Relaxed Ordered Data
Structures: Faster and Better

Andreas Haas
Thomas A. Henzinger
Christoph M. Kirsch
Michael Lippautz
Hannes Payer

Ali Sezgin

Ana Sokolova

2iil:2013



Performance and
scalability
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Semantics of concurrent
data structures

® Sequential specification - set of legal
sequences

@ Correctness condition - linearizability
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Relaxations (POPL, Thursday)

@ May trade correctness for performance

@ In a controlled way with quantitative bounds

measure the error from
correct behavior
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Relaxations (POPL, Thursday)

Stack - incorrect behavior

push (a)push (b)push(c)pop(a)pop (b)

® May trade correctness for performance

@ In a controlled way with quantitative bounds

correct in a relaxed stack

measure the error from
e 2-r€|dX€d.. 3-1"€|0X€d correct behavior
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Why relax?

@ It is interesting

@ Provides potential for better performing concurrent
implementations

Stack k-Relaxed stack

= {
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What we have (POPL)

@ Framework
@ Generic examples
@ Concrete relaxation examples

@ Efficient concurrent implementations
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The big picture, briefly

44 )

semantics
sequential specification

legal sequences
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2. - methods with arguments
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The big picture, briefly
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Out-of-order relaxation

... IS a natural concrete one

Stack
Each pop pops one of the (k+1)-youngest elements
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Out-of-order relaxation

... IS a natural concrete one

Stack

Each pop pops one of the (k+1)-youngest elements

k-out-of-order
relaxation

Queue

Each deq deques one of the (k+l)-youngest elements

What is the distance?
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Syntactic distances do
not help

Spoiler --- more about it on
Thursday!
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Framework for semantic
distances (POPL)

@ Identify states, build
LTS(S)

® Add incorrect transitions
with transition costs

@ Fix a path cost function
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Framework for semantic
distances (POPL)

@ Identify states, build

LTS(S)
® Add incorrect transitions i ok
; M way !!!
with transition costs (also for out-of-order)

@ Fix a path cost function
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Out-of-order stack

Sequence of push’s with no matching pop

@ Canonical representative of a state

® Add incorrect transitions with costs

Qo -
Qo @ o

@ Possible path cost functions max, sum,...
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Ana Sokolova

Out-of-order queue

Sequence of enq’s with no matching deq

@ Canonical representative of a state

® Add incorrect transitions with costs

deq(c)

. GBED

@ Possible path cost functions max, sum,...
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How useful are these
relaxations?
Performance?
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Lessons learned

The way from sequential specification

to concurrent implementation is hard

Being relaxed not necessarily means
better performance
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Our current interests

@ Study applicability

@ Learn from efficient implementations

Ana Sokolova 21.1.2013



Our current interests

@ Study applicability

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations

Ana Sokolova

2iil:2013



Our current interests

which applications

S S'l'Udy appllcabnn‘y tolerate relaxation ?

maybe there is
nothing to tolerate!

@ Learn from efficient implementations i

synthesis

lock-free universal
construction ?
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Observed
non-determinism

enq(a)

enatb) deq(x)

enq(c)
enq(a)enq(b)eng(c)deq(x)
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Observed

non-determinism
b ideal, X = a
&
&> &
enq(b) . detiod

enq(c)
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Observed
non-determinism

Two reasons

@ Relaxation (the more relaxed, the more...)

@ Linearizability (the slower, the more...)
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Observed
non-determinism

Two reasons

@ Relaxation (the more relaxed, the more...)

@ Linearizability (the slower, the more...)

What is it really?
Measure for
performance?
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Relaxation vs. performance

Performance index
(of a concurrent history)
= number of overlaps

RN

R(n) = min k s.t. a linearization of a concurrent history with input w
and performance index n is in Sk

P NN

P(k) = min n s.t. a linearization of a concurrent history with input w
and performance index n is in Sk
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R vs. P graph
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R vs. P graph
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R vs. P graph

{in R 1 e Npu P, K) | K & N3

o ; . w can be generated by
w s relaxation . : ;
* an implementation with
relaxation mi(%) and
* » performance index
A s T02(% )
.8 o
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R vs. P graph

One of P or R is sufficient for the P vs. R graph

* R(n) = min {k | P(k) < n}

o P(k) = min {n | R(n) < k}
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Back to measuring
observed
non-determinism
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Implementations around...

@ SCAL queues [KPRS11]

® Quasi linearizability (SQ, RDQ) theory and
implementations [AKY 10]

@ Some straightforward implementations [HKPSS'12]
@ Efficient lock-free segment queue k-FIFO [KLP12]
@ Efficient lock-free segment stack k-Stack [POPL]
@ Efficient distributed queues DQ (relatives to SCAL)
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Back to measuring observed

non-determinism

enq(a)
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Back to measuring observed

non-determinism
enq(a)
@
@ @
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enq(c)
one possibility - strict
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Back to measuring observed
non-determinism

enq(a) actual-time out-of-order
(relaxation)
zero-time out-of-order
. (linearizability and relaxation)

enq(b) . deq(x)

enq(c)

one possibility - strict

enq(b)enq(c)enqg(a)deq(b)
enqg(a)enq(b)enqg(c)deq(b)

Ana Sokolova 21.1.2013



The experiments look good

@ Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

® Performance index is a reasonable indicator of
performance

@ All show comparable observed non-determinism
(also strict implementations)
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