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Abstract

We propose a coalgebraic definition of weak bisimulation for a class of coalgebras
obtained from bifunctors in Set. Weak bisimilarity for a system is obtained as strong
bisimilarity of a transformed system. The transformation consists of two steps:
First, the behaviour on actions is expanded to behaviour on finite words. Second,
the behaviour on finite words is taken modulo the hiding of invisible actions, yielding
behaviour on equivalence classes of words closed under silent steps. The coalgebraic
definition is justified by two correspondence results, one for the classical notion of
weak bisimulation of Milner and another for the notion of weak bisimulation for
generative probabilistic transition systems as advocated by Baier and Hermanns.
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1 Introduction

In this paper we present a definition of weak bisimulation for action type
systems. A typical example of action type system is the familiar labelled
transition system (LTS) (see, e.g., [Plo81,Mil90]), but also many types of
probabilistic systems (see, e.g., [LS91,51.94,GSS95,BHI7,Seg95]) fall into this
class. In order to emphasize the role of the actions we view coalgebras as
arising from bi-functors over Set.

In verification of properties of a system strong bisimilarity is often too
strong an equivalence. Weak bisimilarity [Mil90] is a looser equivalence on
systems that abstracts away from invisible steps. It is known that weak bisim-
ilarity for a labelled transition system & amounts to strong bisimilarity on the
‘double-arrowed’ system S’ induced by §. We exploit this idea for giving a
general coalgebraic definition of weak bisimilation. Our approach, given a
system &S, consists of two stages.

(i) First, we define a ‘x-extension’, &’ of S which is a system with the same
state set as S, but with action set A*, the set of all words over A. The
system S’ captures the behaviour of S on finite traces.

(ii) Next, we fix a set of invisible actions 7 C A and transform S’ into a
‘weak-T-extension’ 8” which is insensitive to 7 steps. Then we define
weak bisimilarity on S as strong bisimilarity on the weak-7-extension S”.

In the context of concrete probabilistic transition systems, there have been
several proposals for a notion of weak bisimulation, often relying on the par-
ticular model under consideration. Segala [SL94,Seg95] proposed four no-
tions of weak relations for his model of simple probabilistic automata. Baier
and Hermanns [BH97,Bai98 BH99] have given a rather appealing definition
of weak bisimulation for generative probabilistic systems. Philippou, Lee and
Sokolsky [PLS00] studied weak bisimulation in the setting of the alternating
model [Han91]. This work was extended to infinite systems by Desharnais,
Gupta, Jagadeesan and Panangaden [DGJP02b]. The same authors also pro-
vided a metric analogue of weak bisimulation [DGJP02a].

Here, we work in a coalgebraic framework and use the general coalgebraic
apparatus of bisimulation [AM89,JR96,Rut00]. For weak bisimulation in this
setting, there has been early work by Rutten on weak bisimulation for while
programs [Rut99] succeeded by a syntactic approach to weak bisimulation by
Rothe [Rot02]. In the latter paper, weak bisimulation for a particular class of
coalgebras was obtained by transforming a coalgebra into an LTS and making
use of Milner’s weak bisimulation there. This approach also enabled a defi-
nition of weak homomorphisms and weak simulation relations. Later, in the
work of Rothe and Masulovié¢ [RM02] a complex, but interesting coalgebraic
theory was developed leading to weak bisimulation for functors that weakly
preserve pullbacks. They also consider a chosen ‘observer’ and hidden parts
of a functor. However, in the case of probabilistic and similar systems, it
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does not lead to intuitive results and can not be related to the concrete no-
tions of weak bisimulation mentioned above. The so-called skip relations used
in [RMO02] seem to be the major obstacle as it remains unclear how quantita-
tive information can be incorporated.

The two-phase approach of defining weak bisimilarity is, amplifying Mil-
ner’s original idea, rather natural. In the category theoretical setting it has
been suggested in the context of open map treatment of weak bisimulation on
presheaf models [FCW99]. However, the approach taken in this paper yields a
rather basic and intuitive notion of weak bisimulation. Moreover, not only for
the case of labelled transition systems, but also for probabilistic systems the
present coalgebraic proposal corresponds to the concrete definitions. Despite
the appeal of the coalgebraic definition of weak bisimulation, proofs of corre-
spondence result may vary from straightforward to technically involved. For
example, the relevant theorem for labelled transition systems takes less than
a page, whereas proving the correspondence result for generative probabilistic
systems takes around 20 pages (additional machinery included).

The paper is organized as follows: In Section 2 we lay down the basic def-
initions and properties of the systems under consideration. Section 3 presents
the definition of weak bisimulation. We show that our definition of weak bisim-
ilarity leads to Milner’s weak bisimilarity for LTSs in Section 4. Section 5 is
devoted to obtaining a correspondence result for the class of generative systems
of the notion of weak bisimilarity of Baier and Hermanns and our coalgebraic
definition. Finally, Section 6 wraps up with some conclusions.

2 Systems and bisimilarity

We are treating systems from a coalgebraic point of view. Usually, in this con-
text, a system is considered a coalgebra of a given Set endofunctor. For more
insight in the theory of coalgebra the reader is referred to the introductory
articles by Rutten, Jacobs and Gumm [Rut00,JR96,Gum99]. However, in our
investigation of weak bisimilarity it is essential to explicitly specify the set of
executable actions. Therefore we shall rather start from a bifunctor instead
of a Set endofunctor, cf [Bor94].

A bifunctor is any functor F: Set x Set — Set. If F is a bifunctor and A
is a fixed set, then a Set endofunctor F 4 is defined by

FaS=FASI), Faf =F(da, f), f: S—T. (1)

We formulate the next proposition out of [Bor94] for further reference.

Proposition 2.1 Let F be a bifunctor, and let Ay, As be two fized sets and
f Ay — Ay a mapping. Then f induces a natural transformation n' :
F 4, = F 4, defined by néz]-"(f,id@. O

Definition 2.2 Let F be a bifunctor. If S and A are sets and « is a func-
tion, a : S — FA(Y), then the triple (S, A, «) is called F,4 coalgebra. A
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homomorphism between two F4-coalgebras (S, A, a) and (T, A, ) is a func-
tion h : S — T satisfying Fah o a = (3 o h. The F4-coalgebras together with
their homomorphisms form a category, which we denote by Coalgé.

An important notion in this paper is that of a bisimulation relation between
two systems. We recall here the general definition of bisimulation in coalge-
braic terms.

Definition 2.3 Let (S, A, a) and (T, A, 3) be two F4-coalgebras. A bisimu-
lation between (S, A, ) and (T, A, 3) is a relation R C S x T, such that there
exists a coalgebra structure v : R — F4R making the projections 7 and
coalgebra homomorphisms between the respective coalgebras, i.e. making the
two squares in the following diagram commute:

S<~"—R—"->T

oA

\i
fAS%fARmfAT

Fam

Two states s € S and ¢t € T are bisimilar, notation s ~ t if they are related
by some bisimulation between (S, A, a) and (T, A, 3).

Let F 4 and G 4 be Set functors, and let n : F 4 = G4 be a natural transforma-
tion. The natural transformation 7 determines a functor 7 : Coalgf; — Coalgé
defined by

T((S,A ) =(S, Ansea), T(f)=F. (2)
We will refer to the functor 7 as the functor induced by the natural transfor-
mation 7. It is known (cf. [Rut00]) that functors induced by natural transfor-
mations preserve homomorphisms and thus preserve bisimulation relations, in
particular bisimilarity.
Next we present two basic types of systems, labelled transition systems and
generative systems, which will be treated in more detail in Section 4 and Sec-

tion 5. We give their concrete definitions first, as well as their corresponding
concrete definitions of bisimulation relations, cf. [Mil89,1.591,GSS95].

Definition 2.4 A labelled transition system, or LTS for short, is a triple
(S, A, —) where S and A are sets and — C S x A x S§. We speak of S as
the set of states, of A as the set of labels or actions the system can perform
and of — as the transition relation. As usual we denote s— s’ whenever
(s,a,s") € —.

Definition 2.5 Let (S, A, —) be an LTS. An equivalence relation R C S x S
is a (strong) bisimulation on (S, A, — ) if and only if whenever (s,t) € R then
for all a € A the following holds:

s s implies that there exists ¢’ € S with ¢t ¢ and (s, ') € R.
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Two states s and t are called bisimilar if and only if they are related by some
bisimulation relation. Notation s ~; t.

When replacing the transition relation of an LTS by a ”probabilistic transition
relation”, the so-called generative probabilistic systems are obtained.

Definition 2.6 A generative probabilistic system is a triple (S, A, P) where
S and A are sets and P : S x A xS — [0, 1] with the property that for s € S,

Z P(s,a,s") € {0,1}. (3)

a€A, s'eS

We speak of S as the set of states, of A as the set of labels or actions the system
can perform and of P as the probabilistic transition relation. Condition (3)
states that for all s € S, P(s,_, ) is either a distribution over A x S or

P(s,.,_) =0, i.e s is a terminating state. As usual we denote s % & whenever
P(s,a,s') = p, and s = &' for P(s,a,s’) > 0.

Remark 2.7 In order to clarify the condition (3) let us recall that the sum
of an arbitrary family {z; | ¢ € I} of non-negative real numbers is defined as

in = sup{z x; | J C I, J finite}.
il ieJ
Note that, if ), ; ;<0o, then the set {z; | i € I, z; # 0} is at most countable.

Definition 2.8 Let (S, A, P) be a generative system. An equivalence relation
R C S x S is a (strong) bisimulation on (S, A, P) if and only if whenever
(s,t) € R then for all @ € A and for all equivalence classes C € S/R

P(s,a,C) =P(t,a,C).

Here we have put P(s,a,C) =} .~ P(s,a,s"). Two states s and ¢ are bisim-
ilar if and only if they are related by some bisimulation relation. Notation
s~y t.

Let us turn to the coalgebraic side. It is known that the LTSs can be viewed
as coalgebras corresponding to the bifunctor

L =P(Id x Id).

Namely, if (S, A, —) is an LTS, then (S, A, «a), where a : § — L4(5) is
defined by

(a,8) € a(s) <= sS4
is an L4 coalgebra, and vice-versa. Also, the generative systems can be con-
sidered as coalgebras corresponding to the bifunctor

G =D(Zd x Id) + 1.
5



SOKOLOVA, DE VINK, WORACEK

Here D denotes the distribution functor, that is, D : Set — Set
DX = {u: X = [0,1] | Syey ple) = 1}

(DN(E)) = Xy ile), [:X =V, ueDX,yeY.

If (S,A,P) is a generative system, then (S, A, a) is a G4 coalgebra where
a: S — Ga(9) is given by

a(s)(a,s") = P(s,a,s),

and vice-versa. Thereby we interpret the singleton set 1 as the set containing
the zero-function on A x S. Note that a(s) is the zero-function if and only if
s is a terminating state.

In the literature it is common to restrict to generative systems (S, A, a)
where for any state s the function «(s) has finite support. However, in many
respects, this restriction to generative systems with finite support is not nec-
essary.

The concrete notion of bisimilarity for LTSs and generative systems and
the respective notions of bisimilarity obtained from Definition 2.3 coincide.
For the case of LTSs a direct proof was given, for example, by Rutten [Rut00].
For generative systems this fact goes back to the work of de Vink and Rutten
[VR99] where Markov systems were considered, and was treated in [BSVO03]
for generative systems with finite support.

We describe a general procedure to obtain coincidence-results of this kind.
This method already appeared implicitely in [BSV]. It applies to LTSs as well
as to generative systems in their full generality. We will also use it to obtain
a concrete characterization of bisimilarity for another, more complex, functor,
cf. Section 5.

Definition 2.9 Let R C S x T be a relation, and F a Set functor. The
relation R can be lifted to a relation =7 rC FS x FT defined by

r=rpy < Jze€ FR: Fm(z) =z, Fm(z) =y.

The following lemma is obvious from Definition 2.3.

Lemma 2.10 A relation R C S xT is a bisimulation between the F 4 systems
(S, A, ) and (T, A, B) if and only if

(s,t) € R = «a(s) =x,.r B(t). (4)
Od

Note that the condition (4) is commonly referred to as a transfer condition.
A functor is said to weakly preserve total pullbacks if it transforms any
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pullback diagram with epi legs into a weak pullback diagram. The character-
ization of bisimilarity will follow from the next lemma.

Lemma 2.11 If the functor F weakly preserves total pullbacks and R is an
equivalence on S, then =x g is the pullback in Set of the cospan

FS—I£F(S/R)E— Fgs (5)

where c: S — S/R is the canonical morphism mapping each element to its
equivalence class.

Proof. Since R is an equivalence relation and therefore reflexive, the left di-
agram below is a pullback diagram with epi legs.

N e
N TN

S/R FS/R
By the assumption, the right diagram is a weak pullback diagram. By Defini-
tion 2.9 the map w: FR —=z g, w(z) = (Fmi(2), Fma(z)), is surjective and
it makes the two upper triangles of the next diagram commutative:

=F.R

TW

n/ FR \"
% A
73 FS
N
FS/R

Since w is surjective the outer square of the above diagram also commutes,
and by the existence of w from the weak pullback FR to = r, =7 r is a weak
pullback as well. However, since it has projections as legs it is a pullback. O

Suppose that a functor F weakly preserves total pullbacks and assume that R
is an equivalence bisimulation on S, i.e., R is both an equivalence relation and
a bisimulation on S, such that (s,t) € R. The pullback in Set of the cospan (5)
is the set { (x,y) | Fc(z) = Fe(y) }. By Lemma 2.11 this set coincides with
the lifted relation =z z. Thus ¢ =rp y <= Fec(x) = Fe(y). Therefore,
we obtain the transfer condition for the particular notion of bisimulation if
we succeed in expressing concretely (Fce a)(s) = (Feea)(t) in terms of the
representation of «(s) and «(t).

For example, consider the LTS functor £ 4, which preserves weak pullbacks.

For X € L4(9), ie. X € A x S, we have L4(c)(X) = P(ida,c)(X) =
7
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(ida,c)(X) = {{a,c(s)) | {a,s) € X}. Using Lemma 2.10 we get that an
equivalence R C S x S is a coalgebraic bisimulation for an LTS (S, A, ) if
and only if

(s,t) e B = {{a,c(s)) | {a,5) € als) } = {{a,c(t))) | (a,1) € a(t) }
or, equivalently
(s, ) ER = (558 = W eS:tStAN(H)ER).

Hence we have obtained the following property.

Lemma 2.12 An equivalence relation R on a set S is a bisimulation on the
LTS (S, A, ) according to Definition 2.3 for the functor L4 if and only if it
1s a bisimulation according to Definition 2.5. O

Often weak pullback preservation is required for the functors to be ”well-
behaved”, for example in order that bisimilarity is an equivalence. It can
easily be seen that already the weaker condition of weakly preserving total
pullbacks suffices for bisimilarity to be an equivalence. We have relaxed the
weak pullback preservation condition since in Section 5 we will need a bisim-
ilarity characterization of a functor that transforms total pullbacks to weak
pullbacks, but does not preserve weak pullbacks.

Next we establish the weak pullback preservation of G 4. For the functor
defining generative systems with finite support weak pullback preservation
was proven by de Vink and Rutten [VR99|, using the graph theoretic min
cut - max flow theorem, and by Moss [Mos99], using an elementary matrix
fill-in property. Following Moss [Mo0s99] we show that the needed matrix fill-in
property can be used and holds for arbitrary, infinite, matrices as well. For
the sake of completeness we give the proofs in full detail.

Lemma 2.13 The functor D preserves weak pullbacks.

Proof. It suffices to show that a pullback diagram

Xypw\}/
N

will be transformed to a weak pullback diagram (cf. [Gum99]). Let P’ be the
pullback of the cospan DX 2L pz <22 Dy . Then there exists v:DP — P

8
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such that the next diagram commutes

DP

)

D7r1 Pl Dﬂ'Q

N

and it is enough to show that ~ is surjective. Let (u,v) € P’ be given. if
i € DP is such that

(Pmi)(p) =w,  (Dmy)(p) = v (6)

then () = (u,v) since m; and my are jointly injective. Hence the task is to
find a function g € DP which satisfies (6). More explicitely we have to find
p: P —[0,1] such that for all zp € X,yp € Y

> plxo,y) = ulx), > p(x,y0) = v(yo) (7)

y€Y:(xo,y)EP ze€X:(x,yo)EP

For if u: P — [0, 1] satisfies (7), then p € DP and (6) holds.
The set P can be written as the union

P=J ' {=) <97 (=D

of disjoint rectangles, in fact rectangles with non-overlapping edges. Therefore,
the existence of a map p which satisfies condition (7) is equivalent to the
condition that for all z € Z there exists a function p, : f~1({z}) x g7 ({z}) —
[0,1] such that for all z5 € f~1({z}), and all yo € g~ *({z}),

Z p=(zo,y) = u(zo), Z 12(, o) = v(yo)- (8)
yeg—t({z}) zef~t({z})
Since (u,v) € P, we have
Y. ula) = (DW= D)) = Y vy (9)
zef~t({z}) yeg~t({z})
Thus we may apply the following matrix-fill-in property, Lemma 2.14. O
Lemma 2.14 Let C and D be sets and let ¢ : C' — [0,1] and ¢ : D — [0, 1]

be such that
D o) =D W(y) < oo (10)

zeC yeD

9
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Then there ezists a function p: C' x D — [0,1] such that for any xo € C and
any yo € D

> ulwo,y) = dlwo), Y, y0) = P(yo)- (11)

yeD zeC

Proof. We first consider the case when both C' and D are countably infinite,
i.,e. we take C'= D = Nj. We recursively define a function

FZN%NOXN()X(N()XNQ%R)
where F'(n) = (k(n),l(n), u,) as follows. Put F(1) = (k(1),{(1), py) for k(1) =

[(1) = 0 and py(k,1) = 0 for all k,1 € Ny. Assume F(n) has already been
defined. Put

) = d k)~ S i),
Pnt1(R;0) = ¢ min{@(k(n)) — >, 0 tn(k(n), 1), B
Bl — S ety () = ). 1)

and

MHH){§m+1um@wmwwwmaﬂmmwmn

(n) otherwise

[(n) otherwise

M+U?w+1;mwmmw>wmmzmwam»

It is obvious that F' satisfies the following properties (12).

En+1)+1in+1)>k(n)+Iln), k(n+1) > k(n), l(n+1) > 1(n)

#n-i-l(k’ l) = “n(kal)> <k’l> 7é <k(n)al(n)> (12)
pns1(k, 1) =0, k> k(n) or I >1(n)

We next show that F' also satisfies the following properties (13).

> herg Hn (K, o) { : w(jo) io jl(n)

S ¢i{;0) ko > k(n) (13)
> ieny Hn (Ko, 1) { = (ko) ko <k(n)

< (ko) ko > k(n)

For n = 1 surely Iy > I(n) and >, .y p1(k,lo) = 0 < (lp). Assume that the
10
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conditions hold for n. If l; < I(n) then

Z s (K, lo) = Z pin (K, lo) = 1 (lo).

keNp k€Ng

If [y > l(n), then Iy > l(n + 1) and

D tnsa(kylo) = D pnlk, 1) < ¢(lo).

keNp k€eNg

Finally, if Iy = I(n), then

Z fnt1(k, lo) = Z fn(k,lo) + pny1(k(n), l(n)) + Z fin(k, o).

keNp k<k(n) k>k(n)

By (12) the last summand vanishes and by the definition of p,41(k(n),l(n))

we have
pna(k(n), 1(n)) < 0Un)) = D palk,U(n)) (14)
k<k(n)
Hence }; cn, Hnt1(k, lo) < 9(lo). Moreover, if Iy < I(n + 1) in (14) equality
holds and thus also » ;. #nt1(k,lo) = 9(lo). The second property of (13)
follows the same way.
We next show that

pin (k1) € [0,1]
for all n, k, [, inductively on n. For n = 1 it is trivial. Assume that p,,(k,[) €
[0,1] for all m < n and k,l € Ny. Then also p,1(k,1) € [0,1] for (k1) #

(k(n),l(n)). Since all ,un(k, [) are non-negative we have

pins1(k(n), [(n)) < min{¢(k(n)), ¥(I(n))} < 1.

Moreover, by (13) we obtain

> pn(k(n Z i (K

leNg I<l(n
) > Dk, U(n) = Yk, U(n))
keNg k<k(n)

and hence

0 < pinga(k(n), U(n)).
Since n — (k(n),l(n)) is injective, for every fixed pair (k,[), the sequence
(tn(ky1))nen is either constantly 0, which happens if (k,l) & {(k(n),l(n)) |
n € N} or

0 n < ng
Mn(k7l) =

Hno+1 (k7 l) n>no
11
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in case (k,1) = (k(no),l(ng)). In particular, we have established

pn(k, 1) < pnga (K, 1), n €N (15)
Now, we define p : Ny x Ny — [0, 1] by

puk, 1) = lim g (k, 1)

n—oo

We show that p satisfies the properties required in the assertion of the lemma.
By (12) at least one of the sequences (k(n))nen, (I(n))nen must tend to infinity,
say k(n) does. Let ky € Ny be given and let n € N be such that kg < k(n).
Then for all m > n

fin (Ko, 1) = pim(ko, 1) = ko, 1)

and thus

Z ko, 1) = Zﬂn(k07 1) = ¢(ko),

1N 1€N
i.e. the first part of (11) holds true. It follows that

Y=Y dk) =D Y k)= k), (16)

leNp keNp keNg leNg 1eNg keNp

where the change in the order of summation is justified by the fact that
fin(k,1) > 0. Since (1) > 7, oy, n(k, 1) for all n we obtain that

> ulk.0) = Jim > (1) < 000,

keNp keNp

Hereby, the change of the limit and the sum is allowed since u,(k,l) is a
non-negative, monotone sequence. Now (16) implies that

Z ,u(ka l) = w(l), l € No.

keNg

Similarly one obtains ;. p(k,1) = ¢(k), k € Ny, and completes the proof
in the case C' = D = Nj.

Assume now that C, D, ¢, are as in the formulation of the lemma. Con-
sider " ={x € C | ¢(x) #0}, D' ={x € D |(x)#0}, ¢ =d|lcr, ¥ =
Y|p. Then C" and D’ are at most countable. If ' : C" x D" — [0, 1] is such
that for any zo € C',yg € D’

Z W (zo,y) = é(x0), Z 1@, yo) = ¥ (yo)

yeD’ zeC’

12
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then the function p : C' x D — [0, 1] defined by

wix,y) (x,y)eC xD
u(r,y) = .
0 otherwise

fulfills the requirements of the lemma. Hence it is enough to consider the case
when C' and D are at most countable. Write C' = {¢ | k € No, k < |C|} and
D ={d; |l € Ny,l < |D|} and define ¢', ¢ : Ny — [0, 1] by

olex) Kk <|C| U(di)  1<|D|
Y1) =

0 otherwise 0 otherwise

¢'(k) =

We obtain pi : NoxNo — [0, 1] with >, 1/ (ko, 1) = ¢'(ko) and D, 1/ (K, lo)
Y (lg) for all ko,ly € No. If kg > |C| then ¢'(ko) = 0 and hence p'(ko,l) = 0
for I € Ny. Similarly, for lo > |D|, t/(k,lo) = 0 for k € Ny. Thus

M(Ck,dl) = M/(kvl)a k< |C|’ < |D|
satisfies the requirements of the lemma. O

Some simple derivations now suffice to show the next characterization re-
sult.

Lemma 2.15 An equivalence relation R on a set S is a bisimulation on the
generative system (S, A, ) according to Definition 2.3 for the functor Ga if
and only if it is a bisimulation according to Definition 2.8. |

3 Weak bisimulation for action-type coalgebras

In this section we present a general definition of weak bisimulation for action-
type systems. Our idea arises as a generalization of what is known from the
literature for concrete types of systems. In our opinion, a weak bisimulation
on a given system must be a strong bisimulation on a suitably transformed
system obtained from the original one.

The given definition of weak bisimulation consists of two phases. First we
define a x-extended system, that captures the behaviour of the original system
when extending from the given set of actions A to A*, the set of words over A.
The *-extension should emerge from the original system in a faithful way. The
second phase considers invisibility. Given a subset 7 C A of invisible actions,
we restrict the x-extension to visible behaviour only, by defining a so-called,
weak-T-extended system. Then a weak bisimulation relation on the original
system is any bisimulation relation on the weak-7-extension.

Definition 3.1 Let F and G be two bifunctors. Let ® be a map assigning to
every F 4 coalgebra (S, A, a), a G+ system (S, A* &), on the same state set,
such that the following conditions are met

13
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(1) @ is injective, i.e. P((S, A, a)) = P((S,A,[)) = a = 7;

(2) ® preserves and reflects bisimilarity, i.e. s ~ ¢ in the system (S, A, o) if and
only if s ~ ¢ in the transformed system ®((S, A, «)).

Then & is called a *-translation and we say that ®((S, A, «)) is a *-extension

of (S, A, a).

The conditions (1) and (2) in Definition 3.1 make sure that the original system
is "embedded” in its x-extension, cf. [BSV03,BSV,SV03]. The fact that a
«-translation may lead to systems of a new type (bifunctor G) might seem
counterintuitive at first sight. However, this extra freedom is necessary since
in some cases (cf. Section 5, generative systems) the starting functor is not
expressive enough to allow for a *-extension.

A way to obtain x-translations follows from a previous result. Namely,
if \: Fa=Ga~ is a natural transformation with injective components and
the functor F 4 preserves weak pullbacks, then the induced functor (see equa-
tion (2)) is a *-translation, cf. [BSV03, Theorem 3.9]. However, we shall see
later that considering *-translations emerging from natural transformations is
not enough, actually it does not cover known concrete cases.

Having extended an F 4 system to its x-extension it is time to hide invisible
actions. Let 7 C A. Consider the function h,: A* — (A \ 7)* defined induc-
tively via specifying the function on the generators of A* by: h.(a) = a if
a ¢ 7 and h,(a) = € for a € 7 where € denotes the empty word. The function
h, is deleting all the occurrences of elements of 7 in a word of A*. Consider
the set A, = (A \ 7)*. By Proposition 2.1, we get the following.

Corollary 3.2 n7: Ga- = G4 given by ni = G(h,,ids) is a natural transfor-
mation. O

Let W, be the functor from Coalgé* to CoalgéT induced by the natural trans-
formation 17, i.e. W, ((S,A* o)) = (S, A;,a") for & =nfoa’ and ¥, f = f
for any morphism f : S — T (see (2)). As mentioned before, the induced
functor preserves bisimilarity. The composition of a *-translation ® and the
hiding functor ¥, we denote by W, = U, - ® and call it a weak-7-translation.
A weak-7-translation, or equivalently, the pair (®, 7), yields a notion of weak
bisimulation with respect to ® and 7.

Definition 3.3 Let F, G be two bifunctors, ® a *-translation from F to
G and 7 C A. Let (S, A a) and (T, A, ) be two F, systems. A relation
R C ST is a weak bisimulation w.r.t (®, 7) if and only if it is a bisimulation
between W.((S, A, «)) and W,((T, A, 3)). Two states s € S and t € T are
weakly bisimilar w.r.t (®, 7), notation s =, t, if they are related by some weak
bisimulation w.r.t. (®,7).

Next we prove that any relation /2, obtained in this way, satisfies the proper-
ties that are intuitively expected from a weak bisimilarity relation.

14
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Proposition 3.4 Let F, G be two bifunctors, ® a x-translation from F to G,
(S, A,a) an F a-coalgebra, 7 C A and let =, denote the weak bisimilarity on
(S, A, a) w.r.t. (&, 7). Then the following hold:

(i)
(i)
(iid)

~ C =, foranyTt CA

1.e. strong bisimilarity implies weak.

~ = %@

1.e. strong bisimilarity is weak bisimilarity in absence of invisible actions.
7 C = ~, C =, forany m,m C A

1.e.  when more actions are invisible the weak bisimilarity relation gets
coarser.

Proof.

(4)

(i)

(iid)

Assume s ~ t in (S, A, a). Since ® preserves bisimilarity (Definition 3.1)
we have that s ~ t in ®((S, A, a)). Next, since ¥, preserves bisimilarity
we get s ~ tin U, o ®((S, A, )), which by Definition 3.3 means s ~, t in
(S, A a).

From (i) we get ~ C =gy. For the opposite inclusion, note that the natural
transformation 7? from Corollary 3.2 is just the identity natural transfor-
mation. Therefore the induced functor Wy is just the identity functor on
Coalgé*. Now assume s =y t in (S, A, ). This means s ~ ¢ in Wy((S, A, o)),
le. s ~tin UyoD((S,A,a)), i.e. s ~tin O((S, A, «)). Since, by Defini-
tion 3.1, every *-translation reflects bisimilarity we get s ~ ¢ in (S, A4, a).

Let 71 € 7». Consider the diagram

hrgy

A (A\ )"
(A\ )"

where h;, ;, is the map deleting all occurrences of elements of 7 in a word
of (A\ 71)*. The diagram commutes since first deleting all occurrences of
elements of 7 followed by deleting all occurrences of elements of 75, in a
word of A* is the same as just deleting all occurrences of elements of 7.

Denote by n™, ™, n™7™ the natural transformations from Corollary 3.2,
Proposition 2.1, corresponding to h;,, h;,, h. ., respectively. They make
the following diagram commute.

nm2
gA* > gATQ

T1
n H/ %7’2

Ga,,

Since the functors ¥, , ¥.,, ¥, . are induced by the natural transforma-

15
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tions n™, n™, n™ ™ respectively, by (2) it holds that
Vo, =Wr rpy o Wy (17)

and they all preserve bisimilarity. Now assume s ~, t in (S, A, «). This
means that s ~ ¢ in the system W, «®((S, A, «)). Then, since ¥, ., preserves
bisimilarity we have s ~ ¢ in the system V., ., o ¥, o ®((S, A, a)) which by
equation (17) is the system W, ®((S, A, a)) and we find s ~,, t in (S, A, a).

O

For further reference, we introduce some more notation. For any w € A,
we denote B, = h-'({w}) C A*. We refer to the sets B, as blocks. Note that
By, =1*ay* it forw =ay .. .a € A, = (A\ 7)%.

4 Weak bisimulation for labelled transition systems

In this section we show that in the case of LTS there exists a x-translation
according to the general definition, such that weak bisimulation in the concrete
case [Mil89] coincides with weak bisimulation induced by this *-translation.
First we recall the definition of concrete weak bisimulation for LTSs.

Definition 4.1 Let (S, A, —) be an LTS. Assume 7 € A is an invisible ac-
tion. An equivalence relation R C S x S is a weak bisimulation on (S, A, —)
if and only if whenever (s,t) € R then

s s’ implies that there exists ¢ € S with ¢t —*o % o 5*t' and (s',t') € R.
p )
for all a € A\ {7}, and
s s’ implies that there exists ¢ € S with ¢t = *t' and (s',#') € R.

Two states s and t are called weakly bisimilar if and only if they are related
by some weak bisimulation relation. Notation s ~; t.

We now present a definition of a x-translation that will give us the same
weak bisimilarity relation. Let £, £4 be the functors for L'TSs, as introduced
in Section 2.

Definition 4.2 Let ® assign to every LTS, i.e. any L4 coalgebra (S, A, ) the
L 4+ coalgebra (S, A*, o') where for w = ay...a; € A%, (w,s") € d/(s) if and
only if there exist states si,...,s,_1 € S such that s N - Y
We use the convenient notation s = s’ for (w,s’) € a/(s).

Theorem 4.3 The assignment ® from Definition 4.2 is a *-translation.
Proof. We need to prove that ® is injective and reflects and preserves bisimi-
larity. Let ®((S, A, a)) = ®((S, A, B)) = (S, A*,a/). Then (a,s) € a(s) <
(a,s"y € d'(s) <= (a,s) € B(s). Hence for any state s, a(s) = 3(s).

16
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Let s ~ tin ®((S, A, «)) = (S, A*, /). Hence there exists an equivalence
bisimulation relation R such that (s,t) € R and (according to Lemma 2.12)
for all w € A*,

if 5= s’ then there exists ¢’ € S such that ¢t = and (s, t') € R.

Assume s % 5" in (S, A, ), i.e., {a,s’) € a(s). Then s=> s’ and therefore there
exists t' € S with (s',#) € Rand t =1’ i.e., t-%t'. Hence, R is a bisimulation
on (S, A, a)i.e. s~ tin the original system. Conversely, for the preservation,
let s ~tin (S, A, a) and let R be an equivalence bisimulation relation such
that (s,t) € R. Assume s = s, for some word w = a; ...a; € A*. Then there

exist states sq,...,s,_; € S such that s 553 359+« 551 o . By a simple
inductive argument one gets that there exist states t1,...,t;_1,t' € S such

that t ¢, Bty t)_y B¢ where (s;,t;) € R and (s',t') € R. Hence t =’
for (s';t') € R, i.e, R is a bisimulation on (S5, A*,«’) and s ~ t holds in the
x-extension. d

Note that if ® is a functor induced by a natural transformation n and if
(S, A,a), (S, A, B) are two systems such that, for some s € S, a(s) = 5(s),
then

a'(s) = ns(a(s)) = ns(B(s)) = B'(s) (18)
for (S, A,a/) = ®((S,A,a), (S,A,[) = ®((S, A, 3). However, the follow-

ing simple example shows that the x-translation ® from Definition 4.2 vio-
lates (18).

Example 4.4 Let S = {s1, s2,53} and A = {a, b, c}. Consider the LTSs:
(S, A, a) : 31332i>53 and (S, A, ) : 515 55> 53.

Obviously «a(s1) = ((s1). However, o/(s1) = {(a, s2), (ab, s3)} while §'(s1) =
{{a, s2), {ac, s3) }.

Theorem 4.5 Let (S, A, ) be an LTS. Let T € A be an invisible action and
s,t € S any two states. Then s =) t according to Definition 3.5 w.r.t the
pair (O, {1}) if and only if s =, t according to Definition 4.1.

Proof. Assume s =~ t for s,t € S of an LTS (S, A, &). This means that s ~
t in the LTS (S, Ay, ng} oa’), i.e., there exists an equivalence bisimulation R
on this system with (s, ¢) € R. Here, as usual, (S, A*,a/) = ®((S, A, «)). Note
that
(n§" - a)(5) =n§ (a/(s))
= P((hiry.ids))(@/(5))
={{hinp(w),s') | (w,s") € a'(s)}

={{ay...a,5) | 3w € TFay T ... TrapT": 5= '}
We denote the transition relation of the weak-7-system (S, A, néT} o a’) by
17
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= .. The above shows that for any word w = a;...a; € A-

sB s = (w,8) € (nied!)(s) = e B, =77 .. T s S
We will show that the relation R is a weak bisimulation on (S, A, a) according
to Definition 4.1. Let s = s’ (a # 7). Then s = s', implying s = , s'. Since R
is a bisimulation on the weak-7-system, there exists ¢ such that ¢t =, ¢’ and
(s',t') € R. We only need to note here that =, = 5*+ % o 5* The case
s s’ is analogous.

For the opposite, let R be a weak bisimulation on (S, A, «) according to
Definition 4.1 such that (s,t) € R. It is easy to show by induction that for
all (s,t) € R and for any a € A, if s =*+ % o 5 *s then there exists ¢’ such
that t %o % o 5% and (s',t') € R. Hence, if s=> . s’ then there exists ¢’
with ¢t = ¢ and (s',#') € R. Another simple inductive argument on k leads
to the conclusion that for any word w = a; ...a, € A,, if s= . s’ then there
exists a t' such that t = ,#' and (s',#') € R, i.e. R is a bisimulation on the
weak-7-system and hence s~y . O

5 Weak bisimulation for generative systems

In this section we deal with generative systems and their weak bisimilarity.
Inspired by the existing work by Baier and Hermanns [BH97,Bai98,BH99]|, we
provide a functor that suits for a definition of a *-translation for generative
systems. That way we obtain a coalgebraic definition of weak bisimulation for
this type of systems and at the end we show that our definition, although on
first sight much stronger, coincides with the definition of Baier and Hermanns.
Unlike in the case of LTSs, here the s-translation really leaves the class of
generative systems.

This section is divided into three parts: First we introduce and establish
some needed notions and properties of paths in a generative system and define
a measure on the set of paths, where we basically follow the lines of Baier and
Hermanns [BH99,Bai98]. In the second part we define a translation and prove
that it is a x-translation which therefore provides us with a notion of weak-7-
bisimulation. The final part is devoted to the proof of correspondence of the
notion of weak-7-bisimulation defined by means of the given x-translation and
the concrete notion by Baier and Hermanns.

5.1 Construction and properties of Prob

Let (S, A,P) be a generative system. A finite path 7 of (S, A,P) is an al-

ternating sequence (so,ar, S1,as,...,ax, s;), where k € Ny, s; € S, a; €
A, and P(s;_1,a;,8) >0,1 = 1,..., k. We will denote a finite path 7 =
(S0, a1, 81, a2, ..., ag, S) more suggestively by

al az ak
Sg — S1 — S92 Sk—1 — Sk .

18
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Moreover, set
length(m) = k, first(m) = so, last(m) = s, trace(m) = ajas-- - ay.

The path € = (sp) will be understood as the empty path starting at so. Sim-
ilarly, an infinite path © of (S, A, P) is a sequence (s, a1, s1,as,...), where
s; €5, a; € Aand P(s;_1,a;,5) >0, 1 € N, and will be written as

al as
Sg — S1 — S92

Again we set first(m) = so. A path 7 is called complete if it is either infinite
or finite with last(7) a terminating state.

The sets of all (finite or infinite) paths, of all finite paths and of all complete
paths will be denoted by Paths, FPaths and CPaths, respectively. Moreover,
if s € S, we write

Paths(s) = {m € Paths: first(r) = s},
FPaths(s) = {7 € FPaths : first(r) = s},
CPaths(s) = {m € CPaths : first(r) = s}.

The set Paths(s) is partially ordered in a natural way by the prefix relation
which is defined as follows. For 7,7’ € Paths(s) we have = < 7’ if and only if
one of (a), (b) or (c) holds:

U ’
. a ay, a a
(a) Both, m and 7/, are finite, say 1 = s—>s5;--+ — s, T =s5—8) -+ 35,

and we have
k<nands; =sj,a; =aj, i,j <k.

. . . . ai ar
(b) 7 is a finite and 7’ an infinite path, say 7@ = s—sy-++ =8, @ =
ap , a
s— sy — s, -+, and we have

;= sj,a;=ajy, i,j < k.

(c) m=7
The complete paths are exactly the maximal elements in this partial order.
For every 7 € Paths(s), there exists a 7’ € CPaths(s) such that 7 < 7'.

It is important to note the following:
Lemma 5.1 For any state s € S, the set FPaths(s) is at most countable.

Proof. We first show, by induction on the length of paths, that for any fixed
natural number k the number of finite paths that start in s and have length &
is at most countable. For £ = 1 the statement follows from the fact that
P(s,_, ) is a probability distribution on A x S which implies that it has at
most countable support set i.e. P(s,a,s’)>0 for at most countably many pairs
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(a,s"y € A x S. Consider paths of length n + 1. By the inductive hypothesis
there are at most countably many paths of length n. Each of these can be
extended to a path of length n + 1 in at most countably many ways, hence
the number of paths of length n + 1 is also countable. Finally, the statement
follows since FPaths(s) = (Jen, {7 € FPaths(s) : length(r) = k}. O

The first task is to construct out of P a probability measure on a certain
o-algebra on CPaths(s). This method was used in [BH99,Bai98|, however, for
the convenience of the reader we shall give complete proofs. As a standard
reference for measure theoretic notions and results we use [Zaab8].

For a finite path = € FPaths(s), let 7 T denote the set

7w 1= {¢ € CPaths(s) | # < &}

also called the cone of complete paths generated by the finite path .
Note that always 7 1# 0. Let

I':= {7 1: © € FPaths(s)} C P(CPaths(s))

denote the set of all cones. By Lemma 5.1 this set is at most countable. For the
study of weak bisimulation in generative systems a thorough understanding
of the geometry of cones is crucial. First of all let us state the following
elementary property:

Lemma 5.2 Let m,m € FPaths(s). Then the cones my T and 7o | are either
disjoint or one is a subset of the other. In fact,

m T, M 2T
mlNmli=dm7T , m3m
(Z) ,Wlfﬂgandﬂ'gﬁﬂ'l

Moreover, we have my 1= my 1 if and only if either

m=sS o By m=sD o By Bl B, (19)
and thereby
P(si1,a;,8)=1, l=k+1,...,n (20)

oT Vice-versa.

Proof. Let m € m; T N my T, m € CPaths(s). Then m < 7 and m < 7. This
implies that m; < my or my =< 7. Assume m; < my. Then

TEM] << M3IT = m IT << nemn .

It is clear that (19) and (20) imply m T= m 1. Assume m | = mo
Then m < 7 or Ty < ;. Assume m < Ty, M = S— - B, m

20
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al ag Qg1 a .
§— -+ =Sk — Spq1--- — Sp, and assume there exists a path 7, # 7o,
!
;o al ak Uey1 A
Ty =8~ v+ =5 —> S~ 8.

Then 7, T N T=m5 T, but 5 T N 7y 7= 0 contradicting m T = m 1. O

Let IT C FPaths(s). We say that II is minimal if for any two my,m € II,
1 # To, we have m; T Ny T= (). We will express that IT is minimal by writing
min(IT). As example note that every singleton set {7}, m € FPaths(s), is
minimal.

For IT C FPaths(s) we denote by II T the set

M= Jnx1.

mell

Then the fact min(II) just means that 11 T is actually the disjoint union of all
w1, mell ie.
min(II) if and only if IT T= |_| w7,
mell

where, here and in the sequel, the symbol U denotes disjoint unions. It is an
immediate consequence of the definition that, if min(II) and IT" C II, then also
min(IT").

If II; and II; are minimal, their union need not necessarily be minimal,
even if IT; N II, = (0. We will use the notation IT = Lﬂiel I1; to express that

II; C FPaths(s), i € I, I = | |TI; and min(IT).
iel

Note that if IT = |, II;, also min(Il;) for all i € I. In particular this notation
applies to minimal subsets II written as the union of their one-element subsets:

1= L—lj {7} whenever min(II).
mell
Observe that the following properties hold:
(i) HII =1, ,1I;, then

el

Ii=| |mt= || =1.

iel i€l mell
(ii) We have IT = 4, II; if and only if
min(IL;), i € I, I, NIL; = 0, i # j,
m A7y, A, m €l eIl i # 7.
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Lemma 5.3 Let I1 C FPaths(s). Then there exists a unique set I1 | C
FPaths(s), such that

(¢) II | CII, min(II |), and
M = (H l) 1.
(17) For every set II' C FPaths(s) which possesses the property (i), we have
Va'ell' 3nell |: 7 <7

Proof. Take
M| ={rell|Va'ell:x Ax}.

If IT # ), then II | # () since there are no infinite prefix descending sequences.
Clearly, min(IT |) and IT | C II. Therefore, (Il |) T € II 1. Note that
Vr ell,3n" €1l |: 7’ < 7. Hence, by Lemma 5.2, for any 7 € II, there exists
7' €Il | such that 7 T C 7' Tie. II T C (I |) T and we have shown (7).
Let TI' be a set that satisfies (i), i.e., II' C II, min(IT") and 1T T = IT" 7. Let
7w’ € II'. Then 7’ € II and as noted before there exists # € Il | such that

m X 7/, proving (ii). The uniqueness follows from (ii) and the minimality of
I |. 0

Lemma 5.4 The set T' U {0} is a semi-ring (in the sense of [Zaa58]).

Proof. Clearly, 'U{()} contains the empty set and it is closed under intersec-
tion, by Lemma 5.2. We need to check that the set-difference of any two of its
elements is a disjoint union of at most countably many elements of 'U{0}. Let
m T,m 7€ I'. By Lemma 5.2, the only interesting case is when m TC my T,
implying 7y < 71 (or symmetrically, m < m2). Let

_ al ag o al ag ar41 an
Mg =8— -+ =S, T =S— -+ =8 — Spr1°* =S, k<n
and put
ai a b ai a
N={r|n=s— - Bs,—t, k<m<n, s— -+ 3, <m,T AT}

It is not difficult to see that (my 1)\ (7 T) =II 7= Uzen 7 T and the union
is at most countable. O

Now we are ready to introduce the desired extension of P to a measure.
By Lemma 5.2 a function Prob : T'U {(}} — [0, 1] is well defined by

E=n71 with k> 1,

P(s,ar, 1) Plspv,an,s6) 5 o Sy sy s
Prob(E) := {1 , = ¢ 1= CPaths(s)
0 , E=0
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Lemma 5.5 The function Prob is a measure on the semi-ring ' U {0}.

Proof. By definition Prob(f)) = 0. We need to check o-aditivity and mono-
tonicity. Assume 7w T= U;c;m; T for some at most countable index set I. This is
only possible if 7 is not complete and if {m; |i € [} = {7’ s |a € A, s € S}
for 7 1= 7w 7 (see Lemma 5.2), i.e. m; for i € I are exactly the paths that
extend 7’ in one step, for 7’ a trivial extension of . Such paths exist at most
countably many. Then

> Prob(m 1) =Prob(z’ 7). > P(last(r’),a,s)
i=1 acA,seS

© Prob(7' 1)

= Prob(w 1)

where () holds since 7’ does not end in a terminating state, i.e.

Z P(last(m),a,s) = 1.

a€A,seS

The function Prob is monotonic by definition: Assume 7; TC 75 T. Then, by
Lemma 5.2, 1o < m; and since P(s,a,t) < 1 for all s,t € S;a € A, from the
definition of Prob we get Prob(m 1) < Prob(m, 71). O

Corollary 5.6 The function Prob extends uniquely to a probability measure
on the o-algebra on CPaths(s) generated by T' U {0}. We will denote this
measure again by Prob.

Remark 5.7 Note that, although paths are more or less just sequences of
elements of S and A, not only the function Prob itself, but also the o-algebra
where it is defined and in fact already the base set CPaths(s) depends heavily
on P. At the first sight this might seem to be an undesirable fact, however, a
second look at the matters shows that it cannot be avoided.

The measure Prob induces a set-function on finite paths, which we will
also denote by Prob. Define Prob : P(FPaths(s)) — [0, 1] by

Prob(II) = Prob(IL 1).

This notation is not in conflict with the already existing notation of the
measure Prob. In fact, P(FPaths(s)) N P(CPaths(s)) consists entirely of
Prob-measureable sets and on such sets both definitions coincide. To see
this, note that if 7 € FPaths(s) N CPaths(s), then = 1= {x}. Thus, if
IT € P(FPaths(s)) NP(CPaths(s)), we have

M=| [{r} =[] m1=111,
mell well

and this union is at most countable.
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It will always be clear from the context whether we mean the measure
Prob or the just defined set-function Prob. Still, there is a word of caution in
order: The function Prob : P(FPaths(s)) — [0,1] is in general not additive.
However, having a look at the notations introduced above, we find that

Prob(II) = Z Prob(Il;), whenever IT = L—H I1; .

i€l el

In particular, we obtain that Prob(II) = > __;; Prob(r 1) for every minimal
set II. Moreover, by Lemma 5.3, we always have

Prob(IT) = Prob(IT |) .

We next introduce some particular sets of paths. For s € S, 5’, S” C S with
S'C S’ and W, W' C A* with W C W/, denote

s B S = {7r € FPaths(s) |

last(m) € ', trace(m) € W }
g

VE < m:trace(§) € W= last(§) € S”

and write Prob(s, W, W, S, =5") = Prob(s %_y» ). Since §' € S” and
_‘S//

R : : :
W C W' we always have min(s —_y~ S’). For notational convenience we will
"

drop redundant arguments whenever possible. Put

W W
s =y S'=s—_w 5,

-5’
W W
s—_gn S =35 —>—\k19/1//l S’ (21)
W W
s — 9 =5 —-w S,
3

and, correspondingly,

Prob(s, W, =W’ S") = Prob(s, W, =W’ S’ =5),
Prob(s, W, 5", ~S") = Prob(s, W,-~W, S’ =5"), (22)
Prob(s, W, S") = Prob(s, W,-W, 5", =5").

Note that
Woar . /
s = §" = {r € FPaths(s) : last(m) € &', trace(r) € W} | .
Let S', 8", W, W' be as above and let moreover F' C S be given. Then denote

r s = I_l s ¥ S’ C FPaths

_‘S// SeF _‘S//

We will often encounter the situation that for every s € F' the value of
Prob(s, W, =W’ S’ =S5") is the same. In this case we speak of this value as
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Prob(F, W, =W’ S’ =S"). Also, in this context, we shall freely apply short-
ening of notation as in (21) and (22).
Next we define sets of concatenated paths. For Il C FPaths, put
first(I1) = {first(7) | = € 1}, last(Il) = {last(7) | = € I1}.
If 1T, II, C FPaths and last(I1;) = first(Ily), we define

Hl . HQ = {71'1 D) ’ T € H1,7T2 € Hg,last(m) = ﬁl"St(?TQ)},

_ ay ag Ak+1 Qan _ ay A _

where 1 Mg = 85— -+ S8, — - S5, form = 85— - S5, and ™ =
k41 a . .

s — --- —5,. Note that, whenever a concatenation m; - my is defined, we

have Prob({m; - mo}) = Prob({m1}) - Prob({ma}).

Proposition 5.8 LetIl; C FPaths(s), IIo C FPaths with last(I1;) = first(Ily)
and assume that this set is represented as a disjoint union

last(I1;) = first(Ily) = |_| S;.

el

Denote 11y g5, = {m € II; : last(m) € S;}, oy = {my € Iy : first(m) = t}.
Assume that for every i € 1

PI‘Ob(Hg’t/) = PrOb(Hgﬂg//), t/, t" e S; .

Moreover, assume that I1;, 1y and 11, -1y are minimal. Then, for every choice
of (ti)ier € [1;e; Si, we have

Prob(Il; - I1y) = Z Prob(Ilys,) - Prob(Ily,) .

i€l

Proof. Denote by Il g, = {m € I, | first(ms) € S;} and by II; ; = {m € II; |
last(m;) = t}. Under the assumptions of the proposition, we have

Prob(Il; - TI,) =Prob( [4 1)

mwelly-Ila

—prob(( | 1)

i€l ﬂeHl,Si -Hgﬂgi

=Prob(H(H( 1 =1)

i€l teS; welly - Ila

:ZZ Z Prob(7 1)

i€l teS; melly ;- Ia
Since Iy ; x Iy, = 11, 4 - oy via (7, m2) +— 71 - T2, We have
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Z Prob(m 1) = Z Prob(m - m2 1)

welly ¢ 12 ¢ (m1,m2) €Ty ¢ XTI ¢

— Z Z Prob(m; 1) Prob(my 1)

m €Il ¢ mo€lla

= Z Prob(m 1) - Z Prob(ms 1)

w1 €l mo€lla ¢
= PI‘Ob(Hl’t) . PI‘Ob(Hg,t) .

Since for every ¢ € I the value of Prob(Il,;) does not depend on t € 5, it
follows that

Prob(Ily - Tly) = 3 ( Prob(Ily,) - S Prob(Tly,))

el tes;

= Z Prob(Hz,ti) PrOb<H1,S¢) :
el
a

It is worth to explicitly note the particular case of this proposition when
|| =1.

Corollary 5.9 Let II; C FPaths(s), Il C FPaths with last(I1;) = first(Il,).
Let Iy = {my € I, | first(me) = t}. Then, if min(Il;), min(Ily) and min(IL; -
I1y), and if for any t',t" € first(Ily), Prob(Ily ) = Prob(Ily ), we have that

Prob(1l; - II) = Prob(Il;) - Prob(Ily,)

for arbitrary t € first(Ily). a

5.2 Weak coalgebraic bisimulation for generative systems

For treating weak probabilistic bisimulation, we shall need to consider one
more type of systems. Let G* be the bifunctor defined by

G"(A,S) = (P(A) x P(S) — [0,1])
on objects (A4, S) and for morphisms (fi, fo): Ax S — B x T by
G f=Wwreve (i, fy") | v: P(A) x P(S) — [0,1)).

Consider the Set functor G% corresponding to G, so that G%(S) = (P(A) x
P(S) — [0,1]) and for a mapping f: S — T, G4f = (v — vo (idy', f71) |
v: P(A) x P(S) — [0,1]). We will use the functor G to model the x*-
translation of generative systems. Therefore we are interested in characterizing
equivalence bisimulations for this functor. In order to apply Lemma 2.11 we
need the following.

Lemma 5.10 The functor G weakly preserves total pullbacks.
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Proof. Let (P, m,m) be a total Set pullback of the cospan X-toz<ty
ie. P={(z,y) | f(x) = g(y)} and 7, w5 surjective. Then the outer square
of the following diagram commutes, and a morphism v : G P — P’ exists,

where P’ is the Set pullback of the cospan G3X G ghz Giag gLy .

QAX

I
gA gAg
GA

It is enough to prove that « is surjective. Since m; and 7y are jointly injective,
this is to show that for every (u,v) € P’ there exists w € G4 P with w o
(id*, 77y = wand w o (idy", 75 ') = v. Fix (u,v) € P’. Note the following
(a) (u,v) € P"implies that VA’ C AVZ' C Z: uw(A', f~1(Z") = v(A', g Y(Z")).
(b) 7 '(X) = m7(X") = X' = X" for any X', X" C X, since m is
surjective.
(¢) M (Y) =m, ' (Y") = Y/ =Y"forany Y',Y" C Y, since T, is surjective.
(d) Let X' C X,Y'CY. Then 7 *(X') = 7, (Y') implies
(A1) F(F(0) = X
Clearly X' C f~1(f(X")). Let 2’ € f~*(f(X")) such that f(z') = f(x) for
some z € X'. Since m is surjective, there exists y € Y with («/,y) € P
ie. f(2') = g(y) and hence also f(z) = g(y) i.e. (x,y) € P. Thus (x,y) €
N (X') = 7,1 (Y!) from where y € Y. Hence (2/,y) € w3 '(Y") = 7 H(X')
ie. o' e X'
(d2) g7 H(g(Y")) =Y, similar as (d1).
(d3) f(X') =g(Y")
Let z € f(X') i.e. z = f(x) for x € X'. Since m; is surjective there exists
y € Y with (z,9) € Pie. f(z)=g(y). Now (z,9) € 7, (X') = 7, (Y")
and therefore y € Y’ i.e. z = f(z) = g(y) € g(Y'). Hence f(X') C g(Y’).
Similarly, g(Y”) C f(X’).
Hence, if 7, 1(X') = 7, }(Y") for X' C X, Y’ C Y we get, for any A’ C A

(d) (d3)

w(A, X)) D ) Lo g (F(X) E

oA g7 (g (V) E w(AL YY),
This, together with (b) and (c¢) shows that the function w: P(A) x P(P) —
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[0,1] given by
WA, X Q=m (X))
wA, Q)= vAY) Q=m'(Y)
0 otherwise

is well defined. Clearly, w o {(id;", 77') = u and w - (id;", 75 ') = v. Thus 7 is
surjective. O

Note that, however, G% does not preserve weak pullbacks, as shown by the
next example.

Example 5.11 G’ does not preserve weak pullbacks.

Choose X with |X| > 3. Fix zp € X. Let Z = {1,2,3} and consider the

cospan X-1-7<9 X for the maps

1  otherwise 3  otherwise.

The Set pullback of this cospan is then P = {(zg,z¢)}. On the other hand,
let P’ be the pullback of the cospan

* g* * g* *

Then every pair (u,v) € G4 X x G4 X with the property

p(A0) = p(A' {zo}) = (A, X\ {zo}) = p(A', X) =

= v(A0) = v(A' {zo}) = v(A, X\ {zo}) = v(4, X)
belongs to P’ since 0, {zo}, X \ {z0} and X are the only subsets of X that
are inverse images of subsets of Z under f and g. Now we consider G} P =
{p: P(A) x P({{zo,2z0)}) — [0,1]}. If v € G4 X is such that v = (Gm1)(u)
for some p € G4 P then v = po{(id,", 7). Hence for A’ C A, X’ C X we have

V(A X') = u(A0) if 2o ¢ X' and
V(A X") = p(A' {(xo, o) }) if g € X'.

Choose ¥ € X, x1 # xy. Since |X| > 3 we have {xg,x1} & {0,{zo}, X \
{z0}, X}. Define : P(A) x P(X) — [0,1] by

A, XT) = A= {50,m)

0 otherwise

28



SOKOLOVA, DE VINK, WORACEK
Then (£,¢) € P’ since
E(A',0) = (A" {zo}) = &(A', X \ {mo}) = (A, X) =0.
But ¢ can not be written as (G%m) () for any 1 € G P since
§(A" {mo, 21}) # E(A' {zo})
while, as noted above,
(Gam) () (A {zo, 21}) = u(A’, {{wo, w0} }) = (Gam) (1) (A", {wo}).-

Hence there can not exist a map v making the following diagram commute

Pl

2

gi‘X Ghm gzp

and hence G P can not be a weak pullback of G X Zal gLz 25 GLX.

Let R be an equivalence relation on a set S. A subset M C S is an R-
saturated set if for all s € M the whole equivalence class of s is contained
in M. We denote by Sat(R) the set of all R-saturated sets, Sat(R) C P(.S).
Actually, M is a saturated set if and only if M = U;¢;C; for C; € S/R. Hence
there is a one-to-one correspondence between the R-saturated sets and the
elements of P(S/R).

Lemma 5.12 An equivalence relation R on a set S is a bisimulation on the
G system (S, A, ) according to Definition 2.3 for the functor G if and only
if

(s,t) € R = VA" C A\VM € Sat(R): a(s)(A', M) = a(t)(A", M).

Proof. Consider the pullback P of the cospan G,S ﬂ>CQT4(S/R)g*<Lgi‘<45,
where ¢ is the canonical projection of S onto S/R. We have (u,v) € P if and
only if Gie(u) = Ghe(v) ie. o (idy', ¢t = veo (id,', ct) which is equivalent
to

VA" C A VM C S/R: u(A',c ' (M) = v(A',c 1 (M))
i.e., since ¢! : P(S/R) — Sat(R) is a bijection,

VA" C AVM € Sat(R): u(A", M) =v(A', M).

Now using Lemma 2.10 and Lemma 2.11 we obtain the stated characteriza-
tion. O

We proceed by presenting the #-translation for generative systems.
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Definition 5.13 Let ®9 assign to every generative system (S, A, P) i.e. any
Ga coalgebra (S, A, a) the G%. coalgebra (S, A*, o’) where for W C A* and
S'C S, d(s)(W,S") = Prob(s, W, 5").

Theorem 5.14 The assignment ®9 from Definition 5.13 is a *-translation.

For the proof we need an auxiliary property.

Lemma 5.15 Let (S, A, ), i.e. (S, A,P) be a G4 system, R a bisimulation
equivalence on (S, A,a) and (s,t) € R. For k € N,C; € S/R and a; € A, let
sBCLBCy- - BC, denote the set of paths

32)012)02-“ %)Ck:{sgslgé?“- %Sk’SiECZ‘,Z‘:L...,k}.
Then s 3 CL 2 Cy - -+ 25 Cy is minimal and
Prob(sgClgCg--- ﬂ>C’]§) = Prob(thlgC’g--- %)Ck) (23)

Proof. The fact that s 2> C} 23 Cy - - - 25 C), is minimal is clear, since all paths
in this set have the same length. We use induction on & to establish (23). For
k = 1 the statement is » . P(s,a1,5") = > .0 P(t, a1,5") and it holds
since R is a bisimulation relation and (s,t) € R. Consider

32)01202"' ak—thkH = Sgclgcz“' %)Ck : Ckak—tlckﬂ-
By the inductive hypothesis,

Prob(s % Cy B Cy - BCy) = Prob(t B CL B Cy - - BCY).

By the bisimulation condition for generative systems, Prob(#’ At Crr1) =
Prob(t” s Cl1) for all t,t" € Cy. Hence, by Corollary 5.9 we get
Prob(s 2 Cy B Cy - B0y - O, "B Cray)
= Prob(s % C; 2 02 B0 - Prob(Cy 5 Cry)
=Prob(t 2 C, B Cy- - ok Cy) - Prob(Cy, A Cri1)
—Prob(t %, % 02 OO ).

We are now prepared for the proof of Theorem 5.14.

Proof. [of Theorem 5.14] We need to check that ®9 is injective and preserves
and reflects bisimilarity. Assume ®9((S, A, a)) = ®I((S, A, 3)) = (S, A%, ).
Then by the definition of Prob we get that for any s,z € S and any a € A,
a(s)((a, 1)) = P(s, a,t) = Prob(s, {a}, {t}) = o/(s)({a}, {t}) = B(s)({a,1)).
Reflection of bisimilarity is direct from Lemma 5.12: Assume s ~ t in
DI((S, A, a)) = (S, A%, ). Then there is an equivalence bisimulation R on
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(S, A*,a/) such that (s,t) € R. By Lemma 5.12, we get that for all W C A*
and for all M € Sat(R) it holds that

o (s)(W, M) = o/ (t)(W, M). (24)
In particular, for all @ € A and all C' € S/R we have

o(s)({a}, C) = o/ (t)({a}, C). (25)

By the definition of o we have

a'(s)({a},C) = Prob(s,{a},C) = ZP (s,a,s") Z a(s)({a, s"))

s'eC s'eC

and therefore for all a € A and all C' € S/R

Yo ale)({as)) =) alt)({a,s)) (26)

s'eC s'eC

which by Definition 2.8 yields that R is a bisimulation equivalence on the
generative system (S, A, a) i.e. s ~ ¢t in the original system.

The proof of preservation of bisimilarity uses Lemma 5.15. Let s ~ ¢t in
the generative system (S5, A, «). Then there exists an equivalence bisimulation
R with (s,t) € R. The relation R induces an equivalence Rp on FPaths(s)
defined by

/ a//

(s 51 Bsy B, sDsh B Bl eRp

if and only if &k = k', a; = a} and (s;,s;) € R for i = 1,..., k. The classes of
Rp are exactly the sets s 5C, B3 Cy--- B0y for C; € S/R and a; € A.

Assume M € Sat(R) and W C A*. We show that the set s M is

saturated with respect to Rp. Namely, let 7 = 55 51 B3 59 - - Hs € s W

and let 7 = s %81 B s~ B s be a path such that (r,7') € Rp. Then

trace(m) = trace(n’), first(m) = first(n’) and (last(rw),last(n’)) € R. Since M
is saturated, last(n’) € M. Furthermore, 7’ does not have a proper prefix with
trace in W and last in M, since this would imply that 7 has such a prefix,

e w w
contradicting m € s — M. Hence, ' € s — M.
W D ) .
Therefore, the set s — M is a disjoint union of some Rp classes, and since
w L .
s — M is minimal we can write
a a
S—)M US “ ,il—lz)C,Lz '—> ik; -

el

It follows that Prob(s, W, M) = >"._; Prob(s 3 Cy 3 Cyy - -~ ¥8 Cy). By
Lemma 5.15, we get that Prob(s, W, M) = Prob(t, W, M) i.e. o/(s)(W, M) =
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o/ (t)(W, M) proving that R is a bisimulation on (S, A* a/) i.e. s ~ t in the
*-extension (S, A%, o). O

The same systems of Example 4.4 when each transition is considered as
probabilistic with probability 1 show that the x-translation ®9 is also not
induced by a natural transformation.

Remark 5.16 The x-translation ®¢ together with a subset 7 C A determines
a weak-7-bisimulation. Thereby the weak-7-system is

W, o D[S, A,0)) = W,((S, A%, ') = (S, Ay, 0)
where o/(s) : P(A,) x P(S) — [0,1] is given by

a"(s) = n5(d'(s)) = G*(hs,ids)(/(s)) = /(s) = (b, ids).
Hence for X C A, and S’ C S,

o (s)(X,8') = o/ (s)(h;1(X), §") = &/ (s)(| ) Bu, §") = Prob(s, | | Bu, 9",

weX weX

where, as before, for w = a; ...a, € A,, B, is the block B, = 7*a7* ... 7"a,7*
hot({w}).

Therefore, from Lemma 5.12 we get that an equivalence relation R is a
weak-7-bisimulation w.r.t. (®9 7) on the generative system (S, A, «) if and
only if (s,t) € R implies that for any choice of blocks B;,i € I and classes
C;eS/R,jeJ

Prob(s,| ] Bi.| ) C}) = Prob(t,| | Bi.| ) C)). (27)

iel  jeJ iel  jeJ

Sets of the form U;c;B; will be called saturated blocks.

5.8 Correspondence theorem

In this section we recall the original definition of weak bisimulation for genera-
tive systems by Baier and Hermanns, and we prove a correspondence theorem,
i.e. their weak bisimulation coincides with the weak bisimulation we have ob-
tained in the previous subsection. It is important to note that Baier and
Hermanns restrict to finite state systems, in particular they only prove that
weak bisimilarity is an equivalence for finite systems. Therefore our result
extends the results of Baier and Hermanns to systems with arbitrary state
set.

Definition 5.17 [BH97,Bai98,BH99] Let (S, A,P) be a generative system.
Let 7 € A be an invisible action. An equivalence relation R C S x S is a weak
bisimulation on (S, A, P) if and only if whenever (s,t) € R then for all actions
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a € A\ {7} and for all equivalence classes C' € S/R:
Prob(s, a7, C') = Prob(t, 7*at*, C)
and for all C' € S/R:
Prob(s, 7", C) = Prob(t, 7", C).

Two states s and ¢ are weakly bisimilar if and only if they are related by some
weak bisimulation relation. Notation s =~ ¢.

We borrow some properties from Baier and Hermanns, considering their notion
of weak probabilistic bisimulation.

Proposition 5.18 [Bai98,BHI9] Let (S, A, P) be a generative system and let
s~y t. Then the following hold:

(1.) If R is a weak bisimulation relating s and t, then for all ay, ... ,ar € A\ {7}
and for all classes C' € S/R

Prob(s, 7" a17* ... 7 a7, C) = Prob(t, 7" a1 7" ... T arT", C).

(2.) There exists a weak bisimulation R relating s and t with the property that,
for any class C € S/R, Prob(s,7*,C) =1 = s € C, i.e., for any two
different classes C1,Cy € S/R it holds that Prob(Cy,7*,Cy) < 1.

Proof. We need to supply a proof since the proof in [Bai98 BH99] is given
for finite state systems.

(1.) Let R be a weak bisimulation on (S, A, P) such that (s,t) € R. Let B =
T*a 7 ... T*ap*. We prove 1. by induction on k. For k € {0,1} the
property holds by Definition 5.17. Assume Prob(s, B, C') = Prob(t, B, C)
for all C € S/R. Let B' = 7*ay7* ... 7% ap7*a417*. Then

B’ B Tr a1 T"
sHC= | s=c-0"™BT
C'eS/R

and hence, by Proposition 5.8 and by the hypothesis,

Prob(s, B',C) = Z Prob(s, B, C")-Prob(C’, 7*aj,17%,C) = Prob(t, B', C).
C'eS/R

(2.) The statement follows by adjusting the proof in [Bai98,BH99] to arbitrary
state systems. Basically one shows that if the condition in 2. is violated
then one can take a new equivalence by joining classes of the former one
and this will again be a weak bisimulation. The details of the proof are left
to the reader.

O

We are now able to state and prove the correspondence theorem.
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Theorem 5.19 Let (S, A, ) be a generative system. Let T € A be an invisible
action and s,t € S any two states. Then s =) t according to Definition 5.5
w.r.t the pair (P9, {1}) if and only if s =, t according to Definition 5.17.

The sufficiency part of the theorem holds trivially, having in mind Defini-
tion 5.17 and Remark 5.16, equation (27), since 7* as well as 7*a7*, for any
a € A\ {7} is a saturated block and also each R-equivalence class is an R sat-
urated set. Hence ~2(;} is at least as strong as ~,. The necessity proof is more
involved, and we will split it in several lemmata. Till the end of this subsection
we assume that R is a weak bisimulation of a generative system (S5, A, «) i.e.
(S, A, P), according to Definition 5.17 satisfying Proposition 5.18, relating s
and t.

Lemma 5.20 For any saturated set M = U} C; consisting of finitely many
classes C; € S/R, for any block B = T*a;7*...7 a7 where aq,...,a; €

A\ {7} and for any i € {1,...,n},
Prob(s, B, C;,—~M) = Prob(t, B, C;, = M).

Proof. We use induction on n, the number of classes that M contains. For
n = 1 the property is simply Proposition 5.18(i). Assume Prob(s, B, C;,~M) =
Prob(t, B, C;,—~M) for any R - saturated set M being a union of less than n
classes, and any class C; C M. Let M be an R- saturated set which is a
union of n classes, i.e. M = U7, C; for some C; € S/R. We use the following
notation, for i € {1,...,n}and j € {1,...,i—1,i+1,...,n}.

A8
V; = Prob(s, B, C;) 5180 Prob(t, B, (;)
TZJ = Prob(Cj, T*, Cz)
HY = Prob(C;, 7*,Cj, = Ly 4s; C)
Consider the series » ;- ax for
a%:v;.( Z Hij) : a%H:_( Z Gngﬂ) < Z HZJTZJ> ,
G=1,j#i J=1,j#i J=1,j#i

Note that ), ., as is a geometric series, and ), @241 as well, with the same

ratio p = Y7, H] - T7. Let T; = max’_, ,, T/. By Proposition 5.18(ii),
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T7 <1 for all j # i and therefore T; < 1. Furthermore, note that

Z H} = Prob(Cy, 7%, U, ,,C;) < 1.

J=1j#i
Hence,

an H -T!<T,- Y H <T,<1

J=1j#i J=1,j-i

i.e., both geometric series are convergent. Moreover, they are absolutely con-
vergent. Therefore the series ), ., by for by = ag, + agk41 is absolutely con-
vergent which means that ), ay is as well, being just a rearrangement of
the elements of Y, ., bx. Note that

and this value does not depend on the starting state s. We will prove
that Y ,.,ar = Prob(s,B,C;,~M) which is enough to conclude that
Prob(s, B, C;,~M) = Prob(t, B,C;,~M). For this purpose we give meaning
to ay using the results of Subsection 5.1. We first denote some sets of finite
paths. Let

*

m=1,m7#i

H2k+1—s—>|_| C, —>C’ (C; U C, —>C')

m=1,m7#i m=1,m7#i

By Proposition 5.8, Corollary 5.9, the definition of a;, with a help of an
inductive argument one obtains that for any ¢ > 0

a; = (—1)" - Prob(IL;).

In order to prove that »_, ,a, = Prob(s, B,C;, M) we define a function

wisSS — {1,2}*. The function w will, in a sense, trace the classes that
a path visits with a word in B. Some auxiliary functions will be needed for
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the definition of w. Let &: s = S — {1,2}* be defined by

.

1 teC’i,ﬂgsgS
2 tGM\Ci,WgsgS
€ tg?M,ngsgS

(- last(m) S t) = 5
o(m)-1 teC,mes— 9

o(m) -2 tGM\Ci,WESgS
() t¢M,7r€s£>S

and if € € s 5 S, then w(e) =e.
Let d : {1,2}* — {1,2}* and d' : {1,2}* — {1,2}* be defined in the
following way, for u,v € {1,2}* and z,y € {1, 2}.

du)-x uwu=v-zx

dlu - z) =
we) du)-x uw=v-yy#zx

d'(u) u=v-x

d(u-z)=
du)-x u=v-yy#cz

We put w = d - w. We can explain the definition of the maps d, © and w as
follows. The map @ takes a path with a trace in B and encodes the sequence
of the classes that are visited by the path after a word in B has already been
performed. The encoding is 1 if the class under consideration, C;, has been
visited and 2 if any other class from M has been visited, there is no record of
classes outside M. Then the map d removes adjacent multiple occurrences of
1 and 2 in the word obtained by w, except for the multiple occurrences at the
end of the word. Basically, the map d is computed by the normal algorithm
{112 — 12,221 — 21}. It is important to note the following.

{121 = s 20, w{1) = s2u G
By the definition of w we easily get that

w({1,21}) =w T ({1} W ({213).

A more careful inspection shows that
wi({21h) e (*?:1,j¢iw_1({1}) -Gy =g G Cz‘)

n B T*
Therefore, using again Proposition 5.8 and Corollary 5.9 we get
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Prob(w™({1})) = Prob(w™*({1, 21})) — Prob(w'({21}))
=%—<Z G? - T9 — Prob(w™({1})) Z H/ . TJ)

J=1,j#1 J=1,j#i
=ag + a; + Prob(w ™ ({1})) - p
ie.,
Prob(s, B, C;, = M) = ag + ay + Prob(s, B,C;,—~M) - p
Hence, for all n > 0
n—1
Prob(s, B,C;,—M) = Z(ao +ap) - p* + Prob(s, B, C;, ~M) - p"

k=0

and since lim,, ., Prob(s, B, C;, = M) - p™ = 0, we get

Prob(s, B, C;,—~M) = lim Z ap + ap) - pF = Zak

k>0
which completes the proof. O

Next we extend the property to arbitrary R-saturated sets.

Lemma 5.21 For any R-saturated set M, for any block B = a7 ... 7 ap7*
where ay, . ..,ar € A\ {7} and for any class C C M

Prob(s, B,C,—M) = Prob(t, B,C,—~M).

Proof. We will show that we can assume that M contains at most countably
many classes. Let S’ be the set of states that are reachable from s by a finite
path. This set is at most countable since each finite path contributes to S’ with
finitely many states, and there are at most countably many paths starting in
s according to Lemma 5.1. Let M be the smallest R-saturated set containing
S'"N M. Since S’N M is at most countable, the set M, contains at most count-
ably many classes and Prob(s, B, C;,~M) = Prob(s, B, C;, 7 Mj). In the same
way we get a saturated set M; containing at most countably many classes
such that Prob(t, B, C;, =M ) = Prob(t, B, C;, = M,). Then M’ = M,U M, is a
saturated set containing at most countably many classes and

Prob(s, B, C;,—~M') = Prob(s, B, C;, ~M),
Prob(t, B, C;, ~M') = Prob(t, B, C;, = M).
So, assume M = L;>(C;. Note that
sgﬁMC: ﬂ sgﬁc/C'.

c'cM
37



SOKOLOVA, DE VINK, WORACEK

We use the following simple property from measure theory. If i is a proba-
bility measure on some set and if A = N,ecnyA, is a measurable set which is
a countable intersection of measurable sets, then u(A) = inf{u(N;ierA;) | I C
N, I finite }. Hence,

Prob(s, B,C,—M)
= inf{Prob(N¢rcy,, s 5 o C) | Iny € M, Iy "finite” }

= inf{Prob(s, B, C, ~Iy) | Ins € M, I,;"finite” }

220 4t {Prob(t, B, C,—Iu) | Ini C M, Iny " finite” }

= Prob(t, B,C,—~M)

where "finite” means a saturated set containing finitely many classes. O

By Lemma 5.21, noting that Prob(s,B,M) = Prob(s, B,U;C;) =
> ics Prob(s, B, C;,~M) we get the following property.

Corollary 5.22 For any R-saturated set M, for any block B =
T*a " . TR T where aq, ... ap € A\ {7}

Prob(s, B, M) = Prob(t, B, M).
O

We proceed to saturated blocks. Again we first treat saturated blocks con-
taining finitely many blocks and then extend to arbitrary saturated blocks.

Lemma 5.23 For any R-saturated set M and for any saturated block W =
Uy Bj containing finitely many blocks

Prob(s, W, M) = Prob(t, W, M).

Proof. Note that

Prob(s, W, M) =Y _ Prob(s, B;, =W, M)
=1

since "
SEM =+ sZ _wM,
i=1
and also
PI‘Ob(S,Bi,_‘W, M) = PrOb(S,Bi7_|‘/I/, C],_|M)
VE CJEM
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for similar reasons, where the last equation holds since we can assume that M
contains at most countably many classes. Hence it is enough to prove that

Prob(s, B;, =W, C;, M) = Prob(t, B;, =W, C;, = M)

for any B;, i € {1,...,n} and any class C; C M. For any i, let w; € A\ {7}",
w; = @ ...a;, be the word such that B, = B,,, = 7" an7" -+ 7 a;, 7. The
prefix ordering on the set of words {wy, ..., w,} induces an ordering on the set
of blocks { By, ..., B,} given by B; < B; if and only if w; < w;. If B; < B;, by
B;_; we denote the block corresponding to w;_;, the unique word satisfying

w;-wj—; = w;. We are going to prove, by induction on the number of elements
in the set {i € {1,...,n} | B; < B;} that

B, B By y Bj—i
v C = wewl | -w C -u C 28
S = s —-w + |+ s =W = M (28)

Bi<B]' C'CcM

where C’ C M is a class. First of all we have to make sure that the right hand
side of the equation is well defined, i.e. that the unions are really disjoint and
minimal. By the definition of the involved sets of paths a careful inspection
shows that it is indeed the case. It is rather obvious that the right hand
side is contained in the left hand side since all the paths of the right hand
side do start in s, have a trace in B; and end up in C, without reaching M
before with a prefix whose trace is also in B;. For the opposite inclusion we

use inductive argument. Assume B, has no (strict) prefixes in {Bj,..., B, }.

B; B,
Then the equation becomes s —3_); C = s = C and it holds since no

M
path which has a trace in B; can have a strict prefix with a trace in W.

B, B,
For the inductive step, assume 7 € s —4_y; C' and 7 € s —_w C. This

~M
means that 7 has a prefix that has a trace in U}, B; and ends in M. So,
Bi_
TE S By C’ ]—>kﬁM C for some k and for some class ¢/ C M. We want
. Bi_;
to show that m € Wp,<p, Worcr s Emw C'" "5y C. We can assume that
= M

Bj_
TES EﬁﬂM ¢’ "5y C by taking €7 to be the first class of M that 7 hits
having performed a trace in By. Now By, being a prefix of B;, has less prefixes
than B; and therefore either

Bj_»

By,
Tes—swC S _yC
M

or there exist r € {1,...,n} and a class C” C M such that

B By Bj_
TE S Jﬁ% C” —>TﬁM C/ ]—> M C

B;_, , :
fe. 7€ s By C" 5", C, which completes the proof of equation (28).
-M
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Now, by the same inductive argument we get: if B; has no proper prefixes
than
Prob(s, Bj, =W, C,~M)=Prob(s, Bj,C,~M)
=Prob(t, B;,C,~M)
=Prob(t, B;, ~W,C,~M).
Assume that Prob(s, B;, =W, C,~M) = Prob(t, B;, ~W,C,-M) for all B; <
B;. Then by (28) and by Proposition 5.8 we get
Prob(s, B;, =W, C,~M)
= Prob(s, Bj,C,—M)
— > ) Prob(s, B;, ~W,C’, = M) - Prob(C", B;_;, C, =~ M)
B;<B; C'CM
(IH)

=" Prob(t, B;,C,~M)
— > > Prob(t,B;, ~W,C’,~M) - Prob(C", Bj_;, C, ~M)
B;<B;j C'CM
= Prob(t, B;,-W,C, - M)
which completes the proof. O
Lemma 5.24 For any R-saturated set M and for any saturated block W

Prob(s, W, M) = Prob(t, W, M).

Proof. We first consider the countable case. Let W = U,enB,,. Let
I3 = {r | first(7) = s,last(n) € M, trace(n) € B, }
!, = {n | first(7) = ¢, last(w) € M, trace(r) € B, }.

Then
Prob(s, W, M) = Prob(s, UyenBn, M)
= Prob((UpenlIl},) 1)
= Prob(U,enll))

(;)sup{Prob(Uing) | I €N, finite }

= sup{Prob(s, W, M) | W; = U,;e;B;, I finite }

= sup{Prob(t, W, M) | W; = U;e;B;, I finite }

= Prob(t, W, M).
where the equality (*) holds because of the following simple property from
measure theory. Let p be a measure on some set, and let A = U,enA, be a
measurable set which is a countable union of measurable sets. Then u(A) =
sup{p(Uier4;) | I € N, I finite}.

If W = U;B; contains arbitrary many blocks then there exists a

countable index set I, C I and a saturated set W, = Llecr, B; such that
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Prob(s, W, M) = Prob(s, Wy, M) using Lemma 5.1. For the same reason,
there exists a countable index set I; C I and a corresponding saturated set
Wi = Uier, C; with Prob(¢, W, M) = Prob(t, W}, M). Hence Prob(s, W, M) =
Prob(s, Wy U Wy, M) = Prob(t, W, U Wy, M) = Prob(t, W, M) since W, U W,
is countable, and that case we have already proven. O

Note that Lemma 5.24 proves the necessity part of the correspondence Theo-
rem 5.19.

6 Conclusions

In this paper we have proposed a coalgebraic definition of weak bisimulation
for action-type systems. For its justification we have considered the case of the
familiar labelled transition systems and of generative probabilistic systems and
have argued that the coalgebraic notion coincides with the concrete definitions.
Additionally, the paper also comprises a few other, smaller contributions.

This paper follows an earlier work jointly with Falk Bartels [BSV03,BSV].
In Section 2 we have discussed a general method for obtaining correspondence
results for coalgebraic versus concrete bisimulations. The main idea is to tie up
the reformulation of coalgebraic bisimulation in terms of the lifted bisimulation
relation =gz , and the pullback of a particular cospan (cf. Lemma 2.11).

Our handling of probabilistic distributions avoids restricting the cardinal-
ity of the support set, a fact of some technical interest. The results hold
for arbitrary discrete distributions captured by the functor D of Section 2.
Although we do not impose cardinality restrictions on the state spaces con-
sidered, generative probabilistic system are discrete in nature. The work of
Baier and Hermanns treats finite systems only, also because of the algorithmic
considerations addressed [BH97,BH99], a matter that we do not touch upon
here. The formulations, both concrete and coalgebraic, as used in the present
paper extend the work of Baier and Hermanns in the sense that we do not
impose this restriction.
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