
Relaxed Ordered Data
Structures: Faster and Better

Andreas Haas University of Salzburg
Thomas A. Henzinger IST Austria
Christoph M. Kirsch University of Salzburg
Michael Lippautz University of Salzburg
Hannes Payer University of Salzburg
Ali Sezgin IST Austria
Ana Sokolova University of Salzburg

Concurrency Yak 21.1.2013

:-(

:-)))

Performance and
scalability

Ana Sokolova University of Salzburg

threads/cores

throughput
:-)

:-(

Concurrency Yak 21.1.2013

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Concurrency Yak 21.1.2013

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg

linearizable
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

Concurrency Yak 21.1.2013

Semantics of concurrent
data structures

Sequential specification - set of legal
sequences

Correctness condition - linearizability

Stack - legal sequence
push(a)push(b)pop(b)

Ana Sokolova University of Salzburg

linearizable
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

we
relax
this

Concurrency Yak 21.1.2013

Relaxations (POPL, Thursday)

May trade correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Relaxations (POPL, Thursday)

May trade correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Stack - incorrect behavior
push(a)push(b)push(c)pop(a)pop(b)

correct in a relaxed stack
... 2-relaxed.. 3-relaxed

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Why relax?
It is interesting

Provides potential for better performing concurrent
implementations

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack
top

a

b

c

thread 1
thread 2

thread n
...{ }k

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

What we have (POPL)

Framework

Generic examples

Concrete relaxation examples

Efficient concurrent implementations

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

The big picture, briefly

S ⊆ Σ*

Σ - methods with arguments

semantics
 sequential specification

legal sequences

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

The big picture, briefly

S ⊆ Σ*

semantics
 sequential specification

legal sequences

relaxed semantics

Sk ⊆ Σ*

Σ - methods with arguments

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

The big picture, briefly

S ⊆ Σ*

semantics
 sequential specification

legal sequences

Sk ⊆ Σ*

Σ - methods with arguments

Ana Sokolova University of Salzburg

relaxed semantics

.
. k

distance!

Concurrency Yak 21.1.2013

Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Queue

Each deq deques one of the (k+1)-youngest elements

Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Queue

Each deq deques one of the (k+1)-youngest elements

k-out-of-order
relaxation

Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Queue

Each deq deques one of the (k+1)-youngest elements

k-out-of-order
relaxation

What is the distance?

Syntactic distances do
not help

push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

is a 1-out-of-order stack sequence

top

a

top

a

b

top

a

b

its permutation distance is min(n,m)

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Spoiler --- more about it on
Thursday!

Framework for semantic
distances (POPL)

Ana Sokolova University of Salzburg

Identify states, build
LTS(S)

Add incorrect transitions
with transition costs

Fix a path cost function

Concurrency Yak 21.1.2013

Framework for semantic
distances (POPL)

Ana Sokolova University of Salzburg

Identify states, build
LTS(S)

Add incorrect transitions
with transition costs

Fix a path cost function

Concurrency Yak 21.1.2013

Framework for semantic
distances (POPL)

Ana Sokolova University of Salzburg

Identify states, build
LTS(S)

Add incorrect transitions
with transition costs

Fix a path cost function

Concurrency Yak 21.1.2013

doable in a generic
way !!!

(also for out-of-order)

Out-of-order stack

Canonical representative of a state

 Add incorrect transitions with costs

 Possible path cost functions max, sum,...

Sequence of push’s with no matching pop

top

a

b

c pop(a)
top

b

c2

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Out-of-order queue

Canonical representative of a state

 Add incorrect transitions with costs

 Possible path cost functions max, sum,...

Sequence of enq’s with no matching deq

Ana Sokolova University of Salzburg

deq(c)

2

head

a b c

tail head

a b

tail

Concurrency Yak 21.1.2013

How useful are these
relaxations?

Performance?

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Lessons learned

Ana Sokolova University of Salzburg

Well-performing implementations of
relaxed specifications do exist!

The way from sequential specification
to concurrent implementation is hard

Being relaxed not necessarily means
better performance

Concurrency Yak 21.1.2013

Our current interests

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Our current interests

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

Concurrency Yak 21.1.2013

Our current interests

Study applicability

Learn from efficient implementations

Ana Sokolova University of Salzburg

towards
synthesis

lock-free universal
construction ?

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!

Concurrency Yak 21.1.2013

Observed
non-determinism

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Input sequence: enq(a)enq(b)enq(c)deq(x)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Observed
non-determinism

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Input sequence: enq(a)enq(b)enq(c)deq(x)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

ideal, x = a

Observed
non-determinism

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Input sequence: enq(a)enq(b)enq(c)deq(x)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

ideal, x = a

slow and strict
x ∊ {a,b,c}

Observed
non-determinism

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Input sequence: enq(a)enq(b)enq(c)deq(x)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

ideal, x = a
fast and 1-relaxed

x ∊ {a,b} slow and strict
x ∊ {a,b,c}

Observed
non-determinism

Relaxation (the more relaxed, the more...)

Linearizability (the slower, the more...)

Two reasons

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Observed
non-determinism

Relaxation (the more relaxed, the more...)

Linearizability (the slower, the more...)

Two reasons

Connection between relaxation and performance

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Observed
non-determinism

Relaxation (the more relaxed, the more...)

Linearizability (the slower, the more...)

Two reasons

Connection between relaxation and performance

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

What is it really?
Measure for
performance?

Relaxation vs. performance
Fixed input sequence w

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Performance index
(of a concurrent history)

= number of overlaps

R: N ⟶N

R(n) = min k s.t. a linearization of a concurrent history with input w
 and performance index n is in Sk

P: N ⟶N
P(k) = min n s.t. a linearization of a concurrent history with input w
 and performance index n is in Sk

k

n

R vs. P graph

Fixed input sequence w

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

{(n, R(n) | n ∊ N} ⋃ {(P(k), k) | k ∊ N}

k

n

R vs. P graph

Fixed input sequence w

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

{(n, R(n) | n ∊ N} ⋃ {(P(k), k) | k ∊ N}

w ’s relaxation

k

n

R vs. P graph

Fixed input sequence w

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

{(n, R(n) | n ∊ N} ⋃ {(P(k), k) | k ∊ N}
w can be generated by
an implementation with
relaxation π1() and
performance index

π2()

w ’s relaxation

k

n

R vs. P graph
Fixed input sequence w

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

One of P or R is sufficient for the P vs. R graph

R(n) = min {k | P(k) ≤ n}

P(k) = min {n | R(n) ≤ k}

Back to measuring
observed

non-determinism

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Implementations around...

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

SCAL queues [KPRS’11]

Quasi linearizability (SQ, RDQ) theory and
implementations [AKY’10]

Some straightforward implementations [HKPSS’12]

Efficient lock-free segment queue k-FIFO [KLP’12]

Efficient lock-free segment stack k-Stack [POPL]

Efficient distributed queues DQ (relatives to SCAL)

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Actual-time sequence: enq(b)enq(c)enq(a)deq(b)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Back to measuring observed
non-determinism

Zero-time sequence: enq(a)enq(b)enq(c)deq(b)

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Actual-time sequence: enq(b)enq(c)enq(a)deq(b)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Back to measuring observed
non-determinism

Zero-time sequence: enq(a)enq(b)enq(c)deq(b)

one possibility - strict

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Actual-time sequence: enq(b)enq(c)enq(a)deq(b)

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Back to measuring observed
non-determinism

Zero-time sequence: enq(a)enq(b)enq(c)deq(b)

one possibility - strict

actual-time out-of-order
(relaxation)

zero-time out-of-order
(linearizability and relaxation)

The experiments look good

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

Performance index is a reasonable indicator of
performance

All show comparable observed non-determinism
(also strict implementations)

The experiments look good

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

Performance index is a reasonable indicator of
performance

All show comparable observed non-determinism
(also strict implementations)

Any real applications that use concurrent queues / stacks ?

The experiments look good

Concurrency Yak 21.1.2013Ana Sokolova University of Salzburg

Relaxed efficient implementations perform/scale well
(also better than pools)
DQs are the best

Performance index is a reasonable indicator of
performance

All show comparable observed non-determinism
(also strict implementations)

Any real applications that use concurrent queues / stacks ?

THANK YOU

