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Abstract

We propose a coalgebraic definition of weak bisimulation for classes of
coalgebras obtained from bifunctors in the category Set. Weak bisimilarity
for a system is obtained as strong bisimilarity of a transformed system.
The particular transformation consists of two steps: First, the behavior
on actions is lifted to behavior on finite words. Second, the behavior
on finite words is taken modulo the hiding of internal or invisible actions,
yielding behavior on equivalence classes of words closed under silent steps.
The coalgebraic definition is validated by two correspondence results: one
for the classical notion of weak bisimulation of Milner, another for the
notion of weak bisimulation for generative probabilistic transition systems
as advocated by Baier and Hermanns.

1 Introduction

We present a definition of weak bisimulation for action type systems based
on the general coalgebraic apparatus of bisimulation [1, 21, 36]. Action-type
systems are systems that arise from bifunctors in the category Set. A typical
and familiar example of an action-type system is a labelled transition system
(LTS) (see, e.g., [22, 32]), but also many types of probabilistic systems (see, e.g.,
[24, 38, 17, 7, 37]) fall into this class. Informally, an action-type system in Set
is a coalgebra that performs actions from a set A.

For the verification of system properties, behavior equivalences are often
employed. One such behavior equivalence is strong bisimilarity. However strong
bisimilarity is often too strong an equivalence. Weak bisimilarity, originally

*A shortened version entitled “Coalgebraic Weak Bisimulation for Action-Type Systems”
has been submitted for journal publication.

L A. Sokolova, Department of Computer Sciences, University of Salzburg, Austria,
anas@cs.uni-salzburg.at

2 E.P. de Vink, Department of Mathematics and Computer Science, Technische Universiteit
Eindhoven, The Netherlands, evink@win.tue.nl

3 H. Woracek, Department of Analysis and Scientific Computing, Vienna University of
Technology, Austria, harald.woracek@tuwien.ac.at



defined for LTSs in the work of Milner [27, 29], is a looser equivalence on systems
that abstracts away from internal or invisible steps. In fact, weak bisimilarity for
a labelled transition system & amounts to strong bisimilarity on the ‘double-
arrowed’ system S’ induced by S. We generalize this idea for a coalgebraic
definition of weak bisimulation. Our approach, given a system S, consists of
two stages.

1. First, we define a ‘*-extension’ S’ of S which is a system with the same
carrier as S, but with action set A*, the set of all finite words over A. The
system S’ captures the behavior of S on finite traces.

2. Next, given a set of invisible actions 7 C A, we transform S’ into a so-called
‘weak T-extension’ S which abstracts away from 7 steps. Then we define
weak bisimilarity on S as strong bisimilarity on the weak-r-extension S”.

Defining weak bisimulation for coalgebras has been studied before. There is
early work by Rutten on weak bisimulation for while programs [35], succeeded by
a syntactic approach to weak bisimulation by Rothe [33]. In the latter paper,
weak bisimulation for a particular class of coalgebras was obtained by trans-
forming a coalgebra into an LTS and making use of Milner’s weak bisimulation
there. This approach also supports a definition of weak homomorphisms and
weak simulation relations. Later, in the work of Rothe and Masulovié [34],
a complex, but interesting coalgebraic theory was developed leading to weak
bisimulation for functors that weakly preserve pullbacks. They also consider a
chosen ‘observer’ and hidden parts of a functor. However, in the case of prob-
abilistic and similar systems, this does not lead to intuitive results and cannot
be related to the concrete notions of weak bisimulation. The so-called skip re-
lations used in [34] seem to be the major obstacle as it remains unclear how
quantitative information can be incorporated. In the context of open maps, a
category theoretical interpretation of weak bisimulation on presheaf models has
been proposed in [15].

Indeed, the two-phase approach of defining weak bisimilarity for general sys-
tems is, amplifying Milner’s original idea, rather natural. Our proposal for weak
bisimilarity of action-type systems builds on the intuition in concrete cases. A
drawback of our approach is that the definition of weak bisimulation is pa-
rameterized with a notion of a *-extension that does not come from a general
categorical construction, but has to be tuned for the concrete type of systems
at hand.

In this paper we focus on two particular examples of action-type systems:
LTSs and the generative probabilistic systems [16, 17, 40]. The generative sys-
tems are closely related to LTSs, the difference is that all non-deterministic
choices in an LTS are probabilistic choices in a generative system.

For LTSs, weak bisimulation is an established notion and the main moti-
vation of the paper is to generalize this notion to coalgebras, as arbitrary as
possible. Baier and Hermanns introduced, rather appealingly, the notion of
weak bisimulation for generative probabilistic systems [7, 6, 8]. In this paper,
we propose a notion of weak bisimulation at a high-level of abstraction that



justifies the definition of Baier and Hermanns for generative systems and illu-
minates the similarity between the notion of weak bisimulation for LTSs and of
weak bisimulation for generative systems.

In the context of concrete probabilistic transition systems, there have been
several other proposals for a notion of weak bisimulation, often relying on the
particular model under consideration. For a detailed study of the different prob-
abilistic models the reader is referred to [10, 11, 41, 40]. Segala [38, 37] proposes
four notions of weak relations for his model of simple probabilistic automata.
A detailed study of these relations can be found in [42]. It is a topic for fur-
ther research to see how these notions fit into our general framework. Several
groups of authors studied weak equivalences for the so-called alternating model
of Hansson [20]. Philippou, Lee and Sokolsky [31] proposed the first notion of
weak bisimulation in this setting. This work was extended to infinite systems
by Desharnais, Gupta, Jagadeesan and Panangaden [14]. The same authors
also provided a metric analogue of weak bisimulation [13]. Recently, Andova
and Willemse studied branching bisimulation for the alternating model [4, 5],
and together with Baeten [3] provided a complete axiomatization of this process
equivalence in a process algebra setting. However, the alternating probabilis-
tic automata are not coalgebras (see [40]) and therefore do not qualify for our
definition.

Weak bisimulation was also considered for Markov chains in both discrete
time [9, 39] and continuous time [9, 26]. Markov chains are not exactly action
type coalgebras, since they are fully probabilistic non-labelled systems. How-
ever, the notion of weak bisimulation from [39] is based on the notion of weak
bisimulation for generative probabilistic systems that is central to our paper. It
is interesting to note that the notion of weak bisimulation by Baier and Her-
manns has attracted attention in the security community and has been applied
to security issues such as non-interference and secure information flow [2, 39, 23].
For the latter paper [23], as we will see for the present paper too, the coincidence
of weak bisimulation and branching bisimulation in the setting of generative sys-
tems is crucial. Transition systems with both actions and generally distributed
time delay occurring as labels are studied in [25] as well as a notion of weak
bisimulation taking non-deterministic and sequential composition into account.

Below, we prove, not only for the case of labelled transition systems, but
also for generative probabilistic systems that our coalgebraic definition corre-
sponds to the concrete one of [29] and [7]. Despite the appeal of the coalgebraic
definition of weak bisimulation, the proofs of correspondence results vary from
straightforward to technically involved. For example, the relevant theorem for
labelled transition systems takes less than a page, whereas proving the corre-
spondence result for generative probabilistic systems takes in its present form
more than twenty pages (additional machinery included).

The paper is organized as follows: Section 2 gathers the preliminary defini-
tions and results. Section 3 is the kernel of the paper presenting the definition of
coalgebraic weak bisimulation. We show that our definition of weak bisimilarity
leads to Milner’s weak bisimilarity for LTSs in Section 4. Section 5 is devoted
to the correspondence result for the class of generative systems of the notion of



weak bisimilarity of Baier and Hermanns and our coalgebraic definition. This
section is a technically involved part of the paper and is divided in several
parts, discussing in detail generative probabilistic systems and their concrete
and coalgebraic weak bisimulation. In Section 5.1 we study some basic notions,
such as paths and cones of generative systems, and their properties. Section 5.2
establishes that the probability distributions defining a generative probabilis-
tic system extend to measures on a certain g-algebra of paths. In Section 5.3
we present the concrete definitions of weak bisimulation for generative systems
by Baier and Hermanns, as well as branching bisimulation, and we gather and
prove some properties of these relations (in concrete terms) that we need for
our correspondence result. Section 5.4 presents the coalgebraic weak bisimu-
lation for generative probabilistic systems which in Section 5.5 is compared to
the concrete notion of weak bisimulation. At the end, Section 6 draws some
conclusions. Last, but not least, one will find several appendices. The theme
that connects them is the notion of weak pullback preservation—a technical
condition that is helpful in relating concrete and coalgebraic bisimulations. We
recall the definitions of pullbacks and their preservation in Appendix A. We
prove weak pullback preservation of the distribution functor (without restrict-
ing to finite support) in Appendix B. This is an interesting side-contribution
of the paper. Its place is in an appendix in order not to distract the main line
of the story. In Appendix C we investigate the weak pullback preservation of
the functor appearing in Section 5. Interestingly, this functor does not preserve
weak pullbacks, but it preserves total weak pullbacks, a notion that turns out
to be important in our investigations.

2 Systems and bisimilarity

We are treating systems from a coalgebraic point of view. Usually, in this
context, a system is considered a coalgebra of a given Set endofunctor. For an
introduction to the theory of coalgebra the reader is referred to the introductory
articles by Rutten, Jacobs, and Gumm [36, 21, 19]. However, in our investigation
of weak bisimilarity it is essential to explicitly specify the set of executable
actions. Therefore we shall rather start from a so-called bifunctor instead of a
Set endofunctor, cf [12].

A bifunctor is any functor F: Set x Set — Set. If F is a bifunctor and A is
a fixed set, then a Set endofunctor F4 is defined by

FaS=F(AS), Faf =Flida, f) for f: S —T. (1)
We formulate the next simple proposition for further reference.

Proposition 2.1 Let F be a bifunctor, and let Ay, Ay be two fized sets and f :
Ay — Ay a mapping. Then f induces a natural transformation n’ : Fa, = Fa,
defined by 7)£ = F(f,idg). m]

We next define action-type coalgebras i.e. action-type systems based on
bifunctors.



Definition 2.2 Let F be a bifunctor. If S and A are sets and « is a function,
a: S — Fa(S), then the triple (S, A, a) is called an action type Fa coalgebra. A
homomorphism between two Fa-coalgebras (S, A, «) and (T, A, B) is a function
h S — T satisfying Fah oo = o h. The Fa-coalgebras together with their
homomorphisms form a category, which we denote by Coalgé.

Next we present two basic types of systems, labelled transition systems and
generative systems, which will be treated in more detail in Section 4 and Sec-
tion 5. We give their concrete definitions first.

Definition 2.3 A labelled transition system, or LTS for short, is a triple
(S, A, —) where S and A are sets and — C S x A x S. We speak of S as
the set of states, of A as the set of labels or actions the system can perform
and of — as the transition relation. As usual we denote s — s’ whenever
(s,a,8) € —.

When replacing the transition relation of an LTS by a “probabilistic transi-
tion relation”, the so-called generative probabilistic systems are obtained.

Definition 2.4 A generative probabilistic system is a triple (S, A, P) where S
and A are sets and P : S x A x S — [0,1] with the property that for s € S,

Z P(s,a,s’) € {0,1}. (2)

acA, s'eS

We speak of S as the set of states, of A as the set of labels or actions the
system can perform and of P as the probabilistic transition relation. Condi-
tion (2) states that for all s € S, P(s,_,_) is either a distribution over A x S

or P(s,_,) = 0, i.e. s is a terminating state. As usual we denote ¢ 2L o

whenever P(s,a,s') = p, and s 2~ s' for P(s,a,s") > 0.

Remark 2.5 In order to clarify the condition (2) let us recall that the sum of
an arbitrary family {z; | i € I'} of non-negative real numbers is defined as

in = sup{z x; | J C1,J finite}.
iel icJ

Note that, if >

infinite.

se1 Ti <00, then the set {x; | i € I, 2; # 0} is at most countably

Let us turn to the coalgebraic side. LTSs can be viewed as coalgebras cor-
responding to the bifunctor
L ="P(Zd xZd).

Namely, if (S, A,—) is an LTS, then (S, A, a), where o : S — L£4(5) is defined
by
(a,8') € a(s) = s-—¢



is an L4-coalgebra, and vice-versa. Furtheron, we will freely use —— notation
when talking about La-coalgebras. Also the generative systems can be consid-
ered as coalgebras corresponding to the bifunctor

G =D(Td x Id) + 1.

Here D denotes the distribution functor, that is, D : Set — Set
DX = {u: X = [0,1] | ©,ex le) = 1}
DPHW W) =2 )=y @), f: X =Y, neDX,yeY.

If (S, A, P) is a generative system, then (S, A, a) is a Ga-coalgebra where
a: S — G4(9) is given by

a(s)(a,s’) = P(s,a,s),

and vice-versa. Thereby we interpret the singleton set 1 as the set containing
the zero-function on A x S. Note that a(s) is the zero-function if and only if s
is a terminating state.

In the literature it is common to restrict to generative systems (S, A, «)
where for any state s the function «(s) has finite support. The restriction to
finite support guarantees existence of a final coalgebra. However, in many re-
spects, in particular when the existence of a final coalgebra is not needed, this
restriction is not necessary.

An important notion in this paper is that of a bisimulation relation between
two systems. We recall here the general definition of bisimulation in coalgebraic
terms.

Definition 2.6 Let (S, A,a) and (T, A, 3) be two Fa-coalgebras. A bisimula-

tion between (S, A,«) and (T, A, ) is a relation R C S x T, such that there

exists a map v : R — FaR making the projections w1 and mo coalgebra homo-

morphisms between the respective coalgebras, i.e. making the following diagram
™ T2

commute:
S R T
S S

FaS FaR FaT

Fami Fama

Two states s € S and t € T are bisimilar, notation s ~ t if they are related by
some bisimulation between (S, A, a) and (T, A, ().

Often we will consider bisimulations that are equivalence relations on a sin-
gle coalgebra (S, A, a).



In general, hence also for functors F4 and G4 arising from bifunctors F and
G, it holds that a natural transformation n : F4 = G4 determines a functor
T: Coalgé — Coalgé defined by

T(<S’A7a>):<S’A7nS°a>a Tf=Ff. (3)

We will refer to the functor 7 as the functor induced by the natural transforma-
tion 7. Functors induced by natural transformations preserve homomorphisms
and thus preserve bisimulation relations, in particular bisimilarity (cf. [36]).

LTSs and generative systems come equipped with their concrete notions of
bisimulation relations, cf. [28] and [24, 17], respectively, which we present next.

Definition 2.7 Let (S, A, —) be an LTS. An equivalence relation R C S x S
is a (strong) bisimulation on (S, A, —) if and only if whenever (s,t) € R then
for all a € A the following holds:

s -5 s'" implies that there exists t' € S with t >t and (s',t') € R.

Two states s and t of an LTS are called bisimilar if and only if they are
related by some bisimulation relation. Notation s ~y t.

For generative systems we have the following definition of bisimulation.

Definition 2.8 Let (S, A, P) be a generative system. An equivalence relation
R C S x S is a (strong) bisimulation on (S, A, P) if and only if whenever
(s,t) € R then for all a € A and for all equivalence classes C € S/R

P(s,a,C) = P(t,a,C). (4)

Here we have put P(s,a,C) = >, P(s,a,5"). Two states s and t of a gen-
erative system are bisimilar if and only if they are related by some bisimulation
relation. Notation s ~g4 t.

The concrete notion of bisimilarity for LT'Ss and generative systems and the
respective notions of bisimilarity obtained from Definition 2.6 coincide. For the
case of LTSs a direct proof was given, for example, by Rutten [36]. For genera-
tive systems this fact goes back to the work of De Vink and Rutten [43] where
Markov systems were considered, and was treated in [10] for generative systems
with finite support.

We will now describe a general procedure to obtain coincidence results of
this kind. This method already appeared implicitly in [11]. It applies to LTSs
as well as to generative systems in their full generality. We will also use the
method to obtain a concrete characterization of bisimilarity for another, more
complex, functor, in Section 5.



Definition 2.9 Let R C S X T be a relation, and F a Set functor. The relation
R can be lifted to a relation =r rC FS x FT' defined by

T=rprY < Iz € FR: Fri(z) =z, Fma(z) =y.
The following lemma is obvious from Definition 2.6.

Lemma 2.10 A relation R C S x T is a bisimulation between the Fa systems
(S, A, ) and (T, A, B8) if and only if

(s,t) € R = a(s) =r..r B(t). (5)
O

Note that the condition (5) is an abstract formulation of what is commonly
referred to as a transfer condition.

For the sequel, weak pullback preservation will be of some importance. We
recall the definitions of (weak) pullbacks and some needed properties concerning
their preservation in Appendix A. One particular kind of pullbacks, total pull-
backs, are important for our investigations. A total pullback is a weak pullback
with surjective legs.

A characterization of bisimilarity will follow from the next lemma.

Lemma 2.11 If the functor F weakly preserves total pullbacks and R is an
equivalence on S, then =x r is the pullback in Set of the cospan

FS —2% F(S/R) L— Fs (6)

where ¢: S — S/R is the canonical morphism mapping each element to its
equivalence class.

Proof Since R is an equivalence relation and therefore reflexive, the left dia-
gram below is a pullback diagram with epi legs, i.e., a total pullback.

/\ /\ﬂ
\/ k%

F(S/R)
Since F weakly preserves total pullbacks, the right diagram is a weak pullback
diagram. By Definition 2.9 the map w: FR —=z g, w(z) = (Fm(z), Fra(z2))
is well-defined, surjective, and it makes the two upper triangles of the next



diagram commute:

As the lower square commutes and w is surjective, the outer square of the above
diagram also commutes, and by the existence of w from the weak pullback FR
to =7 r, =r,r is a weak pullback as well. However, since it has projections as
legs it is a pullback. O

Suppose that a functor F weakly preserves total pullbacks and assume that
R is an equivalence bisimulation on S, i.e., R is both an equivalence relation and
a bisimulation on S, such that (s,t) € R. The pullback in Set of the cospan (6)
is the set { (z,y) | Fe(z) = Fe(y) }. By Lemma 2.11 this set coincides with the
lifted relation =# p. Thusz =z gy <= Fe(z) = Fe(y). Therefore, we obtain
the transfer condition for the particular notion of bisimulation if we succeed in
expressing concretely (Fcoa)(s) = (Feoa)(t) in terms of the representation of
a(s) and «a(t).

To illustrate the method, we will use it in showing the well-known corre-
spondence of coalgebraic and concrete bisimulation for LTSs.

Lemma 2.12 An equivalence relation R on a set S is a coalgebraic bisimulation
on the LTS (S, A, a) according to Definition 2.6 for the functor Ly if and only
if it is a concrete bisimulation according to Definition 2.7.

Proof It is easy to show that the LTS functor £4 preserves weak pullbacks (see
e.g. [40]). For X € £4(S), i.e. X C A x S, we have L4(c)(X) = P(ida,c)(X) =
(ida, c)(X) = {{a,c(x)) | {(a,x) € X}. Using Lemma 2.10 we get that an
equivalence R C S x S is a coalgebraic bisimulation for an LTS (S, A, ) if and
only if

(s;t) € B = {{a,c(s)) [ {a,s) € als) } = {{a,c(t) | (a,¥') € a(t) }
or, equivalently
(s,t) ER = (s = W cS:t-St' AN, U)ER).
which is the transfer condition from Definition 2.7. O

The most difficult part in establishing the correspondence result for gen-
erative systems is proving the weak pullback preservation for the distribution
functor.



Proposition 2.13 The functor D preserves weak pullbacks. O

Appendix B is dedicated to the proof of this proposition. As a consequence
we get that the functor for generative systems G4 preserves weak pullbacks. An
application of Lemma 2.10 and some simple derivations now suffice to show the
correspondence result.

Lemma 2.14 An equivalence relation R on a set S is a coalgebraic bisimulation
on the generative system (S, A, «) according to Definition 2.6 for the functor G4
if and only if it is a concrete bisimulation according to Definition 2.8. O

We end this section with a small discussion on the assumption of Lemma 2.10.
Often we require a functor to weakly preserve pullbacks, so that it will be “well-
behaved”. For example, for bisimilarity being an equivalence. It can easily be
seen that the milder condition of weakly preserving total pullbacks suffices for
bisimilarity to be an equivalence. Moreover, we have relaxed the weak pullback
preservation condition since in Section 5 we will need a bisimilarity characteri-
zation of a functor that transforms total pullbacks to weak pullbacks, but does
not preserve weak pullbacks.

3 Weak bisimulation for action-type coalgebras

In this section we present a general definition of weak bisimulation for action-
type systems. Our idea arises as a generalization of the notions of weak bisim-
ulation for concrete types of systems. In our opinion, a weak bisimulation on a
given system is a strong bisimulation on a suitably transformed system obtained
from the original one.

Weak bisimulation in concrete cases deals with hiding actions. Therefore
we focus on weak bisimulation for action-type coalgebras. Recall that we have
defined action-type coalgebras in Definition 2.2 as triples (S, A, a) such that
(S,a: S — FaS) is a coalgebra for the functor F4 induced by a bifunctor F,
as in Equation (1).

We proceed with the definition of weak bisimulation for action-type coal-
gebras. The definition consists of two phases. First we define the notion of a
x-extended system, that captures the behavior of the original system when ex-
tending from the given set of actions A to A*, the set of finite words over A. The
x-extension should emerge from the original system in a faithful way (which will
be made precise below). The second phase considers invisibility. Given a subset
7 C A of invisible actions, we restrict the x-extension to visible behavior only, by
defining its weak-T-extended system. Then a weak bisimulation relation on the
original system is obtained as a bisimulation relation on the weak-m-extension.

Definition 3.1 Let F and G be two bifunctors. Let ® be a map assigning to
every Fa-coalgebra (S, A, ), a Ga~ system (S, A*,a’), on the same set of states
S, such that the following conditions are met

(1) ® is injective, i.e. ®((S, A, a)) = D((S,A,5)) = a=p;

10



(2) ® preserves and reflects bisimilarity, i.e. s ~ t in the system (S, A, «a) if
and only if s ~ t in the transformed system ®((S, A, a)).

Then ® is called a *-translation, notation ® : F = G. The Ga--coalgebra
O((S, A, a)) is said to be a x-extension of the Fa-coalgebra (S, A, «).

From the conditions (1) and (2) in Definition 3.1 it follows that the original
system is “embedded” in its #-extension, cf. [10, 11, 41]. The fact that a *-
translation may lead to systems of a new type, viz. of the bifunctor G, might
seem counterintuitive at first sight. However, this extra freedom is exploited in
Section 5 when the starting functor itself is not expressive enough to allow for
a *-extension.

A way to obtain x-translations follows from a previous result. Namely, if
A: Fa = Ga~ is a natural transformation with injective components and the func-
tor F4 preserves weak pullbacks, then the induced functor (see Equation (3)) is
a x-translation [10, 11]. However, we shall see later that %-translations emerging
from natural transformations do not suffice.

Having described how to extend an F4 system to its x-extension we show
how to hide invisible actions. Fix a set of invisible actions 7 C A. Consider
the function h,: A* — (A\ 7)* induced by h.(a) = a if a ¢ 7 and h,(a) = ¢
for a € 7 (where £ denotes the empty word). The function h, is deleting all
the occurrences of elements of 7 in a word of A*. We put A, = (A\ 7)*. By
Proposition 2.1, we get the following.

Corollary 3.2 The transformation ™ : Ga» = Ga_ given by ng = G(h.,idg) is
natural. m]

Let ¥, be the functor from Coalgé* to Coalgé’ induced by the natural
transformation 07, i.e. U.((S, A*,a/)) = (S, A, o) for o” =nloa/ and U, f =
f for any morphism f : S — 7. As mentioned above, the induced functor
preserves bisimilarity. The composition of a *-translation ® and the hiding
functor ¥, is denoted by Q. = ¥, o ® and is called a weak-7-translation. The
resulting system (S, A.,nf - ) is called a weak-T-extension of (S, A, a).

The transformation to a weak-7-extension is presented in the following scheme.

S S S
\L ’\/\_/\/\/'?/‘W\/\> la/mgl\w
fAS gA*S « i’l’]soa
Fa - coalgebra G4~ - coalgebra Ga, S

G4, - coalgebra

A weak-7-translation, or equivalently, the pair (®, 7, yields a notion of weak
bisimulation with respect to ® and 7.

11



Definition 3.3 Let F, G be two bifunctors, ® : F = G a %-translation and
T CA. Let (S,A,a) and (T, A, 3) be two Fu systems. A relation R C S x T
is a weak bisimulation with respect to (D, 7) if and only if it is a bisimulation
between Q. ((S, A, a)) and Q. ((T, A, 5)). Two states s € S andt € T are weakly
bisimilar with respect to (®,T), notation s = t, if they are related by some weak
bisimulation with respect to (®, 7).

Concrete examples of weak bisimulation will be discussed in Section 4 and
Section 5. We continue with verifying that weak bisimulations =, posses the
intuitively expected properties.

Proposition 3.4 Let F, G be two bifunctors, ® : F = G a *-translation,
(S, A, ) an Fa-coalgebra, T C A and let ~, denote the weak bisimilarity on
(S, A, ) w.r.t. (®,7). Then the following hold:

(1) ~C =, foranyT C A
i.e. strong bisimilarity tmplies weak bisimilarity.

(i) ~ ==y
i.e. strong bisimilarity is weak bisimilarity in absence of invisible actions.

(#5i) 11 C o= =, C ~,, for any 11,72 C A,
i.e. the more actions are invisible, the coarser the weak bisimilarity gets.

Proof Let F,G, ®, (S, A, a) and 7 be as in the assumptions of the Lemma.

(i) Assume s ~ ¢ in (S, A, a). Since ® preserves bisimilarity (Definition 3.1)
we have that s ~ ¢ in ®((S5, 4, «)). Next, since U, preserves bisimilarity
we get s ~ tin U, o ®((S, A, a)), which by Definition 3.3 means s ~, ¢ in
(S, A, ).

(#4) From (i) we get ~ C ap. For the opposite inclusion, note that hgy :
A* — A* is the identity map, hence the natural transformation 1 from
Corollary 3.2 is the identity natural transformation. Therefore the induced
functor ¥y is the identity functor on Coalgé*. Now assume s =~y ¢ in
(S, A, ). This means s ~ t in Qy((S, A, a)), i.e. s~ tin UyuoP((S, A, a)),
ie. s~ tin ®((S, A, a)). Since, by Definition 3.1, every *-translation
reflects bisimilarity we get s ~ ¢ in (S, A, a).

(iii) Let 71 C 7. Consider the diagram

hry
A —— A,

hory
l /:,72

A

where h; -, is the map deleting all occurrences of elements of 7 in a
word of A;,. The diagram commutes since first deleting all occurrences of
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elements of 7 followed by deleting all occurrences of elements of 75, in a
word of A* is the same as just deleting all occurrences of elements of 75. Let
n™, n72, "7 be the natural transformations induced by h,,, hr,, hr 7,
respectively ( see Proposition 2.1 and Corollary 3.2). Then the following
diagram commutes.

n"2
gA* E QAQ

71

Ga

71

Let V., ¥,,, ¥, -, be the functors induced by the natural transforma-
tions ™, n™, n™ 72 respectively. By Equation (3) it holds that

\IITz :\1171,7'2 O\I]Tl (7)

and they all preserve bisimilarity. Now assume s ~,, ¢ in (S, A, «). This
means that s ~ ¢ in the system U, o ®((S, A4, «)). Then, since ¥, ,,
preserves bisimilarity we have s ~ ¢ in the system U, ., o ¥, -®((S, 4, a))
which by equation (7) is the system ¥, o ®((S, A, @)) and we find s ~,, t
in (S, A, a). O

For further use, we introduce some more notation. For any w € A,, we
put B, = h;'({w}) € A*. We refer to the sets B, as blocks. Note that
B, =1*aym* -t forw =a;y...a € A, = (A\ 1)

4 Weak bisimulation for LTSs

In this section we show that in the case of LTSs there exists a *-translation
according to the Definition 3.1, such that weak bisimulation in the concrete
case [28] coincides with weak bisimulation induced by this *-translation. First
we recall the standard definition of concrete weak bisimulation for LTSs.

Definition 4.1 Let (S, A, —) be an LTS. Let 7 € A be the invisible action. An
equivalence relation R C S X S is a weak bisimulation on (S, A, «) if and only
if (s,t) € R implies that

if s s', then there exists t' € S with
t—s*o s o Tu*t and (s',¥) € R

foralla € A\ {7}, and

if s — &', then there evists t' € S with t —*t' and (s',t') € R.

Two states s and t are called weakly bisimilar if and only if they are related

by some weak bisimulation relation. Notation s =y t.
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We now present a definition of a *-translation that will give rise to a notion
of weak bisimulation that coincides with the standard one of Definition 4.1.
Recall that £, L4 are the functors for LTSs, as introduced in Section 2.

Definition 4.2 Let ® assign to every LTS, i.e. any La-coalgebra (S, A, &), the
L a~ coalgebra (S; A* ') where for w=a;...ax € A*, k>0,

(ay...ap, )€ (s) = s o0ty

and (g,8') € o/ (s) <= s =s5". We use the notation s=s' for (w,s') € o/(s).

Hence, for w = a;...as, we have s= s if and only if there exist states
S1,...,8k_1 such that

al as ak—1 ag /
§—>8] —> 89+ —> Sp_1 —> 5.
Furthermore, note that for a € A, since no hiding applies, it holds that
s in (S, A,a) if and only if s=s"in (S, A4,a’) = ®((S, 4,a))

N (a,8") € a(s) <= {a,s') €d(s).

Proposition 4.3 The assignment ® from Definition 4.2 is a x-translation.

Proof We need to prove that ® is injective and reflects and preserves bisimi-
larity. Let ®((S, A4, a)) = (S, A*,a’), ®((S,A,B)) = (S, A*,4'). Assume that
o' = f#'. Then, for any state s,

(a,s') € a(s) <= (a,s') € d/(s) < (a,s') € f'(s) < (a,s) € B(s).

Hence a(s) = B(s), i.e., a = .

For the reflection of bisimilarity, let s ~ ¢ in ®((S, A,a)) = (S, A*, a’).
Hence there exists an equivalence bisimulation relation R such that (s,¢) € R
and (according to Definition 2.7) for all w € A*,

if s = s’ then there exists ¢ € S such that t = ¢ and (s',¢') € R.

Assume s~ 5" in (S, A,a). Then s= s’ in (S, 4,a’) and therefore there
exists t' € S with (s, ¢) € Rand t =1/, i.e., t ——t'. Hence, R is a bisimulation
on (S, A, ) i.e. s ~t in the original system.

For the preservation of bisimulation, let s ~ ¢ in (S, A, «) and let R be an
equivalence bisimulation relation such that (s,t) € R. Assume s = &, for some
word w € A*. We show by induction on the length of w that there exists ¢’
with t = ¢ and (s,#') € R. If w has length 0, then w = ¢, s’ = s and we take
t' = t. Assume w has length k + 1, i.e. w =a-w' for a € A,w’ € A*. Pick

s" such that s - s” = s'. Since (s,t) € R we can pick t” such that t —¢"

and (s”,t"y € R. By the inductive hypothesis, for w’ we can choose t' such
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that ¢’ 5 ¢ and (s',t') € R. Note that t "=/, i.e., t=1t. Hence R is a
bisimulation on (S, A*, &) and s ~ t holds in the %-extension. O

Note that if 7 is a functor induced by a natural transformation 7, in the
context of Equation (3), and if (S, A, «), (S, A, B) are two systems such that, for
some s € S, a(s) = B(s), then, clearly,

o (s) = ns(a(s)) = ns(B(s)) = B'(s) (8)

for (S, A,a') =T((S,A,a)), (S, A, 5"y =T((S, A,3)).

Having #-translations induced by natural transformations is desirable, since
such *-translations are functorial and also obtained by a categorical construct.
However, the following simple example shows that the x-translation ® from
Definition 4.2 violates (8). Therefore it can not be induced by a natural trans-
formation.

Example 4.4 Let S = {s1,52,s3} and A = {a,b,c}. Consider the LTSs:
(S, A, a) : s i)SQLSg and (S, A, () : 51 — 59— s53.

Obviously a(s1) = [(s1). However, o'(s1) = {(e, s1), (a, s2), (ab, s3)} while
B'(s1) = {(e, 51), (@, s2), (ac, s3) }.

We next show that the coalgebraic and the concrete definitions coincide in
the case of LTS.

Theorem 4.5 Let (S, A,«) be an LTS. Let 7 € A be the invisible action and
s,t € S any two states. Then s ~y;y t with respect to the pair (®,{7}) if and
only if s =y t.

Proof Assume s~y t for s, € S of an LTS (S, A, ). This means that s ~ ¢

in the LTS (S, A{T},nif} o a/), i.e., there exists an equivalence bisimulation R
on this system with (s,t) € R.

As usual, o is such that (S, A* o) = ®((S, A,a)). Here we have 77;{37} =
E(h{.,.}, Ids) = P(h{.r}, ldS) and

W eas) = i (s)
= P(hiry,ids)(a'(s))
= {{hy(w),8) | {w,s) € o'(s)}
= {{u,¢)|Fwe B,: s=5'}

We denote the transition relation of the weak-7-system (S, A{T},ng} o) by

= ,, le., forw e A,

52,8 = (w,s)c (77;7} °oa)(s).
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The above shows that for a word w = ay...a € A,
w / * * * * v
S=>,8 <= WEB,=T"a17" ... T apT": s=5".

We will show that the relation R is a weak bisimulation on (S, A, @) according
to Definition 4.1. Let s -’ (a # 7). Then s= ', implying s =, s’. Since
R is a bisimulation on the weak-7-system, there exists t’ such that ¢ = . ¢’ and
(s',t') € R. We only need to note here that =, = —»*o -2 o 75 * In case
s — s we have s= s’ implying now s= ,s’. Hence, there exists ¢’ such that
t= .t and (s/,t') € R. Since =, = —=*, we have proved that R is a weak
bisimulation on (S, A, a) according to Definition 4.1.

For the opposite, let R be a weak bisimulation on (S, A, ) according to
Definition 4.1 such that (s,t) € R. It is easy to show that for any a € A, if
s—*o -5 o 15 %4 then there exists t’ such that t —* o —— o —*¢ and
(s',t') € R. Hence, if s =, s’ then there exists ¢’ with ¢t = .+’ and (s',#') € R.
Based on this, a simple inductive argument on k leads to the conclusion that
for any word w = a1...a, € A,, if s= . s then there exists a t’ such that
t= .t and (s',t') € R, i.e. R is a bisimulation on the weak-7-system and hence
S %{T} t. a

5 Weak bisimulation for generative systems

In this section we deal with generative systems and their weak bisimilarity.
We first focus on the concrete definition of weak bisimulation by Baier and
Hermanus [7, 6, 8]. Inspired by it, we provide a functor that suits for a definition
of a *-translation for generative systems. This way we obtain a coalgebraic
definition of weak bisimulation for this type of systems. We show that our
definition, although at first sight much stronger, coincides with the definition
of Baier and Hermanns for finite systems. Unlike in the case of LTSs, for
generative systems the #-translation needs to leave its original class of systems,
which justifies the generality of the definition.

This section is divided into several parts that lead to the correspondence
result: First we introduce paths in a generative system and establish some
notions and properties of paths. Next we define a measure on the set of paths,
where we basically follow the lines of Baier and Hermanns [8, 6]. Furthermore,
we present the definition of weak bisimulation by Baier and Hermanns, and
we prove some properties of weak bisimulation relations that will be used later
on (without restricting to finite state systems as in [8, 6]). Then we define a
translation and prove that it is a *translation providing us with a notion of
weak-7-bisimulation. The final part of this section is devoted to the question
of correspondence of the notion of weak-7-bisimulation defined by means of the
given x-translation and the concrete notion proposed by Baier and Hermanns.
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5.1 Paths and cones in a generative system

Let (S, A, P) be a generative system. A finite path 7 of (S, A, P) is an al-
ternating sequence (sg,ai,S1,as,...,ak, Sk), where k € Ny, s; € S, a; € A,
and P(s;—1,a;,8;) >0, ¢ = 1,...,k. We will denote a finite path 7 =
(s0,a1,81,0a2,...,ak, ) more suggestively by

al ag ag
Sg——>81 ——>89 -+ Sg—1 —> Sk -
Moreover, in the situation above, we put
length(m) = k, first(m) = so, last(w) = sg, trace(n) = ajaz - ag.

The path e, = (s9) will be understood as the empty path starting at so. We
will often write just € for an arbitrary empty path. Similar to the finite case,
an infinite path 7 of (S, A, P) is an infinite sequence (sg,ay, s1,as,...), where
s; €85, a; € Aand P(s;—1,a;,5;) > 0,4 €N, and will be written as

ai az
Sg——>81 ——>89 *--

Again we set first(m) = sg. A path 7 is called complete if it is either infinite or
it is finite with last(7) a terminating state, i.e. P(last(nw),-,-) = 0.

The sets of all (finite or infinite) paths, of all finite paths and of all complete
paths will be denoted by Paths, FPaths and CPaths, respectively. Moreover, if
s €S, we write

Paths(s) = { € Paths|first(r) = s},
FPaths(s) = {m € FPaths | first(r) =s},
CPaths(s) = {m € CPaths | first(7) = s }.

We next define sets of concatenated paths. If II1, IIo C FPaths, we define

H1 . H2 = {7T1 - T | T € H1,7T2 S Hg,last(m) = ﬁI‘St(T(g)},

_ ay ay k41 (e 7% _ ay a
where m -y = §— -+ —5 8, —> -+ —5 5, for 1 = s— -+ —> 5, and
_ Ak+1 An
Mg = S — +++ — 8.

The set Paths(s) is partially ordered by the prefix relation. For m, 7’ €
Paths(s) we write 7 < 7’ if and only if the path 7 is a prefix of the path =’

Note that if 7 < 7’ then 7 is a finite path, and if 7y < 7 and w9 < 7, then
either m =< 79 or mo =< 7. The complete paths are exactly the maximal elements
in this partial order. For every 7 € Paths(s), there exists a 7/ € CPaths(s) such
that 7 < 7.

The following statement will be used at several occasions throughout this
section.

Lemma 5.1 For any state s € S, the set FPaths(s) is at most countable.
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Proof Let FPaths,(s) denote the set of finite paths starting from s with length
n. Clearly, FPaths(s) = UpenFPaths,(s). The statement follows from the
observation that for any state s and any n € N the set FPaths, (s) is at most

countable. This observation can be proven by induction on n as follows. We
have FPathsy(s) = {e} and

FPaths,1(s) = U s — s - FPaths,(s")
(a,s"):P(s,a,s’)>0

which is at most countable by the inductive hypothesis and by the fact that
P(s,a,s’) >0 for at most countably many a and s’ (see Lemma B.1 in Ap-
pendix B). O

Definition 5.2 For a finite path m € FPaths(s), let 7] denote the set
7T = {§ € CPaths(s) | m < £}
also called the cone of complete paths generated by the finite path .
Note that always 7] # . Let
Cones(s) = {n] | = € FPaths(s)} C P(CPaths(s))

denote the set of all cones. By Lemma 5.1 this set is at most countable. For the
study of weak bisimulation for generative systems a thorough understanding of
the geometry of cones is crucial. To begin with, we have the following elementary

property:

Lemma 5.3 Let w1, 712 € FPaths(s). Then the cones m1 and ma are either
disjoint or one is a subset of the other. In fact,

7T2T Zf 1 571'2
mlN ml=qml if mpg2m
(Z) ’Lf 7T1ﬁ7f2 a’fldﬂ'Qﬁ’ﬂ'l

Moreover, we have T = mal if and only if either

_ ai ag _ ai ar Q41 QAn,
M =8§— 1+ —5 8, MTM=8§— -+ — 8 — Sga1 " — 8y (9)
forn >k >0, and
P(si_l,ai,si):l, Z:k+1,,’ﬁ, (10)

or vice-versa.
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Proof Let # € mT N ml, # € CPaths(s). Then m; < # and my <X #. This
implies that 71 < 79 or my < m1. Assume m; < my. Then

TEM <= M7 = T 7T < 7w

i.e., moT C m1] and therefore mT N mol = moT.
It is clear that (9) and (10) imply m 1 = mol. Assume m] = ma]. Then
m] N me] # (0 and therefore m; < 7y or my =< . Assume m; < T, T =
a1l ag _ a1l ag Ak41 Qn, .
S— s =S, MY = S§— o0 —D S — Spy1 - — Sp. U for some i € {k+
1,...,n} it happens that P(s;—1,a;,s;) <1, then there exists an action a} € A
and a state s, € S such that (a}, ;) # (a;, ;) and
r ai ai—1 A
Mg =8—— +++ —>8;-1—8;
is a path in (S, A, P). Since ¢ > k + 1 we have m; < 7}. However, this path
is not prefix related to my, i.e., we have 75 A mo and mg A w,. Therefore
w7 N mT = w1 and 74 N mel = @ contradicting ™1 = mal. =]

Let IT C FPaths(s). We say that II is minimal if for any two m,m € II,
w1 # 2, we have ;7 N ma] = (. Hence in a minimal set of paths IT no path of
IT is a proper prefix of another path of II. We will express that II is minimal by
writing min(IT). As example note that every singleton set {7}, 7 € FPaths(s),
is minimal. Also every subset of CPaths(s) is minimal, too.

For II C FPaths(s) we denote by IIT the set

= | J .

mell

Then the fact min(IT) just means that II is actually the disjoint union of all
nl, mell, ie.
min(ll) <= 0Of = | |1,
mell

where, here and in the sequel, the symbol LI denotes disjoint unions. It is an
immediate consequence of the definition that,

min(IT), ' CII = min(Il').

However, if II; and Il are minimal, their union need not necessarily be
minimal, even if II; N II, = (). We will use the notation

I=HI;
i€l

to express that
II; C FPaths(s), i € I, TT = | |TI; and min(IT).

icl
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Note that if IT = |, ; II;, also min(Il;) for all + € I. In particular this notation
applies to minimal subsets II written as the union of their one-element subsets:

min(ll) = II= tl—J {m}.

Observe that the following two properties hold, as can be readily checked.

o If IT = ;e I, then IIT = | ;e ILT = Uie s pem, 7T -
e We have IT = [}, II; if and only if
— Vi € I: min(Il;), and
—Vi,jel: i#j = IL;NI; =0, and
*VZ',].GII Z#] — V’JTiGHi,V’]TjGHjZ wiﬁwjandwjﬁm—.
Let IT C FPaths(s). Put II] ={wr €Il |Va' € Il: 7' £ 7}.

Lemma 5.4 For any subset I1 C FPaths(s), it holds that II| C IT, min(I1]) and
107 = (I1})1.

Proof It is clear that II| is minimal, and that II| C II. Therefore also (Hl)T -
II7. Take 7 € II. Since the prefix ordering does not allow for infinite descending
chains, there exists 7’ € II| with 7’ < 7. So we have 77 C 7’1 and this way we
get TIT C (II])1. 0

5.2 The measure Prob

We proceed with the construction of a probability measure Prob out of the dis-
tribution P of a generative system (S, A, P) on a certain o-algebra on CPaths(s).
This method was used in many papers, also in [8, 6], and before that in [37],
where the setting is slightly different and/or only a part of the story is given.
Here we give complete proofs for our setting. As a standard reference for mea-
sure theoretic notions and results we use the monograph [44]. An important
measure theoretic result is the extension theorem which states that any pre-
measure (o-additive, monotone function with value zero for the empty set) on a
semi-ring extends in a unique way to a measure on the o-field generated by the
semi-ring. Slightly different versions of this theorem apply to different defini-
tions of the notion “semi-ring”. For our purposes, the definition of a semi-ring
from [44] fits best. Namely, a family of subsets of a given set S is a semi-ring
if it contains the empty set, is closed under finite intersection and the set dif-
ference of any two of its elements is a disjoint union of at most countably many
elements of the semi-ring.

Lemma 5.5 The set Cones(s) U {0} is a semi-ring.
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Proof Clearly, Cones(s) U {0} contains the empty set and it is closed under
intersection, by Lemma 5.3. We need to check that the set-difference of any
two of its elements is a disjoint union of at most countably many elements
of Cones(s) U {0}. Let m7,m] € Cones(s). We consider m7T \ m2]. Since
mT \ ml = mT\ (m] N m), by Lemma 5.3, the only interesting case is
m T N mwe] = mo] # m1] which implies m; < 7y. Let

M= {r|7=7last(r') s, 1 27 <o, 7 £ T2}

Then 717 \ w27 = IIT = Uren 7). This union is at most countable since the set
IT is at most countable by Lemma 5.1. O

Now we are ready to introduce the desired extension of P to a measure.
By Lemma 5.3, a function Prob : Cones(s) U {0} — [0,1] is well-defined by
Prob(()) = 0, Prob(el) = Prob(CPaths(s)) = 1 and

Prob(C) = P(s,a,s’) - Prob(C"), for C = 7], 7 = s = s’ -7/, C’' = 71

Lemma 5.6 The function Prob is a pre-measure' on the semi-ring Cones(s)U

{0}.

Proof By definition Prob(f)) = 0. Further we need to check o-additivity and
monotonicity.
For the o-additivity, assume

==l (11)

i€l

for some at most countable index set I. We need to show that Prob(xl) =
> icr Prob(mT).

If |[I| = 1, then the property is trivially satisfied. Therefore we assume that
|[I] > 1. In particular this means that 7 is not terminating.

There exists (via a Lemma of Zorn argument) a partial function depth? that
assigns to some finite paths an ordinal number, satisfying:

1. If £ € FPaths(s) is such that m; < £ for some ¢ € I, or if ¢ terminates,
then depth(§) = 0.

2. Otherwise, if £ is a finite path such that all its one step successors {¢’ |
& = & length(&') = length(&) + 1} have assigned depth then also £ belongs
to the domain of depth and

depth (&) = sup{depth(¢’) | £ < &, length(¢’) = length(¢) + 1} + 1. (12)
!n [44] pre-measures are also called measures.

2The function depth has also been defined and used in a proof of a similar property by
Segala [37].
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Actually the function depth applied to a finite path £ captures how deep
in the cone generated by £ one must go in order to be sure that all extensions
of the path under consideration belong to some ;] for ¢ € I or terminate. In
other words, if depth(¢) is defined, and if Z is the set of paths that extend & in
at least depth(§) steps, then any path that extends any path in = belongs to
some of the cones ;T for ¢ € I or terminates.

We first show, by reducing to contradiction, that our starting finite path
7 has been assigned a value for depth. Assume that 7 has not been assigned
a value for depth. Let 7% = 7. For each i > 0 let 7' be a path such that
length(7?) = length(7i=1) + 1, 77! < 7% and 7% has not been assigned a value
for depth. Such a chain under the prefix ordering exists since if for some i all
paths that extend 7’ in one step would had been assigned depth, then 7% would
also have been assigned a depth. Consider the infinite complete path 7> such
that for all i > 0, ¢ < 7°°. By definition 7> € #]. By (11), there exists i € [
such that 7°° € m;T, implying that m; < 7°° and hence m; = 7™ for some n > 0.
However, then depth(n™) = depth(m;) = 0 contradicting that 7™ has no value
for depth assigned.

Let 7 be any non-terminating path and let {7, | 0 € O} be the set of paths
that extend 7 in one step, which means that

Yo e O: @ < m,,length(m,) = length(7) + 1. (13)
Then
A= | | ml (14)
o€0
and

Z Prob(m,l) = Z Prob(#1) - P(last(#), a, s)

0€O acA,s’eS
= Prob(al)- Y P(last(#),a,s)
acA,s’eS
= Prob(#7) (15)

since 7 does not end in a terminating state, i.e. > 4 .og P(last(7),a,s) = 1.
We will now show, by induction on depth, that if 7 is a finite path which
has been assigned a value for depth and if

w= ] mt, (16)

iel’CI

for some I" C I, then Prob(#1) = ;. c; Prob(m;T). Assume 7 is a path with
depth(7) = 0 satisfying the assumption above. Then either 7 terminates or
7T = m;] for some i € I’ and therefore |I'| = 1 and the additivity holds trivially.
Now assume depth(#) = « and « is a successor ordinal (by definition a can not
be a limit ordinal). This implies that 7 is not terminating. Moreover assume
that the property holds for any path of the discussed form with depth smaller
than « and let {m, | 0 € O} be the set of paths that extend 7 in one step.
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By (16) we have that
Viel: & <m. (17)

Moreover, from (16) and (14), using Lemma 5.3 we easily conclude that
Viel',3o€O: m, 2m (18)

and
Yoe O,qicl': my =<, (19)
Let
II'={iel |m 2m}
From (16), (18) and (19), we get that I, # 0,

I' = |_| I and Tol = |_| ;1 for o € O. (20)

oe0 el

Then we get

Prob(#1) = ) Prob(m.l)

0€O

(I.H) Z Z Prob(m;1)

0€O i€l

= Z Prob(m;1).

iel’

where the inductive hypothesis is applicable since by (12) and (13), depth(m,) <«
for all o € O and I C I’ C I. This completes the proof of o-additivity.

To see that Prob is monotonic assume 7T C mo]. Then, by Lemma 5.3, we
have two possibilities. The first one is m; < m and since P(s,a,t) < 1 for all
s,t € S;a € A, from the definition of Prob we get Prob(m;1) < Prob(mal). The
second possibility is w11 = 727, in which case Prob(m1) = Prob(mal). O

Corollary 5.7 The function Prob extends uniquely to a probability measure on
the o-algebra on CPaths(s) generated by Comnes(s) U {0}. We will denote this
measure again by Prob. m|

Remark 5.8 Note that, although paths are more or less just alternating se-
quences of elements of S and A, whether an alternating sequence of states and
actions is a path depends on the distribution P. Therefore the function Prob
itself, but also the o-algebra where it is defined and in fact already the base set
CPaths(s) depends heavily on P.

The measure Prob induces a function on sets of finite paths, which we will
also denote by Prob. We define Prob : P(FPaths(s)) — [0, 1] by

Prob(II) = Prob(II}).
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Note that IIT is measurable since it is a countable union of cones. This notation
is not in conflict with the already existing notation of the measure Prob. In fact,
P(FPaths(s)) N P(CPaths(s)) consists entirely of Prob-measurable sets and on
such sets both definitions coincide. To see this, note that if 7 € FPaths(s) N
CPaths(s), then 77 = {m}. Thus, if II C FPaths(s) and II C CPaths(s), we

have
M= | [{r}=[]n1 =1,

mell well

and this union is at most countable.

It will always be clear from the context whether we mean the measure Prob
or the just defined function Prob on sets of finite paths. Still, there is a word
of caution in order: The function Prob : P(FPaths(s)) — [0,1] is, in general,
not additive. However, looking at the properties of W introduced above (on
page 19), we find that

I=|HI; = Prob(Il)=> Prob(IL).
el el

For this reason, we will overload the notation W and use it also for sets of cones
generated by sets of finite paths, i.e. from now on we will freely write

m = (4 ;1

iel
if and only if it holds that II = |, II; for IT, II; C FPaths(s).

We obtain that Prob(IT) = > _; Prob(al) for every minimal set II.
Moreover, by Lemma 5.4, we always have Prob(IT) = Prob(II]).

We next introduce some particular sets of paths. For s € S, S/, 5" C S with
S'C 8" and W, W' C A* with W C W', by
S K_‘W/ Sl
ﬁs//
we denote the set of all finite paths that start in s, have a trace in W, end up in
S’, without passing a state in S having just performed a trace in the set W',
Formally,

last(r) € S’, trace(m) € W

w r
s—_y S = {7r € FPaths(s) | VE < trace(§) € W'V last(€) ¢ S”}'

iy~

We write Prob(s, W,-W, 5’ =S5") = Prob(s V—VQW/ S’). Since S’ C S” and
“S”

LW . : .
W C W' we always have min(s —_» S’). For notational convenience we will
“SII
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drop redundant arguments whenever possible. Put

S K)“W/ S/ = S K—'W’ 5/7
-5’
S I/_V)_‘S” S’ = s V—V>ﬁW SI, (21)
“S//
S K S’ = S V*VMW Sl,
iy
and, correspondingly,
Prob(s, W,-W',S8") = Prob(s, W,=W’' S5 5",
Prob(s, W, S8’,~8"”) = Prob(s, W,=W, 8" =5"), (22)
Prob(s, W, 5") = Prob(s, W,-W, 5", ~5").
Note that
s X5 = {m € FPaths(s) | trace(r) € W, last(r) € S'}|
and hence
Prob(s,W,S’) = Prob(s % ")

Prob({m € FPaths(s) | trace(r) € W, last(r) € S'})(23)

Also, for a € A,t € S, we have

[ Prob(s—25t) = P(s,a,t), if st
Prob(s, {a}, {t}) = { Prob(0) = 0, otherwise (24)

Let S/, 8", W, W’ be as above. Suppose F' C S. Then we put

w w
F=_yr 8= |s=_y S C FPaths
_‘S// SGF _|S//

In case that for every s € F' the value of Prob(s, W, =W’ 5’ —=5") is the same,
we speak of this value as Prob(F, W, -W’ 5’ =5"). Also, in this context, we
shall freely apply shorthand as in (21) and (22).

The next technical property concerning sets of concatenated paths will be used
at several occasions in the paper. Note that, whenever a concatenation my - 7o
is defined, we have Prob({m; - m2}) = Prob({m }) - Prob({ma}).

Proposition 5.9 LetIT; C FPaths(s), IIo C FPaths and assume that the set of
states S is represented as a disjoint union S = | |;c; Si. Denote Il 5, = {m €
IT; | last(my) € Si}, Moy = {me € Iy | first(me) = t}. Assume that for every
iel

Prob(Ilz4) = Prob(Ily /), t',¢" € S;.
Moreover, assume that 111, Iy and I1; - Iy are minimal. Then, for every choice
of (ti)ier € [l Si, we have

Prob(IT; - Tp) = » _ Prob(Ily s,) - Prob(Tz,,) .
i€l
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Proof Denote by Iz g, = {my € I, | first(me) € S;} and by II; ; = {m € II; |
last(71) = ¢}. Under the assumptions of the proposition, we have

PI‘Ob(Hl . Hg)

Since, by minimality, II; ; X

> Prob(af)

mwelly ¢-Ilo ¢

= Prob( [H =7)

welly -Ila

- Pob(( )

1€l welly g, -1z g,

= Pob(y(H( i )

i€l teS; mwelly 1o

= > > > Prob(al)

i€l teS; welly - Ila

Iy, =10y, - Ilp, via (71, m2) — 71 - T2, We have

= > Prob(m - 1)

(m1,m2) €Il ¢ xTIa ¢

= Z Z Prob(m;T) Prob(ma1)

w1 €l ¢ mo €l ¢

= Z Prob(m1) - Z Prob(maT)

w1 €y ¢ mo€lla ¢

= Prob(Il; ;) - Prob(Ily,).

Since, by assumption, for every ¢ € I the value of Prob(Il3 ;) does not depend

on t € S;, it follows that

PI‘Ob(Hl . HQ)

It is worth to explicitly
|[I] = 1.

Corollary 5.10 Let II; C

- Z Z Prob(Il; ;) - Prob(Ily ;)

i€l teS;

= 3 (Prob(ilyy,) - 3 Prob(ily )

el tes;

= Z Prob(Tly,;,) Prob(Il; g,) .
i€l

O

note the particular case of this proposition when

FPaths(s), Il C FPaths. Let Il = {my € Il |

first(me) = t}. Then, if min(Ily), min(Ily) and min(Il; - Iy), and if for any
t',¢" € first(Ily), Prob(Il ) = Prob(Ilz 4/ ), we have that

PI‘Ob(Hl . HQ) = PI‘Ob(Hl) . PI‘Ob(HZt)

for arbitrary t € first(Ily).
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For further reference, we state the following simple property.

Proposition 5.11 Consider a generative system (S, A, P). Lets € S, W C A*
and S’ C S such that it partitions as S’ = U;c1S;. Then

Prob(s, W, 8") =) _ Prob(s, W, S;, ~5").
el

Proof The result follows from the observation s —vs § = Wicr s w, ~sS;. O

5.3 The concrete weak bisimulation

In this subsection we recall the original definition of weak bisimulation and
branching bisimulation for generative systems proposed by Baier and Hermanns
and we establish some properties of these relations that are essential for the
correspondence result in Section 5.5 below.

Definition 5.12 [7, 6, 8] Let (S, A, P) be a generative system. Let 7 € A be
the invisible action. An equivalence relation R C S x S is a weak bisimulation
on (S, A, P) if and only if (s,t) € R implies that for all actions a € A\ {7} and
for all equivalence classes C € S/R:

Prob(s,7*ar*,C) = Prob(t,7*ar™, C) (25)
and for all C € S/R:
Prob(s,7*,C) = Prob(¢t, 7", C). (26)

Two states s and t are weakly bisimilar if and only if they are related by some
weak bisimulation relation. Notation s ~4 t.

Note the analogy between the transfer conditions (25), (26) and (4). The
definition of branching bisimulation for generative systems is given below.

Definition 5.13 [7, 6, 8] Let (S, A, P) be a generative system. Let T € A be the
inwvisible action. An equivalence relation R C S X S is a branching bisimulation
on (S, A, P) if and only if (s,t) € R implies that for all actions a € A\ {7} and
for all equivalence classes C € S/R:

Prob(s,7*a,C) = Prob(t,7%a, C) (27)
and for all C € S/R:

Prob(s,7*,C) = Prob(¢, 7%, C). (28)
Two states s and t are branching bisimilar if and only if they are related by

some branching bisimulation relation. Notation s %ZT t.
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Baier and Hermanns have shown [6, 8] the following correspondence result
for finite systems, i.e. systems with finite set of states.

Proposition 5.14 Any weak bisimulation on a finite generative system is a
branching bisimulation and vice versa. Hence, branching bisimilarity and weak
bisimilarity coincide on finite systems. m]

Also for arbitrary generative systems branching bisimilarity implies weak
bisimilarity, i.e., the proof of this direction of Proposition 5.14 does not require
finiteness, as shown below.

Proposition 5.15 Any branching bisimulation on a generative system is a weak
bisimulation as well.

Proof The property follows since we have STE;C = Lﬂc/eS/Rsi’Cl )
e Q5aNG given a branching bisimulation R, s € S, a € A and C € S/R. |

Whether a coincidence result as in Proposition 5.14 holds for arbitrary
systems is an open question. The proof for finite systems can not be extended
to arbitrary systems - in particular in Lemma 7.5.4 of [6] we can not obtain
regularity for arbitrary matrices. On the other hand, up to now, an example
showing the difference between weak and branching bisimilarity for arbitrary
systems is not known to us. Therefore, we distinguish between the two notions.

Let R be a weak or branching bisimulation on (S, A, P). Define a relation
— on S/R by
C; — (0, = PrOb(Cl,T*,CQ) =1

and denote by < the equivalence closure of —, i.e., <> = (— U «)*.

A weak or branching bisimulation on (S, A, P) is called complete, if
PI‘Ob(Cl,T*,CQ) =1 <« (C; =04

for all classes Cy,Cy € S/R. Hence, if R is a complete weak or branching
bisimulation then for any two different classes Cy,Cs € S/R it holds that
Prob(Cy,7*,C3) < 1.

A similar result to our next property is also stated in [8, 6] without a proof.
It is essential for the correspondence result below and non-trivial, so we provide
a detailed proof. To this we devote the remaining part of this subsection.

Proposition 5.16 Let (S, A, P) be a generative system and let s =4t or s %gr

t. Then there exists a complete weak or a complete branching bisimulation R,
respectively, relating s and t.

We will gradually build up the proof of Proposition 5.16, by a sequence of
lemmas showing properties of the — relation.
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Lemma 5.17 The relation — corresponding to a weak or branching bisimula-
tion R is reflerive and transitive.

Proof Reflexivity follows since s 0= {e} for any class C, state s € C, and
hence Prob(C, 7*,C) = Prob(s,7*,C) = 1, i.e. C' — C for any class C.
Assume C7; — C5, Cy — (3, and fix a state s € C;. Using Corollary 5.10

and (23), since the set s —— Cy - Co —— C3 is minimal, we get

1 = Prob(s Al C3) - Prob(Cy - C3)
— Prob(s 2= Cy - Oy 7 Cs)
< Prob({m € FPaths(s) | trace(w) € 7%, last(7) € C3})
—  Prob(C; == Cy)
< 1
Hence Prob(C} Al Cs)=1. O

We next investigate in more detail the behavior of the — relation.

Lemma 5.18 Let R be a weak or branching bisimulation on (S, A, P). Let
C1,Cs,C3 be different elements of S/R and assume Cy — Cy. Then either (i)
or (ii) holds.

(i) Vr € Cy == Cs, 30" € CL 25 Oy 7! <,
i.e. all T* paths from Cy to C3 pass Cs.

(ii) C3 — Co

Proof Assume C; — Cy and not (i). Let 7 € Oy T—*>C’3 be a path that does
not pass Co. Let s = first(m). Since Prob(s,7*,C3) = 1, also

Prob(rfU |4 1) =1
TES N Cs
implying that, by additivity and Prob(nT) > 0,
an ) AT£0

— T*
Tes — Co

i.e., there exists T € s — Cj such that 7] N 7] # ) which implies that = < 7
or 7 < w. Note that m # 7 since Cy and Cj5 are different. Also the case T < 7
is excluded by assumption. Now,

mu W #m=|qu i Ao A

ﬁEST—*>C2 TrEsi»C'Q TrEsi»Cb
TTNTTZ0 TN =0
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Hence,

Prob(rfU |4 #1)+Prob( 4 al)=1

Fresi>02 FrEsi>02
TIOTT£0D TTNwT=0

and, on the other hand, since Prob(s,7*,Cs) = 1,

Prob( L-Ij 7T) + Prob( E—J =1

ﬁEST—*>CQ ﬁEST—*>Cz
TTNTT#D TTNTT=0
implying
Prob(rfU |4 #1)=Prob( 4 71
7’r€si>02 ﬁes;*»Cz
FTNTT#0D TTOTT#D

and, since for any 7 € s -, Cy with #7 N 77 # () we have (as before) T < 7, i.e.
7T C «T, we get that

Prob(nf) =Prob(rfU [ #1)=Prob( |4 #1). (29)
‘71'687——*>C2 frexsf—*>02
TINTT#£D TINTT#£D

Consider the set of paths that extend 7 to a path in s -, Cy
H:{fr|7r-fr€sT—*>C'2}.
Recall that last(m) € Cs. Then
IT C last(m) -, Co (30)

and therefore the set IT is minimal and IT C Cs . Cs. For any 7 € II such that

7 -7 =7, we have Prob(#) = gigggi% Therefore
Prob(Il) = Z Prob(7)
#ell

1 _
Prob(r) Z Prob(7)

-
_ T
f€s — Cq

TTNTT#D
(%) 1 _
= ——— .Prob
Prob(a]) L roPl L'ﬂ 1)
7Es — Co
TTNTT#D
(2:9) 1

where (*) holds by the minimality of the set {7 | T € s T—*>C2,7_TT Nzl # 0}.
Hence, by (30),

Prob(Cs —— () > Prob(Il) = 1,
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ie. O3 — Cs. O

The next lemma states that, given that C; — Cj, if a path leaves a class C;
with a trace that does not consist entirely of 7’s, then this path must pass Cs
after performing a 7-trace.

Lemma 5.19 Let R be a weak or branching bisimulation on (S, A, P). Let
Cy,Cy be two elements of S/R and assume Cy — Cy. If fors € C, m € s QS,

then there exists m' € Cy — Cq such that ©’ < .

Proof A similar argument as for Lemma 5.18 applies here as well. Assume

mesT%S. Since Prob(s,7*,C3) = 1, also

Prob(sfU |4 ) =1

— T*
TEs — Co

implying that
i A£0

— 7'*
7Es — Co

i.e., there exists T € s -, Cs such that 77 N 77 # (0 which implies that 7 < 7
(since m =< 7 is excluded by the form of the traces). O

Our next lemma shows a semi-Euclidean property of the — relation.

Lemma 5.20 Let R be a weak or branching bisimulation on (S, A, P) and let
01,02703 S S/R If01 — 02 and Cl — Cg, then 02 — 03 or 03 — CQ.

Proof From Lemma 5.18 we get that either C5 — Cs, or each path from Cj to
C3 with a trace in 7* passes Cy. Hence, in the latter case, we have

Ch T—*>C3 cGy T—*>02 - Oy LC&
thus from Corollary 5.10,
Prob(Cy,7*,C3) < Prob(Cy,7*,C3) - Prob(Cs, 7%, C3)
which leads to 1 < Prob(Cs,7*,C3) i.e. Cy — Cs. O
Next we establish a “sink” property for two — connected classes.

Lemma 5.21 Let R be a weak bisimulation or a branching bisimulation on
(S, A, P). If Cy < Cs, then there exists C' such that C1 — C and Cy — C.
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Proof We prove this by induction on the length of the sequence of — and «
connecting C7 and C5. For a sequence of length 0, we have C7; = C5 and the
statement holds trivially, by reflexivity, with C' = C; = C5. Assume C; < Cy
via a sequence of — and « of length k& + 1. Then there is a C3 such that
C « (3 via a sequence of — and < of length &k, and, Co — C5 or C5 — Cj.
By the inductive hypothesis, there exists C' such that C; — C and C3 — C.
Now, if Cy — (3, then also, by transitivity, Co — C. If, on the other hand,
C3 — (5, then since also C'5 — C, by Lemma 5.20, we get either C — Cjy
implying C7; — Cs which gives the result with C' = Cy, or Cy — C. m]

Lemma 5.21, by a straightforward induction on the number of elements
extends to any finite set of — connected classes.

Lemma 5.22 Let R be a weak or branching bisimulation on (S, A, P). Let
F C S/R be a finite set of classes, with the property that for all C1,Cy € F,
Cy «— Cy. Then there exists a class C € S/R such that for allC' € F, C' — C.

O

The next result shows that we can join — connected classes of a weak or
branching bisimulation and still have a weak or branching bisimulation, respec-
tively. In the sequel by [C]. we denote the < - equivalence class of C.

Lemma 5.23 Let R be a weak or branching bisimulation on (S, A, P). Let
Co € S/R be a fized class such that U = [Cyl # {Co}. Define an equivalence
R on S by
(s,;t)ye R < (s,;tye Rv{s,t}C ] C.
ceU

Then R’ is a weak or branching bisimulation, respectively, and R C R'.

Proof We prove only the case of weak bisimulation. For branching bisimulation
the proof is almost the same, only simpler at several points. We need to prove
that for all a € A, all Ky, Ky € S/R’ and for all s,t € K3

Prob(s,7*at", K3) = Prob(t, 7*a7", K>)
where @ = a if a # 7 and 7 = ¢, the empty word. There are several cases:

Case 1. Ky, K5 € S/R.
The statement holds since R is a weak bisimulation relation.

Case 2. Ky € S/R, Ky = UceuC.
If U = [Cy]. contains a sink C for U, i.e. for all C’ € U we have C' — C,
we can write

T*ar™ T*ar™ T*ar™ T*
s — C=s8— _g,C 4 L—Ij s — _g, 0" C' -

C’e U-{C}
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and since there are at most countably many R-classes C' € U — {C} for which
Trar™

s — _g,C" £ 10, we get

Prob(s,7*ar*,C) = Prob(s,7"ar*,C,—K>)
+ > Prob(s,7"ar", ', ~Ky)
Cc'eU—{C}
= ) Prob(s,m*ar",C’, ~K)
Crev
= Prob(s,7"ar", K3).

The last equation holds since
STE*KQZ + STE)* ﬂKZC/.
C'e U
In the same way we get Prob(¢, 7*ar*, C') = Prob(¢, 7*a7*, K3), thus
Prob(s,7*ar", K2) = Prob(t, 7*a7", Ks).

Note that we only used that U has a sink, and not that it is a whole class
of the equivalence relation «.

On the other hand, if U does not contain an R-class which is a sink (and
this can only happen for infinite U because of Lemma 5.22), we use an ap-
proximation argument. Since there are at most countably many paths outgoing
from s, there exists a countable set Us C U such that Prob(s, 7*a7*, Ucepy.C) =
Prob(s,7*ar*,UccyC). For the same reason, there exists Uy C U, a countable
set with the property Prob(¢, 7*47*, Uccy, C) = Prob(t, 7*ar*, Ucecy C). Taking
U' = U, UU,; we get a countable set, such that both

Prob(s,7*a7*,UccyC) = Prob(s, 7"at™, K3) (31)

and
Prob(t, 7" ar™,UccyC) = Prob(¢, 7" ar™, K3). (32)

Let {C; | i € N} be an enumeration of U’. We will define a chain of subsets of
U in the following way. Put Uy = {C1} and

Upnt1 =Un U {CN+1} U {Cn+1}

where C"*! € S/R is a sink for U,,U{C,,+1}. Such a sink exists by Lemma 5.22,
and it belongs to U, since U is a < equivalence class. We have U,, C U, for
every natural number n, and also

velJu.cu

neN
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Next we denote some sets of finite paths. Let

Iy = {x|first(w) = s, trace(n) € 7"ar",last(n) € Ucer, C'}
Y = {r|first(r) = s, trace(r) € 7*ar*, last(r) € Ucep C}
Hg' = {rx | first(7) = s, trace(w) € 77ar", last(7) € Ugery C}

and similarly we use IT7, TV TTY ". We have
U’ U
nd ¢ oy el
neN

and similar holds for ¢ in place of s. Furthermore, by (31) and (23) we have
Prob(ITY") = Prob(I1¥), hence

Prob(U,enII?) = Prob(s, 7%ar™, K3).

Also, by (32),
Prob(UnenII}) = Prob(¢, 7"a1™, K3).

Now since IT? C II7*+! and I C I we get that

Prob(UnenII?) = lim Prob(II})

n—oo

lim Prob(s, 7*a7*,Ucer, C)

n—oo

—~

= lim Prob(t,7*ar*,Ucey, C)

n— oo

= Prob(UneNH?)

N>

where (%) holds since each U, is a set of R-classes that contains a sink, which
completes the proof of this case.

Case 3. K1 =UcepyC, Ko € S/R

Consider s,t € K. There exist R-classes C7 and Cs such that s € C; and
t € Cy. We have C; « (5. By Lemma 5.21, there also exists an R-class C
such that C7 — C and Cy; — C, and moreover C € U, again since U is a <
equivalence class.

If Ko = K1, then we have

Prob(s, 7*, K3) = Prob(t,7*, Ky) = 1.

If Ky # K, then Ky € S/R and C' «» Ks. So, by Lemma 5.18 any 7* path from
C; to Ky must pass C, for ¢ € {1,2}. Hence,

C K, CO 0 LK, (33)

This implies C; — C = C; — —(K,uc)C since, if a 7* path from C; to C passes
K5 on the way, then either it was not minimal, i.e. it has a prefix that is also a
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7* path from C; to C, or K5 — C which is not possible, since K5 # K;. Note
that in (33) also equality holds. Hence, in this case we have

Prob(s, 7, K3) = Prob(s—>K2)
= Prob(Cy,7",C) - Prob(C, 77, K>)
= Prob(C,7", K3)
= Prob(Cs,7",C) - Prob(C, 7™, K3)
= Prob(t, 7%, K3).

Next we consider paths with traces in 7*a7*. For i € {1,2}, and Ky € S/R’
arbitrary (Ky = K7 is also possible), by Lemma 5.19 we have

O K, C OO 0T K,

Here also equality holds, since no path on the right hand side can have a proper

prefix in C; rler” K. Hence, similar as before,
Prob(s,7*a7*, K3) = Prob(C,7*at™, K3) = Prob(t,7*at™*, K3).
The notation Prob(C, 7*ar*, K») if Ky = K is justified by Case 2. O
We need one more property in order to prove Proposition 5.16.

Lemma 5.24 Let R be a weak ( respectively branching) bisimulation on
(S, A, P). Consider the set

{R"| R’ is a weak (resp. branching) bisimulation on (S, A, P), R’ O R}
ordered by inclusion. Every chain of this ordered set has an upper bound.

Proof We present the proof for weak bisimulation. The branching case is com-
pletely analogous. Let {R; | i € I} be a chain of elements of W, where [ is also
a chain of indices, and R; C R; for i < j. We show that U;cr R; € WW. Note that
if C € S/ Ujer R; is a class, then C' = U;¢;C; where C; € S/R;, and C; C C}
for i < j.

The simplest case is when the chain has a largest element, say R, and
hence also C' = C,,, and the property Prob(s,7*ar*,C) = Prob(t,7*ar*,C) for
(s,t) € UjerR; holds for R,, is a weak bisimulation.

We next treat the case when I is a countable set, ordered as the natural
numbers, I = N, ie., {R; | i« € N} is a countable chain, with R; C R;;1. Let
(s,t) € UjenR;. Then there exists j such that (s,t) € R;, but also (s,t) € R,
for all n > 7. Consider the sets of paths

I, = U{xT|first(n) = s, trace(r) = 7"ar™, last(m) € C}
I U{nT | first(m) = s, trace(m) = 7%a7",last(r) € C;}, i € N
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Similarly, we use II; and ITI{. We have II; = U;ey ITZ and ITY C II5H! for all .
Hence,
Prob(s,7*ar*,C) = Prob(Ily)
Prob(Usen IT})

—~
s)
N

lim Prob(II})

n—oo

= lim Prob(s,7"ar™,C,)

n—oo

—~
o
=

lim Prob(¢, 7*ar™, Cy,)

n—oo

= Prob(t,7%ar",C)

where (a) holds since Prob is a measure, and (b) holds since for n > j we have:
(s,t) € Ry, C), is an R,-class, and R,, is a weak bisimulation.

We further show that if I is a countable chain of sets {C; | ¢ € I}, then
there exists a sub-chain I’ of I with U;c;C; = U;cprC; and I’ is either finite or
isomorphic to w, the order type of the natural numbers. We give the construction
of I'. Given a countable chain I, denote by f : N — I the bijection that exists
since I is countable. Define a sequence of finite sub-chains of I by Iy = {f(0)}

and
L LU} Vel fn+1)>i
[Eu R otherwise.

Put

F:UM

neN

It is straightforward to see that either I’ is a finite chain, or I’ is isomorphic to
w and in any case

Yei=Jc

iel il

Assume now that {R; | i € I'} is an arbitrary chain in W. Let (s,t) € U;cr Ry,
and let C € S/ Uier R;. Then C' = U;;C;. Let

I, = {m|first(n) = s,trace(r) = 7747, last(m) € C = U;e1C;}
II, = {n|first(m) = ¢, trace(nr) = 7"ar",last(n) € C = U;e;C;}

Let in be a function, in : TI,UIl; — I such that last(7) € Cjp(x). Such a function
exists by the definition of Iy and II;. Then the set I’ = in(Il, UIL;) C I is at
most countable since such are Il and II;. Furthermore, let

I, = {r|first(7) = s,trace(mw) = 7*a7*, last(n) € C = U;ep C; }
I, = {n|first(n) = t,trace(r) = 77a7", last(n) € C = U1 C;}

By the construction of I’ we have that II; = II% and II; = IT; and

Prob(s, 7*ar*, C') = Prob(Ils) = Prob(IL}) © Prob(I1}) = Prob(t, 7*ar*, C).
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The equality marked by (x) holds since Prob(Il}) = Prob(s,7*ar*,U;crC;)
and Prob(II}) = Prob(t, 7*a7*,U;c1-C;), and as proved above, in the case of a
finite chain of classes or a countable chain of classes of order type w, we have
Prob(s, 7*at*,U;ep C;) = Prob(t, 7*a7*, U;e C;). m]

Finally, Proposition 5.16 follows from the lemmas 5.17-5.24.
Proof [of Proposition 5.16]The set

{R’| R’ is a weak (resp. branching) bisimulation on (S, A, P), R’ O R}

is nonempty, as it contains R. By Lemma 5.24 we can apply Zorn’s Lemma
and obtain that this set has a maximal element. Let it be R. Assume R is not
complete, i.e. there exists two different classes Cy,Co € S/ R such that C; — Cs.
Then by Lemma 5.23 we can construct a weak or branching bisimulation R DR,
respectively, which contradicts the maximality of R. Hence R is complete i.e. for
any two different C7,C5 € S/R we have Prob(Cy,7*,C5) < 1, and since R C R
it relates s and ¢ which completes the proof. 0O

5.4 Weak coalgebraic bisimulation for generative systems

In this subsection we provide a coalgebraic definition of weak bisimulation for
generative systems, according to the approach from Section 3. For this we need
a *-translation that will transform the generative systems with action set A
into systems with action set A*. Unlike for LTSs, the *-translation employed
will yield coalgebras of a different type.

Let G* be the bifunctor defined by
G*(A,S) =P(A) x P(S) — [0,1]
on objects (A, S) and for morphisms (fi, f2): (A, S) — (B,T) by
G (f1, f2) = (v ve (f7 X f571) | v: P(A) x P(S) — [0,1)).
Consider the Set functor G% corresponding to G*, so that
Ga(8) = (P(4) x P(5) — [0,1])
and for a mapping f: S — T,
Gafw) =ve(idy" x f7)
for v: P(A) x P(S) — [0, 1].

We will use the functor G% to model the #-translation of generative systems.
Therefore we are interested in characterizing equivalence bisimulations for this
functor. In order to apply the results from Section 2 we need the following
proposition. We dedicate Appendix C to its proof.
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Proposition 5.25 The functor G weakly preserves total pullbacks, but it does
not preserve weak pullbacks. O

Let R be an equivalence relation on a set S. A subset M C S is an
R-saturated set if for all s € M the whole equivalence class of s is contained
in M. We denote by Sat(R) the set of all R-saturated sets, Sat(R) C P(S5).
Actually, M is a saturated set if and only if M = U;c;C; for C; € S/R. Hence
there is a one-to-one correspondence between the R-saturated sets and the
elements of P(S/R).

The next lemma contains a transfer condition for equivalence bisimulations
for systems of type G%. Its proof follows the approach discussed in Section 2
(see Lemma 2.11 and Lemma 2.12).

Lemma 5.26 An equivalence relation R on a set S is a bisimulation on the G%
system (S, A, a) if and only if

(s,t) € R = YA’ C A,YM € Sat(R): a(s)(A', M) = a(t)(A’, M).

Proof Consider the pullback P of the cospan

Ghc Ghc
G4S —> G (S/R) <——G%S

where c¢ is the canonical projection of S onto S/R. We have (u,v) € P if and
only if G4 c(u) = Ghe(v), ie. po(idy' xc™1) = vo(id, xc¢1). This is equivalent
to

VA" C A VM C S/R: (A, ¢ (M) = v(A',c (M)

and, since ¢~1 : P(S/R) — Sat(R) is a bijection, we get an equivalent condition
VA" C A,VM € Sat(R): p(A', M) =v(A", M).

Now, using Lemma 2.11, and Proposition 5.25, we obtain the stated character-
ization. O

We proceed by presenting a suitable x-translation for generative systems.
The translation will yield a system of type G%.. Recall that generative systems
are coalgebras of the functor G4 = D(A x Zd) + 1.

Definition 5.27 Let ®9 assign to every generative system (S, A, P), i.e. any
Ga-coalgebra (S, A, a), the Gh.-coalgebra (S, A*, o), where for W C A* and
S’ C S, d(s)(W,S") = Prob(s, W, 5").

In order to show that the translation defined above is indeed a *-translation
we need the following property.

38



Lemma 5.28 Let (S, A, «), i.e. (S, A, P), be a Gy system, R a bisimulation
equivalence on (S, A,a) and (s,t) € R. For k € N,C; € S/R and a; € A,
ie{l,... k}, let s 25Oy - 25 Cy denote the set of paths

s2LC - O ={s s s | si€Chi=1,...,k}.
Then s 25 C -+ 25 Cy is minimal and
Prob(s 25 Cy -+ % Cy) = Prob(t 25 Cp -+ 5 Cy) (34)

Proof The fact that s — C --- —% C}, is minimal is clear, since all paths in
this set have the same length. We use induction on k to establish (34). For
k = 1 the statement is ) .o P(s,a1,5") = > e, P(t,a1,s") and it holds
since R is a bisimulation relation and (s,t) € R. Consider

s 0 - B O =550 S O - O 2 O,
By the inductive hypothesis,
Prob(s % Cy - -+ % Cy) = Prob(t 5 Oy -+ 5 Cy).
By the bisimulation condition for generative systems,
Prob(t' 5 Cjq1) = Prob(t” 5 Cryr)
for all /,¢" € Cy. Hence, by Corollary 5.10, we get

PI‘Ob(S ‘LCl s &Ck . Ck M Ck+1)
= Prob(s 250y - 5 Cy) - Prob(Cr 25 Crpq)
= Prob(t*-C;--- 25 Cy) - Prob(Cy AR Cri1)

A1

= Prob(t25C1 - 25Ok - Cr 25 Cryr).

We can now show that the defined map is a *-translation.
Proposition 5.29 The assignment ®9 from Definition 5.27 is a x-translation.

Proof We need to check that ®9 is injective and preserves and reflects bisimi-
larity. For injectivity, assume ®9((S, 4, a)) = ®I((S, A, B)) = (S, A*,a’). Then,
by the definition of Prob, cf. (24), we get that for any s,t € S and any a € A,
a(s)((a,)) = P(s,a,t) = Prob(s, {a}, {t}) = '(s) ({a}, {t}) = B(s)((a, ).
Reflection of bisimilarity is direct from Lemma 5.26: Assume s ~ t in
DI((S, A, a)) = (S, A*, ') and assume that R is an equivalence bisimulation
on (S, A* ') such that (s,t) € R. By Lemma 5.26, we get that for W C A*
and for M € Sat(R),
o/ (5)(W, M) = o/ (£) (W, M). (35)
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In particular, for all a € A and all C' € S/R, we have

o (s)({a},C) = o/ (t)({a}, O). (36)

By the definition of o’ and Prob we have

o/(s)({a}, C) = Prob(s, {a},0) = Y P(s,a.s") = Y als)({a.s))

s'eC s'eC

and therefore, for all a € A and all C € S/R,

Y als)(as) =Y at)((as) (37)

s'eC s'eC

which means that R is a bisimulation equivalence on the generative system
(S, A, ), i.e. s~ tin the original system.

The proof of preservation of bisimilarity uses Lemma 5.28. Let s ~ ¢ in the
generative system (S, A,a). Then there exists an equivalence bisimulation R
with (s,¢) € R. The relation R induces an equivalence Rs on FPaths(s) defined
by

7
a ak a ay,
(s—>81 —>8p, s—>8) -+ —>su) € Ry

if and only if k = k', a; = a} and (s;,s}) € Rfor i =1,...,k. The classes of R,
are exactly the sets s 200 20 for O € S/R and a; € A.
Assume M € Sat(R) and W C A*. We show that the set s Y, M is sat-

urated with respect to Rs. Namely, let 7 = PRI &sk € siM
and let 7' = s8] .- 250 be a path such that (m,7’) € R,. Then
trace(m) = trace(n’), first(n) = first(n’) and (last(w),last(n’)) € R. Since
M is saturated, last(n") € M for last(r) € M. Furthermore, 7’ does not have a
proper prefix with trace in W and last in M, since this would imply that 7 has

. w w
such a prefix, contradicting m € s — M. Hence, 7’ € s — M.
w . - . .
Therefore, the set s — M is a disjoint union of some R, classes and, since

s Mis minimal, we can write
SKM:LﬂSaL% '1~~'aﬁ>i ik s
iel
and it follows that Prob(s, W, M) = ., Prob(s 2 G- 25 Ci). Sim-

ilarly, t ¥ Misa disjoint union of some R; classes, for R; being an equivalence
on FPaths(t), defined as R, with ¢ instead of s. Using that R is a bisimulation
and (s,t) € R, it is not difficult to see that actually

tKM: +ta—71011a1—k>1 ik; -
iel
By Lemma 5.28, we get that Prob(s,W,M) = Prob(t,W,M), i.e.
o/ (s)(W, M) = o' (t)(W, M) proving that R is a bisimulation on (S, A*, &) and
s ~ t in the x-extension (S, A* o). O
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The *-translation ®9 is also not induced by a natural transformation, as
the systems of Example 4.4 (Section 4) when each transition is considered as
probabilistic with probability 1 show.

Remark 5.30 The x-translation ®9 together with a subset 7 C A determines
a weak-7-bisimulation. For a generative system (S, A, ), the weak-7-system is

Ve o @9((S,4,a)) = ¥-((S, A", a)) = (S, Ar, a”)
where o' (s) : P(A;) x P(S) — [0,1] is given by
'(s) = 15(d/(s)) = G (hr,ids)(c/(s)) = o(s) e (h" x idg").
Hence for X C A; and S’ C S,

o (5)(X,8") = (s)(h;1(X),8) = (s)( U By, S’) = Prob(s, U By, S,

weX weX

where, B,, is the block B, = 7*a17*...7*arm* = h7'({w}), for a word w =
ap...ap € A;.

Therefore, from Lemma 5.26 we get that an equivalence relation R is a
weak-7-bisimulation w.r.t. (P9, 7) on the generative system (S, A, «) if and only
if (s,t) € R implies that for any collection (B;);c; of blocks writing B; as a
shorthand for B,,, for some word w; € A*, and any collection (C;),e of classes
C; € S/R,

Prob(s, | J Bi, | ] C;) = Prob(t,| | Bi, | ] C)). (38)
iel  jeJ iel  jeJ
Sets of the form U;crB; will be called saturated blocks.

5.5 Correspondence results

We are now able to state and prove the correspondence results for generative
systems. The first statement is obvious from the definitions.

Theorem 5.31 Let (S, A, ) be a generative system. Let T € A be the invisible
action and s,t € S any two states. Then s =) t according to Definition 3.3
with respect to the pair (®9,{T}) implies s =4 t according to Definition 5.12.

Proof The statement holds trivially, having in mind Definition 5.12 and Re-
mark 5.30, equation (38), since 7* as well as 7*a7*, for any a € A\ {7} is a
saturated block and also each R-equivalence class is an R saturated set. Hence
R (-} Is at least as strong as ~, ~ C . O

In the opposite direction we have that coalgebraic weak bisimilarity is im-
plied by branching bisimilarity.

Theorem 5.32 Let (S, A, ) be a generative system. Let T € A be the invisible
action and s,t € S any two states. Then s %g’” t according to Definition 5.13
implies s =y t according to Definition 3.3 with respect to the pair (®9,{7}).
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In order to build the proof of the theorem, we present a sequence of lemmas.

Lemma 5.33 Let (S, A, P) be a generative system and let s %gr t. If Ris a
branching bisimulation relating s and t, then for all a,...,ar € A\{7} and for
all classes C € S/R

Prob(s, 7" a1 7" ... 7%ai7",C) = Prob(t, 7%a17" ... 77 ar7, C).

Proof Let R be a branching bisimulation on (S, A, P) such that (s,t) € R. We
prove, by induction on k, that

Prob(s,7*a17*...7%ay,C) = Prob(t, 7"a17" ... 7 ay, C).

For k& € {0,1} the property holds by Definition 5.13. Let B =
T*a17* ... 7*a. Assume Prob(s, B,C) = Prob(t¢,B,C) for all C € S/R and
let B = 7t*a17* ... 7 ax7 arL1. We have

o= | s Lo e
C’eS/R

and, since R is a branching bisimulation, for any class C' € S/R and for any
t',t" € C’ we have Prob(t', 7*ay41,C) = Prob(t", 7*ay+1, C) and we may write
this common value as Prob(C’, 7*ag41,C). Hence, we may apply Corollary 5.10
and we get,

Prob(s,B',C) = Z Prob(s, B,C") - Prob(C’, 7*ag+1,C)
C'eS/R

Z Prob(t, B,C") - Prob(C’, 7*aj+1,C)
C'eS/R
= Prob(t,B’,C).

(LH)

Finally, the property holds since we have, for B = 7*a17*...7%*ap7* and B’ =
Tra T . T ay,
B Bl 72 / T*
s—C= | s—=c.c'c.
C'eS/R

Lemma 5.34 Assume that R is a complete branching bisimulation on a gen-
erative system (S, A,«a), i.e. (S, A, P), with (s,t) € R. For any saturated
set M = U, C; consisting of finitely many classes C; € S/R, for any block
B =rt1*ay7* ... 7 a7 where ay,...,ar € A\ {7} and for any i€ {1,...,n},

Prob(s, B,C;,~M) = Prob(t, B,C;,~M).
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Proof We use induction on n, the number of classes that M con-
tains. For n = 1 the property is simply Lemma 5.33. Assume
Prob(s,B,C;,~M) = Prob(t,B,C;,—~M) for any R-saturated set M be-
ing a union of less than n classes, and each class C; C M. Let M be
an R-saturated set which is a union of n classes, ie. M = U ,C; for
some C; € S/R. We use the following notation, for ¢ € {1,...,n} and
je{l,...;i—1i+1,...,n}:

V; = Prob(s, B, C;) "% Prob(t, B, C;)

GI = Prob(s, B,Cy,~Up_, ,; Ci) & Prob(t, B,Cj,~Uj_, .., Ch).
Therefore, it is justified to put

T/ = Prob(C;, 7*,C;)

HJ = Prob(Cy, 7, Cj, = L_ . ; C).

We define a function w : s 2 § — {1,2}*. The function w will, in a
sense, trace the classes that a path visits with a word in B. Two auxiliary
functions @ and d will be needed for the definition of w. We can explain the
definition of the maps d, @ and w as follows: The map @ takes a path with a
trace in B and encodes the sequence of the classes that are visited by the path,
after a word in B has already been performed. The encoding is 1 if the class
under consideration, C;, has been visited and 2 if any other class from M has
been visited, there is no record of classes outside M. Then the map d removes
adjacent multiple occurrences of 1 and 2 in the word obtained by @, except for
the multiple occurrences at the end of the word. The intuition is that multiple
occurrences at the end of the word indicate that the paths mapped are of a
different nature. For example, w~*({11}) is not a minimal set of paths whereas
w™1({1}) is and we need to distinguish between them. Basically, the map d is
computed by the normal algorithm {112 — 12,221 — 21}. We put w =d o .

More precisely, @ : (s 5 S) — {1,2}* is defined by

1 rEC’i,ﬁgsgS

2 TEM\Ci,ﬂ'gsgS
(- last(m) S r) = € T¢M’W¢S§S

o(m) -1 reCy,mes—==_8

o(r)-2 reM\Chmes2S

() ré Mmes2 S

and if ¢ € s 2 S, then we) =e.
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Let d: {1,2}* — {1,2}* and d’ : {1,2}* — {1,2}* be defined in the following
way, for u,v € {1,2}* and =,y € {1,2}:

[ du)-zx uU=v-x
d(u'x)_{ du)-z  u=v-yy#a
d' (u) U=0v-T
/ _
d(u~x)—{ d’(u)x u:v.%y?ﬁx
and d(e) = d'(g) = e. Tt is important to note that

1) = s By G

Hence, we need to calculate Prob(w™!({1})). By the definition of w we easily
get that

wT({1,21}) =0T ({1} ww T ({21}).

Therefore, we try to express Prob(w ™! ({1, 21})) and Prob(w~1({21})) in terms
of V;, GI,T? and H;. 1t is obvious that Prob(w=!({1,21})) = Prob(s, B, C;) =
V;. A more careful inspection shows that

({21} @ UUJU}@iwin@

Jj=1,j#i

n
B T*
= L—lj S _>ﬁM\C7', Cj — CZ
J=1,5#i

This, together with Proposition 5.9 and Corollary 5.10, implies that

Prob(w™'({21})) Z G? - T7 — Prob(w™({1})) Z H! . T/
=171 J=1,g7#1
and we get

Prob(w™'({1}))
= Prob(w™1({1,21})) — Prob(w1({21}))

- V- Z G? - T7 — Prob(w™({1})) Z H! T/

j=1,j#i j=1,j#1i

Let p = Z?:L#i Hf sz Let T; = max’_q Tf By the completeness of R,
Tij < 1 for all j # ¢ and therefore T; < 1. Furthermore, by Proposition 5.11,

Z H! =Prob(C;, 7, || ¢ <1

Jj=1,j#i jzl,j#i
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Hence,
n
p= Y H T/<T;- > H/<T;<L
j=1,j#i j=1,j#i
We have

Prob(s, B,Ci,=M) =V, — > G -T/ + Prob(s,B,C;,~M) - p
j=1,j#i

and, since p < 1, we obtain

n S
Vi — Zj:l,j;éi Gf ) Tij

1—p '
The expression on the right side does not depend on the starting state s and we
get

Prob(s, B,C;,~M) =

Prob(s, B,C;,—~M) = Prob(t, B, C;,~M)
which completes the proof. O

Next we extend the property captured by Lemma 5.34 to arbitrary R-
saturated sets.

Lemma 5.35 Assume that R is a complete branching bisimulation on a gen-
erative system (S, A, a), i.e. (S, A, P), with (s,t) € R. For any R-saturated set
M, for any block B = t*a17* ... 7*apT* where ay,...,ar € A\ {7} and for any
class C C M

Prob(s, B,C,—~M) = Prob(t, B,C,—~M).

Proof

Let C C M. We will show that we can assume that M contains at most
countably many classes. Let S’ be the set of states that are reachable from s
by a finite path. This set is at most countable since each finite path contributes
to S’ with finitely many states, and there are at most countably many paths
starting in s according to Lemma 5.1. Let M, be the smallest R-saturated set
containing S’NM and C. Since S'NM is at most countable, the set M contains
at most countably many classes and Prob(s, B,C,—~M) = Prob(s, B, C, ~My).
In the same way we get a saturated set M; containing at most countably many
classes such that Prob(¢, B, C,=M) = Prob(¢, B, C, =M,). Then M’ = M, U M,
is a saturated set containing at most countably many classes. Moreover,

Prob(s, B,C,~M') = Prob(s, B,C, - M),
Prob(t, B,C,-M’') = Prob(¢t, B,C,—M).
So, assume M = L;>oC};, and C' = C;,. Note that

B B
s —_y C= ﬂ s —=_y, C
k>ig
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for Uy = Cy U ---UCy, and the intersection is clearly countable. Moreover, let
J={I|ICN\A{0,...,ig — 1}, is finite}. If I € J with m = max([), then

B B
ﬂs —-U; C=s —=U,, C.

i€l

We use the following simple property from measure theory: If 1 is a probability
measure on some set and if A = N,,enA,, is a measurable set which is a countable
intersection of measurable sets, then p(A) = inf{u(NicrA;) | I € N, I finite }.
Hence,

Prob(s, B,C,—~M)

= inf{Prob(Niess 2y, C) | T € J}
= inf{Prob(s, B,C,~Uy,) | I € J,m =max(I)}

23 inf{Prob(t, B, C,~Upp,) | I € J,m = max(I)}

= Prob(t, B,C,—M).
O

By Lemma 5.35, noting that Prob(s,B,M) = Prob(s,B,U;c;C;) =
> ic1 Prob(s, B,C;, = M), we get the following property.

Corollary 5.36 Assume that R is a complete branching bisimulation on a gen-
erative system (S, A, a), i.e. (S, A, P), with (s,t) € R. For any R-saturated
set M it holds that

Prob(s, B, M) = Prob(t, B, M),

for any block B =t a7 ... T apT* with a1,...,a € A\ {7}. O

We proceed to saturated blocks. Again, we first treat saturated blocks con-
taining finitely many blocks and then extend to arbitrary saturated blocks.

Lemma 5.37 Assume that R is a complete branching bisimulation on a gen-
erative system (S, A, a), i.e. (S, A, P), with (s,t) € R. For any R-saturated set
M and for any saturated block W = U, B; containing finitely many blocks, it
holds that

Prob(s, W, M) = Prob(¢, W, M).

Proof Note that
Prob(s, W, M) = Z Prob(s, By, ~W, M)
i=1
since

n
w B;
s> M = Lﬂ s _wM,
=1
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and also

Prob(s, B;, =W, M) = Prob(s, B;, =W, C;,~M)
j: C;CM
since 5 5
S—i>ﬁwM= tI-J S —1&W Cj,
-M
C;CM

as in Proposition 5.11. (Here, C; stands for an equivalence class of R and M
is a disjoint union of classes.) The summation is possible since all but at most
countably many summands are empty. Hence it suffices to prove that

Prob(s, B;, =W, C;,~M) = Prob(t, B;, W, C;,—~M)

for any B;, i € {1,...,n} and any class C; C M. For any i, let w; € A\ {7}",
W; = Q41 ... a4k, be the word such that B, = B,,, = 7%an7" -+ 7%a;;, 7". The
prefix ordering on the set of words {wy, ..., w,} induces an ordering on the set
of blocks {By,...,By,} given by B; < Bj if and only if w; < w;. If B; < By,
by B;j_; we denote the block corresponding to w;_;, the unique word satisfying
w; - wj—; = wj. We are going to prove, by induction on the number of elements
in the set {¢ € {1,...,n} | B; < B,}, that

sHAyc=s3woe| Y W sBwo™Bnc] (39

-M -M
B;<B; C'CM

where C’ C M is a class. First of all we have to make sure that the right hand
side of the equation is well defined, i.e. that the unions are really disjoint and
minimal. By the definition of the involved sets of paths a careful inspection
shows that it is indeed the case. It is rather obvious that the right hand side
is contained in the left hand side since all the paths of the right hand side do
start in s, have a trace in B; and end up in C, without reaching M before
with a prefix whose trace is also in B;. For the opposite inclusion we use an
inductive argument. Assume B; has no (strict) prefixes in {B1,...,By}. Then

B B . .
the equation becomes s —3_jy; C = s -y C and it holds since, by assumption,

-M
no path which has a trace in B; can have a strict prefix with a trace in W
B,
which does not belong to B;. For the inductive step, assume 7 € s = C and

B,
7 ¢ s =-w C. This means that 7 has a prefix that has a trace in U, iz Bi
~M ’

. B B,_
and ends in M. So, 7 € s = ¢’ "5"_); C for some k and for some class
Bi B'—i
C' € M. We want to show that 7 € Wp,p, Wercu s =-w C' - C.
c -w

B,_
We can assume that m € s &LM L, 0 by taking C’ to be the first

class of M that 7 hits after having performed a trace in By. Now By, being a
proper prefix of Bj, has less prefixes than B; and therefore, by the inductive

hypothesis, either
B Bj_k
Tes Sy '7—>kﬁM C
-M
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or there exist r € {1,...,n} and a class C"" C M such that

B

i—k
—

B, By
TeEs Sy C TSy
M

-

-M C»
Bj ., ) .
ie. ™€ s BJHW C" "5y €, which completes the proof of equation (39).

-M
Now, by the same inductive argument, if B; has no proper prefixes, then

Prob(s, B;,~W,C,~M) =  Prob(s, B;,C,~M)
bS5 prob(t, B, C, —M)
= Prob(t, Bj, -W,C,-M).
Assume that Prob(s, B;, =W, C,~M) = Prob(t, B;, =W, C, M) for all B; < B;.
Then by (39), by Proposition 5.9 and by Lemma 5.35, we get
Prob(s, B;j, =W, C,~M)
= Prob(s,B;,C,~M)

— > > Prob(s,B;,~W,C’,~M) - Prob(C’, B;_;,C, ~M)
B;<B; C'CM

D prob(t, By, C,~M)
— > Prob(t, B;,=W,C’,~M) - Prob(C’, B;_;,C, ~M)
B;<B; C'CM
= Prob(¢, Bj,~W,C,—M)
which completes the proof. O

We next extend the last property to arbitrary saturated blocks.
Lemma 5.38 Assume that R is a complete branching bisimulation on a gen-
erative system (S, A, a), i.e. (S, A, P), with (s,t) € R. For any R-saturated set
M and for any saturated block W
Prob(s, W, M) = Prob(t, W, M).
Proof We first consider the countable case. Let W = U,,enB,,. Let

I3 = {x | first(w) = s, last(n) € M, trace(n) € By}

!, = {r | first(m) = t,last(7) € M, trace(r) € B, }.
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Then

Prob(s,W,M) = Prob(s,UnenBn, M)
= Prob((UnenIly) |)
PrOb(UneNH,zl)

= sup{Prob(U;c/II{) | I C N, I finite }

= sup{Prob(s,W;, M) | Wy = U,;erB;, I finite }
= sup{Prob(¢t, Wr, M) | Wi = U;c1B;, I finite }
Prob(t, W, M),

where the equality (*) holds because of the following elementary property from
measure theory: Let p be a measure on some set, and let A = U,enA, be a
measurable set which is a countable union of measurable sets. Then u(A) =
sup{p(UserA;) | I C N, I finite}.

If W = U;e; B; contains arbitrary many blocks then there exists a countable
index set I, C I and a saturated set W, = U, B; such that Prob(s, W, M) =
Prob(s, Ws, M) using Lemma 5.1. For the same reason, there exists a count-
able index set I; C I and a corresponding saturated set W; = Uicr, B;
with Prob(t, W, M) = Prob(t, Wi, M). Hence Prob(s, W, M) = Prob(s, W, U
Wy, M) = Prob(t, W, UW,;, M) = Prob(t, W, M) since W U W; is countable. O

Finally, we can prove Theorem 5.32.

Proof [of Theorem 5.32] Assume s ~" ¢ in a system (S, A,@). Let R be a
branching bisimulation according to Definition 5.13 such that (s,t) € R. By
Proposition 5.16, we can assume that R is complete. By Lemma 5.38, we
get that the transfer condition (38) of Remark 5.30 holds, and hence R is a
coalgebraic weak bisimulation witnessing that s ~;y ¢. O

By Theorem 5.31, Theorem 5.32, and Proposition 5.14 we get the following
corollary which gives us the correspondence result for finite systems.

Corollary 5.39 For finite generative systems, coalgebraic weak bisimilarity
~(ry according to Definition 3.3, with respect to the pair (®9,{T}), coincides
with concrete weak bisimilarity ~4 according to Definition 5.12. O

6 Concluding remarks

In this paper, we have proposed a coalgebraic definition of weak bisimulation
for action-type systems. For its justification we have considered the case of
familiar labelled transition systems and of generative probabilistic systems, and
we have compared our notion to the concrete definitions. In particular, we have
obtained that the coalgebraic definition of weak bisimulation (for a suitably
chosen x-extension) for LTSs coincides with the standard definition of weak
bisimulation.

49



For generative probabilistic systems, the situation is more complex. Most of
the work and technical difficulties of this paper are related to the correspondence
results for generative probabilistic systems. As the standard notion of concrete
weak bisimulation we have adopted the one proposed by Baier and Hermanns.
The same authors also propose a notion of branching bisimulation. Their inves-
tigations and results are limited to finite systems where, as the authors show,
the concrete notions of weak and branching bisimulation coincide. On the other
hand, we provide a coalgebraic definition of weak bisimulation for generative
systems that is not limited to finite systems. The situation is as follows:

concrete branching C coalgebraic weak C concrete weak
As mentioned before, in case of finite systems, we have
concrete branching = concrete weak.

So, in the finite case, that was considered for the concrete notions, all three
notions: coalgebraic weak, concrete weak, and concrete branching coincide. The
situation for the infinite case remains to be unravelled, although it seems that
the coincidence of concrete branching and concrete weak bisimulation will carry
over to a wide class of well-behaved infinite systems.

It is clear that the present approach is not the final word to the weak bisimu-
lation problem for coalgebras. In particular, the main issue here is that one has
to come up with a suitable definition of a *-translation oneself, in order to obtain
a weak bisimulation for a class of coalgebras of a given type. Ideally, a coalge-
braic construction would automatically induce the x-translation. A method for
systematically obtaining -translations is a topic for further research.

Acknowledgement We thank Holger Hermanns for careful reading and useful
comments on previous drafts of this paper.
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A (Weak) Pullbacks and their preservation

A span (S,s1,s2), between X and Y, is a diagram of the form
X <2~ § -5y . Itis jointly injective if the mapping (s1,s2) : S — X x Y,
defined by (s1,s2)(s) = (s1(s), s2(s)) is injective. A relation R C X x Y gives
rise to the jointly injective span (R, w1, m2) between X and Y. Dually, a cospan

(C,c1,c2) is a diagram of the form X Ao o< v,

A pullback, of a cospan (C,cq1,cq), is a span (P, p1,p2) as in the diagram
below satisfying ¢; o p1 = ¢ o p2 and such that for every span (S, s1, s2) with
€1 © 81 = Cg o S there exists a unique mediating map m : S — P satisfying
s1 = p1om and s9 = py om. A weak pullback is a pullback for which the
mediating arrow m need not be unique.

S
31/ vn\”
p1 P D2
PN
X Y
o\
C

A pullback of a cospan (C, ¢1,c2) between sets X and Y is the span arising
from the relation

Q:={{z,y) € X XY [er(2) = e2(y)}-

A weak pullback arising from a relation R C X x Y is also an ordinary pullback,
as one can derive from the joint injectivity of the two projections.

A functor F is said to preserve a (weak) pullback (P,pi,p2) of a cospan
(C,c1,c2), if (FP,Fpy,Fps) is again a (weak) pullback of (FC,Fey, Fea), ie.
if it transforms a (weak) pullback of a cospan into a (weak) pullback of the
transformed cospan. The functor F weakly preserves a pullback of a cospan if
it transforms it into a weak pullback of the transformed cospan. We note the
following two properties taken from [19, 18].

Lemma A.1 Let F be a Set endofunctor. Then
(i) F preserves weak pullbacks if and only if it weakly preserves pullbacks.

(i) F preserves weak pullbacks if and only if for any cospan (C, c1, ca) we have:
Given u and v with Feq(u) = Feo(v) then there exists a w € F{(z,y) |
c1(x) = ca(y)} with Fmy(w) = u and Fra(w) = v. O

We end this section by mentioning a special type of pullback. A (weak)
pullback (P, p1, p2) is said to be total if its canonical morphisms, or legs, p; and
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p2 are epi. In Set a pullback of a cospan (C,cy,c3) where ¢; : X — C and
co 'Y — C are surjective, is a total pullback. Moreover, it is easy to see the
following.

Lemma A.2 In Set, the pullback of a cospan (C,c; : X — C,ca 1Y — C) is
total if and only if the images of X and Y wunder ¢y and ca, respectively, are
equal, i.e. ¢1(X) = cao(Y). O

We say that a functor weakly preserves total pullbacks if it transforms any
total pullback into a weak pullback. According to Lemma A.2, weakly pre-
serving total pullbacks is the same as weakly preserving pullbacks of cospans
(Cye1,c2) with ¢1(X) = c2(Y). Clearly, if a functor preserves weak pullbacks,
then it weakly preserves total pullbacks. We shall see in Appendix C that weak
preservation of total pullbacks is a strictly weaker notion, i.e., there exists a
functor that weakly preserves total pullbacks but does not preserve weak pull-
backs.

B Weak pullback preservation of the distribu-
tion functor

Here we establish the weak pullback preservation of G4, the functor defining
generative probabilistic systems. Actually, we show weak pullback preserva-
tion of the probability distribution functor D. For the probability distribution
functor with finite support weak pullback preservation was proven by De Vink
and Rutten [43], using the graph-theoretic min cut - max flow theorem, and by
Moss [30], using an elementary matrix fill-in property. Following Moss [30] we
show that the needed matrix fill-in property can be used and holds for arbitrary,
infinite, matrices as well.

We start with a simple auxiliary property, that is also needed for the proof
of Lemma 5.1 (Section 5.1). This property also justifies the name “discrete”
probability distributions.

Lemma B.1 Let f: S — Rxq be a function with the property Y g f(s) < oco.
Then the support set of this function, supp(f) = {se€ S| f(s) >0} is at most
countable.

Proof Let s € supp(f). Then f(s) > 0 and therefore there exists a natural
number n such that f(s) > 1/n. So we have, supp(f) C U,en supp,, (i) where

suppy, (1) = {s € supp(p) | f(s)>1/n}. Now, since 3 co.o0(p) f(s) = r<oo, the
set supp,, (f) has less than n/r elements, i.e., it is finite , for all n € N. Therefore
the set supp(f) is at most countable, being a countable union of finite sets. O

Next we present the matrix fill-in property for countable matrices.

55



Lemma B.2 For any two infinite sequences of non-negative real numbers
(xi)ien and (y;)jen such that

2=y <o
i€N JEN
there exist non-negative real numbers (z; ;)i jen such that
Zzi?j = T; and Zzi’j = yj,
JEN i€N
for alli € N and j € N, respectively.

Before we present the rather technical proof, let us discuss the idea, also
used in [30], on a finite example. Let two finite sequences x and y be given by
1 =229 =1,z3 =3 and y; = 1,y = 3,y3 = 0,y4 = 2. Since

T1+T2+T3=Y1+Y2+Ys+Ya

the statement claims that there exists a matrix Z, in this case of order 3 X 4,
such that z; is the sum of the i-th row and y; the sum of the j-th column. The
matrix

1100
Z=(101 0 0
0 1 0 2

satisfies that property. We have constructed it in the following way. For z;
we take the minimum min{x1, y1 }, hence 211 = y1 = 1. Since the first column
sum has already been achieved we fill-in 23 1 = 231 = 0 and the next element to
be filled-in is z1 2. We fill it with the value min{x; — 211,92} =21 — 211 = L.
Since the first row-sum has been achieved, we put z; 3 = 21,4 = 0, and continue
with z9 9. It gets the value min{xs — 221,y2 — 212} = z2 — 22,1 = 1. Hence,
223 = 224 = 0 and the next element to be filled-in is z32. Its value is then
min{as —231,y2 — 21,2 — 222} = Y2 — 21,2 — 22,2 = 1, which completes the second
column. Next is 233 = min{xs—231—232,Ys—21,3— 223} = Yys—21,3— 22,3 = 0.
We fill-in the last element z3 4 with the remaining value 23 — 231 — 232 — 233 =
Y4 — 21,4 — 224 — 234 = 2.

Proof [of Lemma B.2] Define, for n € N, inductively, non-negative numbers
(27;)i,jen and indices iy, jn as follows. We put zﬁj =0 for all 4,5 and iy = 0,

jo = 0. Next, assume, for some n € N, the numbers z;'; and indices iy, j, are
defined. Put

n

§n=2j<j, Zi g and mn =30, 20

We distinguish three cases.

(i) Zi, —&n < Yijn = Tn:

n+l __ n+l _ _n :r - ; : :
Then we define 27", = w;, — & and 2] = 27", if i # 1, or j # Jy.

Additionally, we put ip+1 =i, + 1 and jp41 = jin.
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(i) zi, — & = yj, — 77n+1 1
Then we define z;" o = Tin §n = yj, —nn and 2[00 =20 i 0 #£ iy

or j # jn, and we set 4,41 = i, + 1 and jp41 = Jn +1

(iii) i, —&n > Yin — Nnt
Then we define szrjln =y, — N and z”+1 =z if i # 4, or j # jn. We

%,
also put 9,41 =%, and ju4+1 = jp + 1.

Note that in any case z"+j1 =min{x;, — &n, Y, — M}

We claim that for all n, if ¢ >, or j > j,, then

2 =0, (40)

i,
and, for all i,j € N,

ZH<$1 and Zz”_ (41)

J

This can be verified by induction on n. The base case, n = 0, is clear, as 20 . = 0
for all 4, j. As to the induction step, suppose equations (40) and (41) hold for n.
Note that int1 > in and jp41 > jn. Hence, if ¢ > i, 41 or j > j,411 we have that

n+1 n+1 n .
2 = 0. Further, for i # i,, >, 2" =32, 20'; < x;. Also,
n+1 . n+l n+1 n+1
Z Zin7j - Z Z'ln ] 1n Jn + (Z Zin NI )
J J<in J>in
(@) n n+1
= (DA y) Fa 0
J<in
S ( Z 'Ln ] + xl" Z Z ()
J<in J<Jjn
= Ty, -

n

where the equality (a) holds by the definition of z"+1 for j # j, and the induc-
tive hypothesis, and the inequality holds by the deﬁnltlon of Z”H and &,.

Hence, > . z”jl < x;. Similarly, ”H < y;. This proves validity of the
equations (403 and (41).

We next prove that

szj =x; (42)
J

for any n and ¢ such that ¢ < i,, by induction on n. For n = 0 this is trivial,
since 19 = 0. Suppose Zj zf'; = x;. We need to show E ”+1 = x; for i <iniq.
We distinguish two cases.
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. n+1l _
(1) x4, —&n < yj, — NMn. Note ipt1 =i, + 1. For i <4, we have 2] v =2

so equation (42) also holds for n 4+ 1. For the index ,, we have, as before,

2 n+1 § 2 :
’Ln,j Zzn .J 'Tln zzn J + 0 xln’

J 3<in 3<dn
as required.

(ii) @i, —&n > yj, — Wn. Note ipi1 =i, in this case. So, if ¢ < 7,41 then also

i < i,. Therefore,
DL DEIE
J J
by the induction hypothesis.
Symmetrically, we obtain ), zi'; = yj, for any n and j such that j < jn.

Next, we check

2 20

for all 7,7 by induction on n. For n = 0 this is clear by definition. Consider
n+1

zii . i # i or j # jn, then z”+1 = z[';. So, by induction hypothesis,

z". > 0 in that case. Regarding 2z} we have, by equation (41) and the

i,j
induction hypothesis

n J ?

zln gn - xl" Z]<]n Zin \J Z xl" Z] Zi" J Z
_ — . n o n
Yin =M = Yj, Ei<in 25, 2 Yin > 24, 2
n+1l __ . . .
So, also 2", = min{ x;, — &, yj, —nn } = 0.

Note that, since i, < ipt1, Jn < Jnt1 and iy + jn <int+1+Jnt1, the sequence
(27 j)nen is either constantly 0, which happens if (i,7) & {(in, jn) | n € N} or

n_{O n < ng
j

"‘J"H n>ng

.7

in case (4,J) = (ing,Jno)- In particular, we have established

zi; < zﬁ;'l, n € N. (43)
Now, we define, for i,j € N,
Zi = lim 2.

We show that z; ; satisfy the properties required in the assertion of the lemma.
Since i, + j, — oo if n — oo, either i,, — oo or j, — 0o. Suppose, without loss
of generality, i, — oo for n — oo. Let i € N be fixed and let n € N be such
that ¢ <4, (then also ¢ <i,41). Then for all m >n

i, T Fig



and thus

J
proving the first part of our property.

Now pick any j. By equation (41) we have that
Zz] = anilr;o 2= nler;oZzﬁj <y, (44)
1 K3 K3

where the change of the limit and the sum is allowed since (z];)nen is a non-
negative, monotone sequence. In order to show >,z ; = y;, we reason as
follows. By assumption >, z; = . y;. Hence,

D= =) mg =) ) g
j i i i

Changing the order of summation is allowed, since we are dealing with non-
negative numbers only. For the same reason, this together with (44) implies
that for all j € N, > 2; ; = y;. This completes the proof. O

We next show that such a matrix fill-in property holds for arbitrary (not
necessarily countable) matrices as well.

Lemma B.3 Let I and J be arbitrary sets. For any two sets {z; | i € I} and
{y; | j € J} of non-negative real numbers such that

D wi=) yy <o,
iel jeJd
there exist non-negative real numbers {z; ; | i € I,j € J} such that
Zzi’j =x; and Zz” =y
jed iel
foralliel, jelJ.

Proof We first consider the case when I and J are at most countable. If they
are both countable, then the property holds by Lemma B.2. It may be that one
of them, or both, are finite.

Write I = {i | k e N,k <|I|} and J = {j, | £ € N, £ < |J|} and define =}, y},
for k,¢ € N, by

SC/: Ty k‘<|[| r_ Yse €<|J‘
k 0 otherwise Ye 0 otherwise

By Lemma B.2, we obtain z;, , for k,£ € Nwith } , zk o= T} and ZkeN Zeo =
yy forallk € Nand £ € N, respectlvely If k£ > |I| then ), = 0 and hence zk =0
for any ¢ € N. Similarly, for £>1J, Z,M =0 for any k € N. Thus

Zige = 2k, for k<[], £<|J|
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satisfy the requirements of the lemma.

Now consider arbitrary I and J. Let I' = {i € I |2, >0}, J ={j € J|
y; > 0}. Then I’ and J’ are at most countable, by Lemma B.1. Let 2 = x; for
i€l"and y; =y; for j € J'. Let {z],; |i € I',j € J'} be non-negative numbers
such that for any 7 € I’ and j € J’

r_ r_
E z; ; = 25, and E z ;= Yj-

jeJ’ iel’

Such numbers exist by the first part of the proof. Define, for any i € I,j € J
non-negative real numbers

zioiel,jeld
2= i, /
J 0 otherwise

These numbers fulfill the requirements of the lemma. m]

Lemma B.4 The functor D preserves weak pullbacks.

Proof It suffices to show that a pullback diagram
P
N
X Y
N S
Z

will be transformed to a weak pullback diagram (Lemma A.1). Let P’ be the

D D
pullback of the cospan DX B DZ <—— DY . Since Df o Dm = Dg o Dy,
there exists v : DP — P’ such that the next diagram commutes

DP
Dﬂ'l ’YJ/ D7T2

P/

% A k
DX DY
PPN g
DZ

and it is enough to show that - is surjective in order to get a mediating morphism
from P’ to DP. Let {(u,v) € P’ be given. If u € DP is such that

(Dmi)(p) =u,  (Dmo)(p) =v (45)
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then vy(p) = (u,v) since 71 and 72 are jointly injective i.e. 71 X 7o is injective.
Hence the task is to find a function u € DP which satisfies (45). More explicitely
we have to find p: P — [0, 1] such that for all zg € X,yp € Y

> wlxoy) = u(xo), > o) =viyw)  (46)

yeY:(zo,y)EP z€X:(z,yo)EP

For if ys : P — [0, 1] satisfies (46), then p € DP and (45) holds.
The set P can be written as the union

P=J =) x g7 =D

z€Z

of disjoint rectangles, in fact rectangles with non-overlapping edges. Therefore,
the existence of a map p which satisfies condition (46) is equivalent to the
condition that for all z € Z there exists a function p, : f~1({z}) x g7 ({z}) —
[0,1] such that for all zg € f~1({z}), and all yo € g~ ' ({z}),

> ne(wo,y) = ulxo), Y ne(wyo) =vlgo)  (47)
yeg— ({z}) zef~1({z})
Since (u,v) € P’, we have
Y. ul@) = (D)(u)(z) = (Dg)(v)(z) = v(y).  (48)
zef~1({z}) yeg—t({z})

Thus we may apply the matrix fill-in property, Lemma B.3. O

C Weak pullback preservation of the functor G’

In this part we investigate the weak pullback preservation of the functor G%. We
establish that the functor preserves total weak pullbacks, but does not preserve
weak pullbacks, i.e. we give a proof of Proposition 5.25.

Lemma C.1 The functor G weakly preserves total pullbacks.

Proof Let (P,m,m) be a total pullback in Set of the cospan

X L Z<2—y ieP= {{z,y) | f(z) = g(y)} and 7, 75 surjective. Then
the outer square of the diagram below commutes. Moreover, there exists a medi-
ating morphism 7 : G4 P — P’ from the candidate pullback (G P, G 71, G)m2)

g g
to the pullback (P’, p1,p2) of the cospan G X Al (4 49 guy .
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giﬂfl VW giﬂrz
P/
GaX Gy
Q% ’/gjxg

GaZ

It is enough to prove that + is surjective (Lemma A.1(ii)). So, we show that for
every (u,v) € P’ there exists w € G4 P with Gm(w) = u and Gyma(w) = v
which is equivalent to w o (id;' x 77 ') = w and w o (id;" x 75, ') = v. Fix
(u,vy € P'. We have

(u,v) € P = VA CANZ' C Z:u(A, f~HZ")) =v(A, g7 (Z"). (49)
Let X C X, Y’ CY and assume F;l(X/> = WQI(Y'). Then

(1) fHFX) = X"
Clearly X' C f=1(f(X")). Let x € f~1(f(X")) such that f(z) = f(z') for
some x’ € X'. Since m is surjective, there exists y € Y with (x,y) € P i.e.
f(z) = g(y), and hence also f(z') = g(y), i.e. (z/,y) € P. Thus (z',y) €
77 N (X)) = 7y H(Y') implying y € Y. Hence (z,y) € w5 '(Y') = ny 1(X')
ie. ze X'

(i) g7 (g(Y") =

(i) F(X') = g(¥")
Let z € f(X'), i.e. z = f(2') for ' € X'. Since m; is surjective there
exists y € Y with (z/,y) € P, i.e. f(z') = g(y). Now, (z/,y) € 7] H(X') =
7y H(Y’) and therefore y € Y, ie. z = f(2') = g(y) € g(Y'). We have
shown f(X') C g(Y’). Similarly, g(Y') C f(X').

Y’ similar as (i).

Hence, if 77 H(X’) = w5 1 (Y') for X' C X, Y’ CY we get, for any A’ C A,
;v @) /-1 ’ (49) ;-1 / (144)
w(A, X') = u(A' f (X)) = v(A g7 (f(X)) =

_ (21)
w(A g (g(Y")) = v(AY).
Since m; and 7o are surjective,
71_171()(/) _ 7T1—1(X//) [ X/ _ X//

and
7_(_2—1(}/#) _ 7T2_1(YN) . Y/ _ Y//
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for any X', X" C X and any Y, Y” C Y. So the function w: P(A) x P(P) —
[0,1] given by

w A, X)) Q=m (X))
w(A,Q) =< v(A,Y") Q=m'(Y)
0 otherwise

is well defined. Clearly, w o (id;" x 77') = u and w o (id;" x 75 ') = v. Thus
the functor G% weakly preserves total pullbacks. m]

However, note that although G% weakly preserves total pullbacks, it does
not preserve weak pullbacks, as shown by the next example.

Example C.2 G does not preserve weak pullbacks.

Choose X with |X| > 3. Fix xp € X. Let Z = {1,2,3} and consider the

cospan X R Z <2— X for the maps

10={7 e s@={F L

otherwise otherwise.

The Set pullback of this cospan is then P = {{xq,z¢)}. On the other hand, let
P’ be the pullback of the cospan
Gaf g

GLX G 7z <L grx .

We have (u,v) € P’ if and only if

Guf(u) =Gag),
i.e.
p(A' f7HZN) = v(A g7 (2")
for all A" C A, Z' C Z. Therefore, every pair (u,v) € G4 X x G4 X with the
property
(A 0) = (A {zo}) = p(A, X\ {zo}) = p(A, X) =
=v(A,0) =v(A' {zo}) = v(A', X \ {20}) = v(A', X)

belongs to P’, since 0, {xo}, X \ {zo} and X are the only subsets of X that are
inverse images of subsets of Z under f and g.

Now we consider G4 P = P(A) x P(P) — [0,1]. If u € G5 X is such that
p = (G5m)(x) for some x € G4P, then p = x o (id," x 7, ). Hence, for
A’ C A X' C X we have

/ n o X(A/7®) X ¢X'
MA“”—{MAmem> 70 € X',
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Choose z1 € X, 1 # xp. Since |X

| > 3 we have {zg,z1} & {0,{z0}, X \
{zo}, X}. Define &: P(A) x P(X) — [0,1] by

/ no_ 1 X' = {z07x1}
¢4, X7) = { 0 otherwise.

Then € € G%(X) and the pair (£, £) belongs to P’, since for every A’ C A,
§(A',0) = (A" {mo}) = £(A", X\ {mo}) = £(4, X) = 0.
However, £ can not be written as (G4 m1)(x) for any x € G% P, since

§(A/, {‘TO’ 581}) 7é E(A/a {CC()}),

while, as noted above,

(Gam) ) (A" {zo, 21}) = x (A", {{z0, x0)}) = (Gam) () (A, {z0}).

Hence, for the pair (£,£) € P’ there does not exist an element y € G5 P such
that G5 m1(x) = € and GYma(x) = £, which by Lemma A.1 shows that G% does
not preserve weak pullbacks.
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