Relaxed Ordered Data
Structures: Faster and Better

Andreas Haas
Thomas A. Henzinger
Christoph M. Kirsch
Michael Lippautz
Hannes Payer

Ali Sezgin

Ana Sokolova

2iil:2013

Performance and
scalability

)

throughput

threads/cores

Ana Sokolova 21.1.2013

Semantics of concurrent
data structures

® Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Ana Sokolova 21.1.2013

Semantics of concurrent
data structures

Stack - legal sequence

push (a)push (b)pop (b)

® Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Ana Sokolova 21.1.2013

Semantics of concurrent
data structures

Stack - legal sequence

push (a)push(b)pop (b)

@ Sequential specification - set of legal
sequences

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push(a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 21.1.2013

Semantics of concurrent
data structures

Stack - leaal sequence

push (a)push(b)pop (b)

@ Sequential specification - set of legal

sequences linearizable
wrt seq.spec.

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push(a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 21.1.2013

Semantics of concurrent
data structures

Stack - leaal sequence

push (a)push(b)pop (b)
we
relax
feh?s @ Sequential specification - set of legal

sequences linearizable
wrt seq.spec.

@ Correctness condition - linearizability

Stack - concurrent history
begin-push (a)begin-push (b) end-push(a) end-push (b)begin-pop (b) end-pop (b)

Ana Sokolova 21.1.2013

Relaxations (POPL, Thursday)

@ May trade correctness for performance

@ In a controlled way with quantitative bounds

measure the error from
correct behavior

Ana Sokolova 21.1.2013

Relaxations (POPL, Thursday)

Stack - incorrect behavior

push (a)push (b)push(c)pop(a)pop (b)

® May trade correctness for performance

@ In a controlled way with quantitative bounds

correct in a relaxed stack

measure the error from
e 2-r€|dX€d.. 3-1"€|0X€d correct behavior

Ana Sokolova 21.1.2013

Why relax?

@ It is interesting

@ Provides potential for better performing concurrent
implementations

Stack k-Relaxed stack

= {

Ana Sokolova 21.1.2013

What we have (POPL)

@ Framework
@ Generic examples
@ Concrete relaxation examples

@ Efficient concurrent implementations

Ana Sokolova 21.1.2013

The big picture, briefly

44)

semantics
sequential specification

legal sequences
oo g q o

2. - methods with arguments

Ana Sokolova 21.1.2013

The big picture, briefly

Shia X~

@ semantics)

sequential specification
legal sequences

J

relaxed semantics

2. - methods with arguments

Ana Sokolova 21.1.2013

The big picture, briefly

ﬂ i semantics >
° sequential specification

leqal sequences
g q o

relaxed semantics

%, _ methods with arguments

Ana Sokolova 21.1.2013

Out-of-order relaxation

... IS a natural concrete one

Stack
Each pop pops one of the (k+1)-youngest elements

Ana Sokolova 21.1.2013

Out-of-order relaxation

... IS a natural concrete one

Stack

Each pop pops one of the (k+1)-youngest elements

Queue

Each deq deques one of the (k+l)-youngest elements

Ana Sokolova 21.1.2013

Out-of-order relaxation

... IS a natural concrete one

Stack

Each pop pops one of the (k+1)-youngest elements

k-out-of-order
relaxation

Queue

Each deq deques one of the (k+l)-youngest elements

Ana Sokolova 21.1.2013

Out-of-order relaxation

... IS a natural concrete one

Stack

Each pop pops one of the (k+1)-youngest elements

k-out-of-order
relaxation

Queue

Each deq deques one of the (k+l)-youngest elements

What is the distance?

Ana Sokolova 21.1.2013

Syntactic distances do
not help

Spoiler --- more about it on
Thursday!

Ana Sokolova 21.1.2013

Framework for semantic
distances (POPL)

@ Identify states, build
LTS(S)

® Add incorrect transitions
with transition costs

@ Fix a path cost function

Ana Sokolova ARWI0) K

Framework for semantic
distances (POPL)

@ Identify states, build
LTS(S)

® Add incorrect transitions
with transition costs

@ Fix a path cost function

Ana Sokolova ARWI0) K

Framework for semantic
distances (POPL)

@ Identify states, build

LTS(S)
® Add incorrect transitions i ok
; M way !!!
with transition costs (also for out-of-order)

@ Fix a path cost function

Ana Sokolova ARWI0) K

Out-of-order stack

Sequence of push’s with no matching pop

@ Canonical representative of a state

® Add incorrect transitions with costs

Qo -
Qo @ o

@ Possible path cost functions max, sum,...

Ana Sokolova 21.1.2013

Ana Sokolova

Out-of-order queue

Sequence of enq’s with no matching deq

@ Canonical representative of a state

® Add incorrect transitions with costs

deq(c)

. GBED

@ Possible path cost functions max, sum,...

21.1.2013

How useful are these
relaxations?
Performance?

Ana Sokolova ARWI0) K

Lessons learned

The way from sequential specification

to concurrent implementation is hard

Being relaxed not necessarily means
better performance

Ana Sokolova ARWIO) K

Our current interests

@ Study applicability

@ Learn from efficient implementations

Ana Sokolova 21.1.2013

Our current interests

@ Study applicability

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations

Ana Sokolova

2iil:2013

Our current interests

which applications

S S'l'Udy appllcabnn‘y tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations i

synthesis

lock-free universal
construction ?

Ana Sokolova 21.1.2013

Observed
non-determinism

enq(a)

enatb) deq(x)

enq(c)
enq(a)enq(b)eng(c)deq(x)

Ana Sokolova 21.1.2013

Observed

non-determinism
b ideal, X = a
&
&> &
enq(b) . detiod

enq(c)
enq(a)enq(b)eng(c)deq(x)

Ana Sokolova 21.1.2013

~
- = »
<)I,:;E:l E:‘I R o " ol - -
V 7oL I S ¥
ek e R
ok TR by
s T P
- Rl e S 3
B | 1] Ls : -
.'-' & L L o i T H i
:_. s ’ ;- _,:;:.,-_ :..j': H -:._ g ik £ :
P E P iy o Ly o
R AR fo | KPR A T ¥
G =k < B
i 2 i T
A
™ g4 B O, |
;:'i_ -i.:_ = .." X .
it 3 + - A
e RS (o
" 5 '.*._.l' T
o
a
F, . SRS ST
TR i rn =8
r 'I L e g ol

enq(a)

enq(c)

enqg(a)enqg(b)enq(c)deq(x)

Ana Sokolova 21.1.2013

Observed

non- deferml;,-i“"lsm

enq(a)

enq(b)

enq(c)

enqg(a)enqg(b)enq(c)deq(x)

Ana Sokolova 21.1.2013

Observed
non-determinism

Two reasons

@ Relaxation (the more relaxed, the more...)

@ Linearizability (the slower, the more...)

Ana Sokolova 21.1.2013

Observed
non-determinism

Two reasons

@ Relaxation (the more relaxed, the more...)

@ Linearizability (the slower, the more...)

Ana Sokolova 21.1.2013

Observed
non-determinism

Two reasons

@ Relaxation (the more relaxed, the more...)

@ Linearizability (the slower, the more...)

What is it really?
Measure for
performance?

Ana Sokolova 21.1.2013

Relaxation vs. performance

Performance index
(of a concurrent history)
= number of overlaps

RN

R(n) = min k s.t. a linearization of a concurrent history with input w
and performance index n is in Sk

P NN

P(k) = min n s.t. a linearization of a concurrent history with input w
and performance index n is in Sk

Ana Sokolova 21.1.2013

R vs. P graph

{0 R 1 e Npu P, K) | K & 3

K
A

)

Ana Sokolova 21.1.2013

R vs. P graph

{0 RO 1 n e NPU P, K) | K <)

A
)

W s relaxation

. § *

Ana Sokolova 21.1.2013

R vs. P graph

{in R 1 e Npu P, K) | K & N3

o ; . w can be generated by
w s relaxation . : ;
* an implementation with
relaxation mi(%) and
* » performance index
A s T02(%)
.8 o

Ana Sokolova 21.1.2013

R vs. P graph

One of P or R is sufficient for the P vs. R graph

* R(n) = min {k | P(k) < n}

o P(k) = min {n | R(n) < k}

Ana Sokolova 21.1.2013

Back to measuring
observed
non-determinism

Ana Sokolova ARWI0) K

Implementations around...

@ SCAL queues [KPRS11]

® Quasi linearizability (SQ, RDQ) theory and
implementations [AKY 10]

@ Some straightforward implementations [HKPSS'12]
@ Efficient lock-free segment queue k-FIFO [KLP12]
@ Efficient lock-free segment stack k-Stack [POPL]
@ Efficient distributed queues DQ (relatives to SCAL)

Ana Sokolova 21.1.2013

Back to measuring observed

non-determinism

enq(a)

enq(b) . deq(x)

enq(c)

enq(b)enqg(c)eng(a)deq(b)
enqg(a)enq(b)enqg(c)deq(b)

Ana Sokolova

2iil:2013

Back to measuring observed

non-determinism
enq(a)
@
@ @
enq(b) . denit

enq(c)
one possibility - strict
enq(b)enqg(c)eng(a)deq(b)
enqg(a)enq(b)enqg(c)deq(b)

Ana Sokolova 21.1.2013

Back to measuring observed
non-determinism

enq(a) actual-time out-of-order
(relaxation)
zero-time out-of-order
. (linearizability and relaxation)

enq(b) . deq(x)

enq(c)

one possibility - strict

enq(b)enq(c)enqg(a)deq(b)
enqg(a)enq(b)enqg(c)deq(b)

Ana Sokolova 21.1.2013

The experiments look good

@ Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

® Performance index is a reasonable indicator of
performance

@ All show comparable observed non-determinism
(also strict implementations)

Ana Sokolova 21.1.2013

The experiments look good

@ Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

® Performance index is a reasonable indicator of
performance

@ All show comparable observed non-determinism
(also strict implementations)

Any real applications that use concurrent queues / stacks ?

Ana Sokolova 21.1.2013

The experiments look good

@ Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

® Performance index is
performance

@ All show comparable observed non-determinism

(also strict implementations)

Any real applications that use concurrent queues / stacks ?

Ana Sokolova 21.1.2013

