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linearizable 
wrt seq.spec.

Stack - concurrent history
begin-push(a)begin-push(b) end-push(a) end-push(b)begin-pop(b)end-pop(b)

we 
relax 
this
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Relaxations (POPL, Thursday)

May trade correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior
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Relaxations (POPL, Thursday)

May trade correctness for performance

In a controlled way with quantitative bounds

measure the error from
correct behavior

Stack - incorrect behavior
push(a)push(b)push(c)pop(a)pop(b)

correct in a relaxed stack
... 2-relaxed.. 3-relaxed
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Why relax?
It is interesting

Provides potential for better performing concurrent 
implementations

...

top

a

b

c

thread 1
thread 2

thread n

Stack k-Relaxed stack
top

a

b

c

thread 1
thread 2

thread n
...{ }k
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What we have (POPL)

Framework

Generic examples 

Concrete relaxation examples

Efficient concurrent implementations
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The big picture, briefly

S ⊆ Σ*

Σ - methods with arguments

semantics
 sequential specification

legal sequences
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relaxed semantics

.
. k

distance!
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Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one
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Out-of-order relaxation

Stack

Each pop pops one of the (k+1)-youngest elements

... is a natural concrete one

Ana Sokolova University of Salzburg Concurrency Yak 21.1.2013

Queue

Each deq deques one of the (k+1)-youngest elements

k-out-of-order
relaxation

What is the distance?



Syntactic distances do 
not help

push(a)[push(i)pop(i)]npush(b)[push(j)pop(j)]mpop(a)

is a 1-out-of-order stack sequence 

top

a ......

top

a

b

top

a

b

its permutation distance is min(n,m) 
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Spoiler --- more about it on 
Thursday!



Framework for semantic 
distances (POPL)
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Identify states, build 
LTS(S)

Add incorrect transitions 
with transition costs

Fix a path cost function
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Framework for semantic 
distances (POPL)
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Identify states, build 
LTS(S)

Add incorrect transitions 
with transition costs

Fix a path cost function
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doable in a generic 
way !!! 

(also for out-of-order)



Out-of-order stack

Canonical representative of a state 

 Add incorrect transitions with costs

 Possible path cost functions max, sum,... 

Sequence of push’s with no matching pop 

top

a

b

c pop(a)
top

b

c2
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Out-of-order queue

Canonical representative of a state 

 Add incorrect transitions with costs

 Possible path cost functions max, sum,... 

Sequence of enq’s with no matching deq 

Ana Sokolova University of Salzburg

deq(c)

2

head

a b c

tail head

a b

tail
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How useful are these 
relaxations?

Performance?
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Lessons learned

Ana Sokolova University of Salzburg

Well-performing implementations of 
relaxed specifications do exist!

The way from sequential specification 
to concurrent implementation is hard

Being relaxed not necessarily means 
better performance
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Our current interests

Study applicability

 

Learn from efficient implementations
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towards
synthesis

lock-free universal 
construction ?

which applications
tolerate relaxation ?

maybe there is
nothing to tolerate!
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Observed 
non-determinism

t1

t2

t3

enq(a)

enq(b)

enq(c)

deq(x)

Input sequence: enq(a)enq(b)enq(c)deq(x)
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ideal, x = a
fast and 1-relaxed

x ∊ {a,b} slow and strict
x ∊ {a,b,c}
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Relaxation     (the more relaxed, the more...)

Linearizability (the slower, the more...)

Two reasons
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What is it really?
Measure for 
performance?



Relaxation vs. performance
Fixed input sequence w
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Performance index 
(of a concurrent history)

= number of overlaps

R: N ⟶N

R(n) = min k s.t. a linearization of a concurrent history with input w
                   and performance index n is in Sk

P: N ⟶N
P(k) = min n s.t. a linearization of a concurrent history with input w
                   and performance index n is in Sk



k

n

R vs. P graph

Fixed input sequence w
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{(n, R(n) | n ∊ N} ⋃ {(P(k), k) | k ∊ N}
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{(n, R(n) | n ∊ N} ⋃ {(P(k), k) | k ∊ N}
w can be generated by 
an implementation with 
relaxation π1(  ) and 
performance index

π2(  )

w ’s relaxation



k

n

R vs. P graph
Fixed input sequence w
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One of P or R is sufficient for the P vs. R graph

R(n) = min {k | P(k) ≤ n}

P(k) = min {n | R(n) ≤ k}



Back to measuring 
observed

non-determinism
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Implementations around...
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SCAL queues [KPRS’11]

Quasi linearizability (SQ, RDQ) theory and 
implementations [AKY’10]

Some straightforward implementations [HKPSS’12]

Efficient lock-free segment queue k-FIFO [KLP’12] 

Efficient lock-free segment stack k-Stack [POPL]

Efficient distributed queues DQ (relatives to SCAL)
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Back to measuring observed 
non-determinism

Zero-time sequence:    enq(a)enq(b)enq(c)deq(b)

one possibility - strict

actual-time out-of-order
(relaxation)

zero-time out-of-order
(linearizability and relaxation)
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(also strict implementations) 
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THANK YOU 


