222–259, 1996.

[22] R.M. Keller. Formal verification of parallel programs. Communications of
the ACM, 19:371–384, 1976.

[23] R. Lanotte, A. Maggiolo-Schettini, and A. Troina. Weak bisimulation
for probabilistic timed automata and applications to security. In Proc.
SEFM’03, Brisbane, pages 34–43. IEEE, 2003.

[24] K. G. Larsen and A. Skou. Bisimulation through probabilistic testing.
Information and Computation, 94:1–28, 1991.

[25] N. López and M. Núñez. Weak stochastic bisimulation for non-Markovian
processes. In Dang Van Hung and M. Wirsing, editors, Proc. ICTAC’05,
pages 454–468. LNCS 3722, 2005.

[26] J. Markovski and N. Trčka. Lumping Markov chains with silent steps. In
Proc. QEST’06, Riverside, pages 221–232. IEEE, 2006.

[27] R. Milner. A Calculus of Communicating Systems. LNCS 92, 1980.

[28] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[29] R. Milner. Operational and algebraic semantics of concurrent processes. In
J. van Leeuwen, editor, Handbook of Theoretical Computer Science, pages
1201–1242. Elsevier and MIT Press, 1990.

[30] L.S. Moss. Coalgebraic logic. Annals of Pure and Applied Logic, 96:277–
317, 1999.

[31] A. Philippou, I. Lee, and O. Sokolsky. Weak bisimulation for probabilistic
systems. In C. Palamidessi, editor, Proc. CONCUR 2000, pages 334–349.
LNCS 1877, 2000.

[32] G.D. Plotkin. A structural approach to operational semantics. Technical
Report DAIMI FN-19, Computer Science Department, Aarhus University,
1981.

[33] J. Rothe. A syntactical approach to weak (bi)-simulation for coalgebras.
In L.S. Moss, editor, Proc. CMCS’02. ENTCS 65, 2002. 16pp.

[34] J. Rothe and D. Mašulović. Towards weak bisimulation for coalgebras. In
A. Kurz, editor, Proc. Categorical Methods for Concurrency, Interaction
and Mobility. ENTCS 68, 2002. 15pp.

52

[35] J.J.M.M. Rutten. A note on coinduction and weak bisimilarity for while
programs. Theoretical Informatics and Applications (RAIRO), 33:393–400,
1999.

[36] J.J.M.M. Rutten. Universal coalgebra: A theory of systems. Theoretical
Computer Science, 249:3–80, 2000.

[37] R. Segala. Modeling and verification of randomized distributed real-time
systems. PhD thesis, MIT, 1995.

[38] R. Segala and N.A. Lynch. Probabilistic simulations for probabilistic pro-
cesses. In B. Jonsson and J. Parrow, editors, Proc. CONCUR’94, pages
481–496. LNCS 836, 1994.

[39] G. Smith. Probabilistic noninterference through weak probabilistic bisim-
ulation. In Proc. CSFW’03, Pacific Grove, pages 3–13. IEEE, 2003.

[40] A. Sokolova. Coalgebraic Analysis of Probabilistic Systems. PhD thesis,
TU Eindhoven, 2005.

[41] A. Sokolova and E.P. de Vink. Probabilistic automata: system types, paral-
lel composition and comparison. In C. Baier, B.R. Haverkort, H. Hermanns,
J.-P. Katoen, and M. Siegle, editors, Validation of Stochastic Systems: A
Guide to Current Research, pages 1–43. LNCS 2925, 2004.

[42] M.I.A. Stoelinga. Alea jacta est: verification of probabilistic, real-time and
parametric systems. PhD thesis, Radboud Universiteit Nijmegen, 2002.

[43] E.P. de Vink and J.J.M.M. Rutten. Bisimulation for probabilistic transition
systems: a coalgebraic approach. Theoretical Computer Science, 221:271–
293, 1999.

[44] A.C. Zaanen. An Introduction to the Theory of Integration. North-Holland,
1958.

53

A (Weak) Pullbacks and their preservation

A span 〈S, s1, s2〉, between X and Y , is a diagram of the form

X S
s1oo s2 // Y . It is jointly injective if the mapping 〈s1, s2〉 : S → X×Y ,

defined by 〈s1, s2〉(s) = 〈s1(s), s2(s)〉 is injective. A relation R ⊆ X × Y gives
rise to the jointly injective span 〈R, π1, π2〉 between X and Y . Dually, a cospan

〈C, c1, c2〉 is a diagram of the form X
c1 // C Y

c2oo .

A pullback, of a cospan 〈C, c1, c2〉, is a span 〈P, p1, p2〉 as in the diagram
below satisfying c1 ◦ p1 = c2 ◦ p2 and such that for every span 〈S, s1, s2〉 with
c1 ◦ s1 = c2 ◦ s2 there exists a unique mediating map m : S → P satisfying
s1 = p1 ◦ m and s2 = p2 ◦ m. A weak pullback is a pullback for which the
mediating arrow m need not be unique.

S

s1

´´

s2

°°

m²²Â
Â

Pp1

~~}}
}}

p2

ÃÃ@
@@

@

X

c1 ÃÃA
AA

A Y

c2~~~~
~~

C

A pullback of a cospan 〈C, c1, c2〉 between sets X and Y is the span arising
from the relation

Q := {〈x, y〉 ∈ X × Y | c1(x) = c2(y)}.

A weak pullback arising from a relation R ⊆ X×Y is also an ordinary pullback,
as one can derive from the joint injectivity of the two projections.

A functor F is said to preserve a (weak) pullback 〈P, p1, p2〉 of a cospan
〈C, c1, c2〉, if 〈FP,Fp1,Fp2〉 is again a (weak) pullback of 〈FC,Fc1,Fc2〉, i.e.
if it transforms a (weak) pullback of a cospan into a (weak) pullback of the
transformed cospan. The functor F weakly preserves a pullback of a cospan if
it transforms it into a weak pullback of the transformed cospan. We note the
following two properties taken from [19, 18].

Lemma A.1 Let F be a Set endofunctor. Then

(i) F preserves weak pullbacks if and only if it weakly preserves pullbacks.

(ii) F preserves weak pullbacks if and only if for any cospan 〈C, c1, c2〉 we have:
Given u and v with Fc1(u) = Fc2(v) then there exists a w ∈ F{〈x, y〉 |
c1(x) = c2(y)} with Fπ1(w) = u and Fπ2(w) = v. 2

We end this section by mentioning a special type of pullback. A (weak)
pullback 〈P, p1, p2〉 is said to be total if its canonical morphisms, or legs, p1 and

54

p2 are epi. In Set a pullback of a cospan 〈C, c1, c2〉 where c1 : X → C and
c2 : Y → C are surjective, is a total pullback. Moreover, it is easy to see the
following.

Lemma A.2 In Set, the pullback of a cospan 〈C, c1 : X → C, c2 : Y → C〉 is
total if and only if the images of X and Y under c1 and c2, respectively, are
equal, i.e. c1(X) = c2(Y). 2

We say that a functor weakly preserves total pullbacks if it transforms any
total pullback into a weak pullback. According to Lemma A.2, weakly pre-
serving total pullbacks is the same as weakly preserving pullbacks of cospans
〈C, c1, c2〉 with c1(X) = c2(Y). Clearly, if a functor preserves weak pullbacks,
then it weakly preserves total pullbacks. We shall see in Appendix C that weak
preservation of total pullbacks is a strictly weaker notion, i.e., there exists a
functor that weakly preserves total pullbacks but does not preserve weak pull-
backs.

B Weak pullback preservation of the distribu-
tion functor

Here we establish the weak pullback preservation of GA, the functor defining
generative probabilistic systems. Actually, we show weak pullback preserva-
tion of the probability distribution functor D. For the probability distribution
functor with finite support weak pullback preservation was proven by De Vink
and Rutten [43], using the graph-theoretic min cut - max flow theorem, and by
Moss [30], using an elementary matrix fill-in property. Following Moss [30] we
show that the needed matrix fill-in property can be used and holds for arbitrary,
infinite, matrices as well.

We start with a simple auxiliary property, that is also needed for the proof
of Lemma 5.1 (Section 5.1). This property also justifies the name “discrete”
probability distributions.

Lemma B.1 Let f : S → R≥0 be a function with the property
∑

s∈S f(s) <∞.
Then the support set of this function, supp(f) = {s ∈ S | f(s) > 0} is at most
countable.

Proof Let s ∈ supp(f). Then f(s) > 0 and therefore there exists a natural
number n such that f(s) > 1/n. So we have, supp(f) ⊆ ∪n∈N suppn(µ) where
suppn(µ) = {s ∈ supp(µ) | f(s)>1/n}. Now, since

∑
s∈supp(f) f(s) = r<∞, the

set suppn(f) has less than n/r elements, i.e., it is finite , for all n ∈ N. Therefore
the set supp(f) is at most countable, being a countable union of finite sets. 2

Next we present the matrix fill-in property for countable matrices.

55

Lemma B.2 For any two infinite sequences of non-negative real numbers
(xi)i∈N and (yj)j∈N such that

∑

i∈N
xi =

∑

j∈N
yj <∞,

there exist non-negative real numbers (zi,j)i,j∈N such that
∑

j∈N
zi,j = xi and

∑

i∈N
zi,j = yj ,

for all i ∈ N and j ∈ N, respectively.

Before we present the rather technical proof, let us discuss the idea, also
used in [30], on a finite example. Let two finite sequences x and y be given by
x1 = 2, x2 = 1, x3 = 3 and y1 = 1, y2 = 3, y3 = 0, y4 = 2. Since

x1 + x2 + x3 = y1 + y2 + y3 + y4

the statement claims that there exists a matrix Z, in this case of order 3 × 4,
such that xi is the sum of the i-th row and yj the sum of the j-th column. The
matrix

Z =




1 1 0 0
0 1 0 0
0 1 0 2




satisfies that property. We have constructed it in the following way. For z1,1

we take the minimum min{x1, y1}, hence z1,1 = y1 = 1. Since the first column
sum has already been achieved we fill-in z2,1 = z3,1 = 0 and the next element to
be filled-in is z1,2. We fill it with the value min{x1 − z1,1, y2} = x1 − z1,1 = 1.
Since the first row-sum has been achieved, we put z1,3 = z1,4 = 0, and continue
with z2,2. It gets the value min{x2 − z2,1, y2 − z1,2} = x2 − z2,1 = 1. Hence,
z2,3 = z2,4 = 0 and the next element to be filled-in is z3,2. Its value is then
min{x3−z3,1, y2−z1,2−z2,2} = y2−z1,2−z2,2 = 1, which completes the second
column. Next is z3,3 = min{x3−z3,1−z3,2, y3−z1,3−z2,3} = y3−z1,3−z2,3 = 0.
We fill-in the last element z3,4 with the remaining value x3− z3,1− z3,2− z3,3 =
y4 − z1,4 − z2,4 − z3,4 = 2.

Proof [of Lemma B.2] Define, for n ∈ N, inductively, non-negative numbers
(zn

i,j)i,j∈N and indices in, jn as follows. We put z0
i,j = 0 for all i, j and i0 = 0,

j0 = 0. Next, assume, for some n ∈ N, the numbers zn
i,j and indices in, jn are

defined. Put
ξn =

∑
j<jn

zn
in,j and ηn =

∑
i<in

zn
i,jn

.

We distinguish three cases.

(i) xin − ξn < yjn − ηn:
Then we define zn+1

in,jn
= xin − ξn and zn+1

i,j = zn
i,j if i 6= in or j 6= jn.

Additionally, we put in+1 = in + 1 and jn+1 = jn.

56

(ii) xin − ξn = yjn − ηn:
Then we define zn+1

in,jn
= xin

− ξn = yjn
− ηn and zn+1

i,j = zn
i,j if i 6= in

or j 6= jn and we set in+1 = in + 1 and jn+1 = jn + 1.

(iii) xin
− ξn > yjn

− ηn:
Then we define zn+1

in,jn
= yjn

− ηn and zn+1
i,j = zn

i,j if i 6= in or j 6= jn. We
also put in+1 = in and jn+1 = jn + 1.

Note that in any case zn+1
in,jn

= min{xin
− ξn, yjn

− ηn}.

We claim that for all n, if i > in or j > jn, then

zn
i,j = 0, (40)

and, for all i, j ∈ N,
∑

j

zn
i,j ≤ xi and

∑

i

zn
i,j ≤ yj . (41)

This can be verified by induction on n. The base case, n = 0, is clear, as z0
i,j = 0

for all i, j. As to the induction step, suppose equations (40) and (41) hold for n.
Note that in+1 ≥ in and jn+1 ≥ jn. Hence, if i > in+1 or j > jn+1 we have that
zn+1
i,j = zn

i,j = 0. Further, for i 6= in,
∑

j zn+1
i,j =

∑
j zn

i,j ≤ xi. Also,

∑

j

zn+1
in,j =

(∑

j<jn

zn+1
in,j

)
+ zn+1

in,jn
+

(∑

j>jn

zn+1
in,j

)

(a)
=

(∑

j<jn

zn
in,j

)
+ zn+1

in,jn
+ 0

≤ (∑

j<jn

zn
in,j

)
+ xin −

∑

j<jn

zn
i,j

= xin .

where the equality (a) holds by the definition of zn+1
i,j for j 6= jn and the induc-

tive hypothesis, and the inequality holds by the definition of zn+1
in,jn

and ξn.
Hence,

∑
j zn+1

i,j ≤ xi. Similarly,
∑

i zn+1
i,j ≤ yj . This proves validity of the

equations (40) and (41).

We next prove that ∑

j

zn
i,j = xi (42)

for any n and i such that i < in, by induction on n. For n = 0 this is trivial,
since i0 = 0. Suppose

∑
j zn

i,j = xi. We need to show
∑

j zn+1
i,j = xi for i< in+1.

We distinguish two cases.

57

(i) xin − ξn ≤ yjn − ηn. Note in+1 = in + 1. For i < in we have zn+1
i,j = zn

i,j ,
so equation (42) also holds for n + 1. For the index in we have, as before,

∑

j

zn+1
in,j =

∑

j<jn

zn
in,j + (xin −

∑

j<jn

zn
in,j) + 0 = xin ,

as required.

(ii) xin
− ξn > yjn

− ηn. Note in+1 = in in this case. So, if i < in+1 then also
i < in. Therefore, ∑

j

zn+1
i,j =

∑

j

zn
i,j = xi

by the induction hypothesis.

Symmetrically, we obtain
∑

i zn
i,j = yj , for any n and j such that j < jn.

Next, we check
zn
i,j ≥ 0

for all i, j by induction on n. For n = 0 this is clear by definition. Consider
zn+1
i,j . If i 6= in or j 6= jn, then zn+1

i,j = zn
i,j . So, by induction hypothesis,

zn
i,j ≥ 0 in that case. Regarding zn+1

in,jn
, we have, by equation (41) and the

induction hypothesis

xin − ξn = xin −
∑

j<jn
zn
in,j ≥ xin −

∑
j zn

in,j ≥ 0

yjn − ηn = yjn −
∑

i<in
zn
i,jn

≥ yjn −
∑

i zn
i,jn

≥ 0.

So, also zn+1
in,jn

= min{xin − ξn, yjn − ηn } ≥ 0.

Note that, since in ≤ in+1, jn ≤ jn+1 and in +jn <in+1 +jn+1, the sequence
(zn

i,j)n∈N is either constantly 0, which happens if 〈i, j〉 6∈ {〈in, jn〉 | n ∈ N} or

zn
i,j =

{
0 n ≤ n0

zn0+1
i,j n > n0

in case 〈i, j〉 = 〈in0 , jn0〉. In particular, we have established

zn
i,j ≤ zn+1

i,j , n ∈ N. (43)

Now, we define, for i, j ∈ N,

zi,j = lim
n→∞

zn
i,j .

We show that zi,j satisfy the properties required in the assertion of the lemma.
Since in + jn →∞ if n →∞, either in →∞ or jn →∞. Suppose, without loss
of generality, in → ∞ for n → ∞. Let i ∈ N be fixed and let n ∈ N be such
that i < in (then also i < in+1). Then for all m > n

zm
i,j = zn+1

i,j = zi,j

58

and thus ∑

j

zi,j =
∑

j

zn+1
i,j = xi

proving the first part of our property.

Now pick any j. By equation (41) we have that
∑

i

zi,j =
∑

i

lim
n→∞

zn
i,j = lim

n→∞

∑

i

zn
i,j ≤ yj , (44)

where the change of the limit and the sum is allowed since (zn
i,j)n∈N is a non-

negative, monotone sequence. In order to show
∑

i zi,j = yj , we reason as
follows. By assumption

∑
i xi =

∑
j yj . Hence,

∑

j

yj =
∑

i

xi =
∑

i

∑

j

zi,j =
∑

j

∑

i

zi,j .

Changing the order of summation is allowed, since we are dealing with non-
negative numbers only. For the same reason, this together with (44) implies
that for all j ∈ N,

∑
i zi,j = yj . This completes the proof. 2

We next show that such a matrix fill-in property holds for arbitrary (not
necessarily countable) matrices as well.

Lemma B.3 Let I and J be arbitrary sets. For any two sets {xi | i ∈ I} and
{yj | j ∈ J} of non-negative real numbers such that

∑

i∈I

xi =
∑

j∈J

yj <∞,

there exist non-negative real numbers {zi,j | i ∈ I, j ∈ J} such that
∑

j∈J

zi,j = xi and
∑

i∈I

zi,j = yj

for all i ∈ I, j ∈ J .

Proof We first consider the case when I and J are at most countable. If they
are both countable, then the property holds by Lemma B.2. It may be that one
of them, or both, are finite.

Write I = {ik | k ∈ N, k < |I|} and J = {j` | ` ∈ N, `< |J |} and define x′k, y′`,
for k, ` ∈ N, by

x′k =
{

xik
k < |I|

0 otherwise y′` =
{

yj`
` < |J |

0 otherwise

By Lemma B.2, we obtain z′k,` for k, ` ∈ N with
∑

`∈N z′k,` = x′k and
∑

k∈N z′k,` =
y′` for all k ∈ N and ` ∈ N, respectively. If k ≥ |I| then x′k = 0 and hence z′k,` = 0
for any ` ∈ N. Similarly, for ` ≥ |J |, z′k,` = 0 for any k ∈ N. Thus

zik,j`
= z′k,l, for k < |I|, ` < |J |

59

satisfy the requirements of the lemma.

Now consider arbitrary I and J . Let I ′ = {i ∈ I | xi > 0}, J ′ = {j ∈ J |
yj > 0}. Then I ′ and J ′ are at most countable, by Lemma B.1. Let x′i = xi for
i ∈ I ′ and y′j = yj for j ∈ J ′. Let {z′i,j | i ∈ I ′, j ∈ J ′} be non-negative numbers
such that for any i ∈ I ′ and j ∈ J ′

∑

j∈J ′
z′i,j = x′i, and

∑

i∈I′
z′i,j = y′j .

Such numbers exist by the first part of the proof. Define, for any i ∈ I, j ∈ J
non-negative real numbers

zi,j =
{

z′i,j i ∈ I ′, j ∈ J ′

0 otherwise

These numbers fulfill the requirements of the lemma. 2

Lemma B.4 The functor D preserves weak pullbacks.

Proof It suffices to show that a pullback diagram

P
π1

~~}}
}} π2

ÃÃ@
@@

@

X

f ÃÃA
AA

A Y

g~~~~
~~

Z

will be transformed to a weak pullback diagram (Lemma A.1). Let P ′ be the

pullback of the cospan DX
Df // DZ DY

Dgoo . Since Df ◦Dπ1 = Dg ◦Dπ2,
there exists γ : DP → P ′ such that the next diagram commutes

DP

Dπ1

°°

Dπ2

´´

γ
²²

P ′

π1{{wwwww
π2 ##GGGGG

DX

Df ##GGGGG DY

Dg{{wwwww

DZ

and it is enough to show that γ is surjective in order to get a mediating morphism
from P ′ to DP . Let 〈u, v〉 ∈ P ′ be given. If µ ∈ DP is such that

(Dπ1)(µ) = u, (Dπ2)(µ) = v (45)

60

then γ(µ) = 〈u, v〉 since π1 and π2 are jointly injective i.e. π1 × π2 is injective.
Hence the task is to find a function µ ∈ DP which satisfies (45). More explicitely
we have to find µ : P → [0, 1] such that for all x0 ∈ X, y0 ∈ Y

∑

y∈Y :〈x0,y〉∈P

µ(x0, y) = u(x0),
∑

x∈X:〈x,y0〉∈P

µ(x, y0) = v(y0) (46)

For if µ : P → [0, 1] satisfies (46), then µ ∈ DP and (45) holds.
The set P can be written as the union

P =
⋃

z∈Z

f−1({z})× g−1({z})

of disjoint rectangles, in fact rectangles with non-overlapping edges. Therefore,
the existence of a map µ which satisfies condition (46) is equivalent to the
condition that for all z ∈ Z there exists a function µz : f−1({z})× g−1({z}) →
[0, 1] such that for all x0 ∈ f−1({z}), and all y0 ∈ g−1({z}),

∑

y∈g−1({z})
µz(x0, y) = u(x0),

∑

x∈f−1({z})
µz(x, y0) = v(y0). (47)

Since 〈u, v〉 ∈ P ′, we have
∑

x∈f−1({z})
u(x) = (Df)(u)(z) = (Dg)(v)(z) =

∑

y∈g−1({z})
v(y). (48)

Thus we may apply the matrix fill-in property, Lemma B.3. 2

C Weak pullback preservation of the functor G∗A
In this part we investigate the weak pullback preservation of the functor G∗A. We
establish that the functor preserves total weak pullbacks, but does not preserve
weak pullbacks, i.e. we give a proof of Proposition 5.25.

Lemma C.1 The functor G∗A weakly preserves total pullbacks.

Proof Let 〈P, π1, π2〉 be a total pullback in Set of the cospan

X
f // Z Y

goo , i.e. P = {〈x, y〉 | f(x) = g(y)} and π1, π2 surjective. Then
the outer square of the diagram below commutes. Moreover, there exists a medi-
ating morphism γ : G∗AP → P ′ from the candidate pullback 〈G∗AP,G∗Aπ1,G∗Aπ2〉
to the pullback 〈P ′, p1, p2〉 of the cospan G∗AX

G∗Af // G∗AZ G∗AY
G∗Agoo .

61

G∗AP

G∗Aπ1

®®

G∗Aπ2

¶¶

γ
²²Â
Â

P ′

p1zzuuu
uuu

p2 $$HHH
HHH

G∗AX

G∗Af ##HHHHH
G∗AY

G∗Ag{{wwwww

G∗AZ

It is enough to prove that γ is surjective (Lemma A.1(ii)). So, we show that for
every 〈u, v〉 ∈ P ′ there exists w ∈ G∗AP with G∗Aπ1(w) = u and G∗Aπ2(w) = v
which is equivalent to w ◦ (id−1

A × π−1
1) = u and w ◦ (id−1

A × π−1
2) = v. Fix

〈u, v〉 ∈ P ′. We have

〈u, v〉 ∈ P ′ =⇒ ∀A′ ⊆ A,∀Z ′ ⊆ Z : u(A′, f−1(Z ′)) = v(A′, g−1(Z ′)). (49)

Let X ′ ⊆ X,Y ′ ⊆ Y and assume π−1
1 (X ′) = π−1

2 (Y ′). Then

(i) f−1(f(X ′)) = X ′:
Clearly X ′ ⊆ f−1(f(X ′)). Let x ∈ f−1(f(X ′)) such that f(x) = f(x′) for
some x′ ∈ X ′. Since π1 is surjective, there exists y ∈ Y with 〈x, y〉 ∈ P i.e.
f(x) = g(y), and hence also f(x′) = g(y), i.e. 〈x′, y〉 ∈ P . Thus 〈x′, y〉 ∈
π−1

1 (X ′) = π−1
2 (Y ′) implying y ∈ Y ′. Hence 〈x, y〉 ∈ π−1

2 (Y ′) = π−1
1 (X ′)

i.e. x ∈ X ′.

(ii) g−1(g(Y ′)) = Y ′: similar as (i).

(iii) f(X ′) = g(Y ′):
Let z ∈ f(X ′), i.e. z = f(x′) for x′ ∈ X ′. Since π1 is surjective there
exists y ∈ Y with 〈x′, y〉 ∈ P , i.e. f(x′) = g(y). Now, 〈x′, y〉 ∈ π−1

1 (X ′) =
π−1

2 (Y ′) and therefore y ∈ Y ′, i.e. z = f(x′) = g(y) ∈ g(Y ′). We have
shown f(X ′) ⊆ g(Y ′). Similarly, g(Y ′) ⊆ f(X ′).

Hence, if π−1
1 (X ′) = π−1

2 (Y ′) for X ′ ⊆ X, Y ′ ⊆ Y we get, for any A′ ⊆ A,

u(A′, X ′)
(i)
= u(A′, f−1(f(X ′)))

(49)
= v(A′, g−1(f(X ′)))

(iii)
=

v(A′, g−1(g(Y ′)))
(ii)
= v(A′, Y ′).

Since π1 and π2 are surjective,

π−1
1 (X ′) = π−1

1 (X ′′) =⇒ X ′ = X ′′

and
π−1

2 (Y ′) = π−1
2 (Y ′′) =⇒ Y ′ = Y ′′

62

for any X ′, X ′′ ⊆ X and any Y ′, Y ′′ ⊆ Y . So the function w : P(A)× P(P) →
[0, 1] given by

w(A′, Q) =





u(A′, X ′) Q = π−1
1 (X ′)

v(A′, Y ′) Q = π−1
2 (Y ′)

0 otherwise

is well defined. Clearly, w ◦ (id−1
A × π−1

1) = u and w ◦ (id−1
A × π−1

2) = v. Thus
the functor G∗A weakly preserves total pullbacks. 2

However, note that although G∗A weakly preserves total pullbacks, it does
not preserve weak pullbacks, as shown by the next example.

Example C.2 G∗A does not preserve weak pullbacks.

Choose X with |X| ≥ 3. Fix x0 ∈ X. Let Z = {1, 2, 3} and consider the

cospan X
f // Z X

goo for the maps

f(x) =
{

2 x = x0

1 otherwise g(x) =
{

2 x = x0

3 otherwise.

The Set pullback of this cospan is then P = {〈x0, x0〉}. On the other hand, let
P ′ be the pullback of the cospan

G∗AX
G∗Af // G∗AZ G∗AX

G∗Agoo .

We have 〈µ, ν〉 ∈ P ′ if and only if

G∗Af(µ) = G∗Ag(ν),

i.e.
µ(A′, f−1(Z ′)) = ν(A′, g−1(Z ′))

for all A′ ⊆ A, Z ′ ⊆ Z. Therefore, every pair 〈µ, ν〉 ∈ G∗AX × G∗AX with the
property

µ(A′, ∅) = µ(A′, {x0}) = µ(A′, X \ {x0}) = µ(A′, X) =

= ν(A′, ∅) = ν(A′, {x0}) = ν(A′, X \ {x0}) = ν(A′, X)

belongs to P ′, since ∅, {x0}, X \ {x0} and X are the only subsets of X that are
inverse images of subsets of Z under f and g.

Now we consider G∗AP = P(A) × P(P) → [0, 1]. If µ ∈ G∗AX is such that
µ = (G∗Aπ1)(χ) for some χ ∈ G∗AP , then µ = χ ◦ (id−1

A × π−1
1). Hence, for

A′ ⊆ A,X ′ ⊆ X we have

µ(A′, X ′) =
{

χ(A′, ∅) x0 6∈ X ′

χ(A′, {〈x0, x0〉}) x0 ∈ X ′.

63

Choose x1 ∈ X, x1 6= x0. Since |X| ≥ 3 we have {x0, x1} 6∈ {∅, {x0}, X \
{x0}, X}. Define ξ : P(A)×P(X) → [0, 1] by

ξ(A′, X ′) =
{

1 X ′ = {x0, x1}
0 otherwise.

Then ξ ∈ G∗A(X) and the pair 〈ξ, ξ〉 belongs to P ′, since for every A′ ⊆ A,

ξ(A′, ∅) = ξ(A′, {x0}) = ξ(A′, X \ {x0}) = ξ(A′, X) = 0.

However, ξ can not be written as (G∗Aπ1)(χ) for any χ ∈ G∗AP , since

ξ(A′, {x0, x1}) 6= ξ(A′, {x0}),

while, as noted above,

(G∗Aπ1)(χ)(A′, {x0, x1}) = χ(A′, {〈x0, x0〉}) = (G∗Aπ1)(χ)(A′, {x0}).

Hence, for the pair 〈ξ, ξ〉 ∈ P ′ there does not exist an element χ ∈ G∗AP such
that G∗Aπ1(χ) = ξ and G∗Aπ2(χ) = ξ, which by Lemma A.1 shows that G∗A does
not preserve weak pullbacks.

64

