Weak bisimulation for action-type coalgebras

Ana Sokolova, Erik de Vink, Harald Woracek

{asokolov,evink}@win.tue.nl harald.woracek@tuwien.ac.at.

TU/e Eindhoven and TU Vienna

Outline

- Introduction and motivation
 - * coalgebras (action-type)
 - * LTS
 - * bisimulation, strong and weak
 - * coalgebraic vs. concrete bisimulation
- Weak bisimulation for coalgebras
- Examples and correspondence results
 * LTS
 - * generative probabilistic systems
- Conclusions

Action-type coalgebras A coalgebra (on Set, of type \mathcal{F}) is a pair $\langle S, \alpha : S \to \mathcal{F}S \rangle$ for \mathcal{F} a Set endofunctor

Action-type coalgebras

* bifunctor = functor

 $\mathcal{F}:\mathsf{Set}\times\mathsf{Set}\to\mathsf{Set}$

Action-type coalgebras

* bifunctor = functor

 $\mathcal{F}:\mathsf{Set}\times\mathsf{Set}\to\mathsf{Set}$

• \mathcal{F} - bifunctor, A - fixed set $\Rightarrow \mathcal{F}_A$ - Set endofunctor,

 $\mathcal{F}_A(S) = \mathcal{F}(A, S),$

 $\mathcal{F}_A f = \mathcal{F} \langle \mathrm{id}_A, f \rangle, \ f \colon S \to T$

Action-type coalgebras

* bifunctor = functor

 $\mathcal{F}:\mathsf{Set}\times\mathsf{Set}\to\mathsf{Set}$

• \mathcal{F} - bifunctor, A - fixed set $\Rightarrow \mathcal{F}_A$ - Set endofunctor,

 $\mathcal{F}_A(S) = \mathcal{F}(A, S),$

 $\mathcal{F}_A f = \mathcal{F} \langle \mathrm{id}_A, f \rangle, \ f \colon S \to T$

* an action-type coalgebra of type \mathcal{F}_A is a triple $\langle S, A, \alpha \colon S \to \mathcal{F}_A(S) \rangle$

Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

such that there exists an \mathcal{F}_A -coalgebra structure γ on R making

Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

such that there exists an \mathcal{F}_A -coalgebra structure γ on R making

Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

such that there exists an \mathcal{F}_A -coalgebra structure γ on R making

 $s \sim t$ - bisimilarity, as usual ...

LTS is a triple $\langle S, A, \rightarrow \subseteq S \times A \times S \rangle$

$$s_1 \xrightarrow{a} s_2$$
 for $\langle s_1, a, s_2 \rangle \in \rightarrow$

Example:

 $s_1 \xrightarrow{a} s_2$ for $\langle s_1, a, s_2 \rangle \in \rightarrow$

Note: LTS $\langle S, A, \rightarrow \rangle = \mathcal{L}_A$ coalgebra $\langle S, A, \alpha \rangle$ for the bifunctor $\mathcal{L} = \mathcal{P}(\mathcal{I} \times \mathcal{I})$ with

 $\langle a, s' \rangle \in \alpha(s) \iff s \stackrel{a}{\to} s'$

$$\langle S, A, \rightarrow \rangle$$
 - LTS

$$\langle S, A, \rightarrow \rangle$$
 - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

$$\langle S, A, \rightarrow \rangle$$
 - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

$$\langle s,t\rangle\in R\Rightarrow$$

$$s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$$

$$\langle S, A, \rightarrow \rangle$$
 - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

$$\langle S, A, \rightarrow \rangle$$
 - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\sim_{\rm LTS}$ - strong bisimilarity

Characterizing bisimulation

* $R \subseteq S \times T$, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

Characterizing bisimulation

* $R \subseteq S \times T$, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

• $R \subseteq S \times T$ - bisimulation between $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ iff

 $\langle s,t\rangle \in R \Rightarrow \alpha(s) \equiv_{\mathcal{F}_A,R} \beta(t)$

Characterizing bisimulation

* $R \subseteq S \times T$, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

- $R \subseteq S \times T$ bisimulation between $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ iff $\langle s, t \rangle \in R \Rightarrow \alpha(s) \equiv_{\mathcal{F}_A, R} \beta(t)$
- if \mathcal{F} w.p. total pullbacks and R equivalence, then $\equiv_{\mathcal{F},R}$ is the pullback of

$$\mathcal{F}S \xrightarrow{\mathcal{F}c} \mathcal{F}(S/R) \xleftarrow{\mathcal{F}c} \mathcal{F}S$$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action *R* - equivalence weak bisimulation transfer condition:

$$s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action *R* - equivalence weak bisimulation transfer condition:

$$s \xrightarrow{a} s' \Rightarrow \exists t' : t \xrightarrow{a} t', \langle s', t' \rangle \in R$$

for $\xrightarrow{a} = \xrightarrow{\tau} * \circ \xrightarrow{a} \circ \xrightarrow{\tau} *$ and $\xrightarrow{\tau} = \xrightarrow{\tau} *$

Weak bisimulation – p.8/22

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action *R* - equivalence weak bisimulation transfer condition:

$$s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$$

for $\stackrel{a}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*} \circ \stackrel{a}{\rightarrow} \circ \stackrel{\tau}{\rightarrow} {}^{*}$ and $\stackrel{\tau}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*}$

 \approx_{LTS} - weak bisimilarity for LTS

 $\langle S, A, \alpha \rangle \xrightarrow{\Phi} \langle S, A^*, \alpha' \rangle \xrightarrow{\Psi} \langle S, (A \setminus \tau)^*, \alpha'' \rangle$

$$\langle S, A, \alpha \rangle \xrightarrow{\Phi} \langle S, A^*, \alpha' \rangle \xrightarrow{\Psi} \langle S, (A \setminus \tau)^*, \alpha'' \rangle$$

by

$$\langle a_1 \dots a_k, s' \rangle \in \alpha'(s) \iff s \stackrel{a_1}{\to} \cdots \circ \stackrel{a_k}{\to} s'$$

and

 $\langle a_1 \dots a_k, s' \rangle \in \alpha''(s) \iff \langle w, s' \rangle \in \alpha'(s)$ for some $w \in \tau^* a_1 \tau^* \dots \tau^* a_k \tau^*$

 $\langle S, A, \alpha \rangle \xrightarrow{\Phi} \langle S, A^*, \alpha' \rangle \xrightarrow{\Psi} \langle S, (A \setminus \tau)^*, \alpha'' \rangle$

then: $s \approx_{\text{LTS}} t$ in $\langle S, A, \alpha \rangle$ iff $s \sim t$ in $\Psi \circ \Phi(\langle S, A, \alpha \rangle)$

$$\langle S, A, \alpha \rangle \xrightarrow{\Phi} \langle S, A^*, \alpha' \rangle \xrightarrow{\Psi} \langle S, (A \setminus \tau)^*, \alpha'' \rangle$$

then:
$$s \approx_{\text{LTS}} t$$
 in $\langle S, A, \alpha \rangle$
iff
 $s \sim t$ in $\Psi \circ \Phi(\langle S, A, \alpha \rangle)$

• weak boils down to strong !

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

result: "double-arrow" coalgebra

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

result: "double-arrow" coalgebra

weak bisimulation = bisimulation for the "double-arrow" coalgebra

$$\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$$
 is a *-extension

*
$$\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$$

$$\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$$
 is a *-extension

- * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
- * Φ is injective

 $\Phi: \mathcal{F} \stackrel{*}{\rightarrow} \mathcal{G} \text{ is a *-extension}$

- * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
- * Φ is injective
- * preserves and reflects bisimilarity
$\Phi: \mathcal{F} \stackrel{*}{\rightarrow} \mathcal{G} \text{ is a *-extension}$

- * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
- * Φ is injective
- * preserves and reflects bisimilarity

Hiding internal actions $\tau \subseteq A$

Hiding internal actions $\tau \subseteq A$ the hiding function $h_{\tau} : A^* \to A_{\tau}$ for

Hiding internal actions $\tau \subseteq A$ the hiding function $h_{\tau} : A^* \to A_{\tau}$ for

 $A_{\tau} = (A \setminus \tau)^*$

Hiding internal actions $\tau \subseteq A$ the hiding function $h_{\tau} : A^* \to A_{\tau}$ for

 $A_{\tau} = (A \setminus \tau)^*$

induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta^{\tau}_S = \mathcal{G}\langle h_{\tau}, \mathrm{id}_S \rangle$

Hiding internal actions $\tau \subseteq A$ the hiding function $h_{\tau} : A^* \to A_{\tau}$ for

 $A_{\tau} = (A \setminus \tau)^*$

induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta^{\tau}_S = \mathcal{G}\langle h_{\tau}, \mathrm{id}_S \rangle$

 $\Psi_{ au}$ is the functor induced by $\eta^{ au}$

Hiding internal actions $\tau \subseteq A$ the hiding function $h_{\tau} : A^* \to A_{\tau}$ for

 $A_{\tau} = (A \setminus \tau)^*$

induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta^{\tau}_S = \mathcal{G}\langle h_{\tau}, \mathrm{id}_S \rangle$

 Ψ_{τ} is the functor induced by η^{τ} "double-arrow coalgebra": $\Psi_{\tau} \circ \Phi(\langle S, A, \alpha \rangle)$

Weak bisimilarity, properties

Given $\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$

 $s \approx_{\tau} t$ in an \mathcal{F}_A coalgebra iff

 $s \sim t$ in $\Psi_{\tau} \circ \Phi$ of the \mathcal{F}_A coalgebra

Weak bisimilarity, properties Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ in an \mathcal{F}_A coalgebra iff $s \sim t$ in $\Psi_{\tau} \circ \Phi$ of the \mathcal{F}_A coalgebra **Properties:**

Weak bisimilarity, properties Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ in an \mathcal{F}_A coalgebra iff $s \sim t$ in $\Psi_{\tau} \circ \Phi$ of the \mathcal{F}_A coalgebra **Properties:** • $\sim \subset \approx_{\tau}$

Weak bisimilarity, properties Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subset A$ $s \approx_{\tau} t$ in an \mathcal{F}_A coalgebra iff $s \sim t$ in $\Psi_{\tau} \circ \Phi$ of the \mathcal{F}_A coalgebra **Properties:** • $\sim \subseteq \approx_{\tau}$ • $\sim = \approx_{\emptyset}$

Weak bisimilarity, properties Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ in an \mathcal{F}_A coalgebra iff $s \sim t$ in $\Psi_{\tau} \circ \Phi$ of the \mathcal{F}_A coalgebra **Properties:**

- $\sim \subseteq \approx_{\tau}$ • $\sim = \approx_{\emptyset}$
- $au_1 \subseteq au_2 \Rightarrow \approx_{ au_1} \subseteq \approx_{ au_2}$

Generative system is a triple $\langle S, A, P : S \times A \times S \rightarrow [0,1] \rangle$

$$s_1 \stackrel{a_1p_1}{\rightarrow} s_2$$
 for $P(s_1, a, s_2) = p$

Example:

Note: g. s. $\langle S, A, P \rangle = \mathcal{G}_A$ coalgebra $\langle S, A, \alpha \rangle$ for the bifunctor $\mathcal{G} = \mathcal{D}(\mathcal{I} \times \mathcal{I}) + 1$ with

$$\alpha(s)(a,s') = P(s,a,s')$$

 $\mathcal{G} = \mathcal{D}(\mathcal{I} \times \mathcal{I}) + 1: \mathcal{D} \text{- distribution functor}$ $\mathcal{D}S = \{\mu : S \to [0,1], \mu[S] = 1\}, \quad \mu[X] = \sum_{s \in X} \mu(x)$ $\mathcal{D}f : \mathcal{D}S \to \mathcal{D}T, \quad \mathcal{D}f(u)(t) = u[f^{-1}(\{t\})]$

 $\mathcal{D}f: \mathcal{D}S \to \mathcal{D}T, \ \mathcal{D}f(\mu)(t) = \mu[f^{-1}(\{t\})]$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

R - equivalence strong bisimulaiton transfer condition:

P(s, a, C) = P(t, a, C)

for $C \in S/R$ and $P(s, a, C) = \sum_{s' \in C} P(s, a, s')$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

R - equivalence strong bisimulaiton transfer condition:

P(s, a, C) = P(t, a, C)

R - equivalence weak bisimulaiton transfer condition:

 $\operatorname{Prob}(s,\tau^*\hat{a}\tau^*,C) = \operatorname{Prob}(t,\tau^*\hat{a}\tau^*,C)$

for $C \in S/R$ and $\hat{a} = a$ if $a \in A \setminus \{\tau\}$ and $\hat{\tau} = \varepsilon$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

R - equivalence strong bisimulaiton transfer condition:

P(s, a, C) = P(t, a, C)

R - equivalence weak bisimulaiton transfer condition:

 $\operatorname{Prob}(s,\tau^*\hat{a}\tau^*,C) = \operatorname{Prob}(t,\tau^*\hat{a}\tau^*,C)$

 \sim_{GEN} , \approx_{GEN} - strong, weak bisimilarity

bifunctor \mathcal{G}^*

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

and

 $\mathcal{G}^*f\colon\nu\mapsto\nu\circ\langle f_1^{-1},f_2^{-1}\rangle$

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

and

$$\mathcal{G}^*f\colon\nu\mapsto\nu\circ\langle f_1^{-1},f_2^{-1}\rangle$$

for

 $f = \langle f_1, f_2 \rangle \colon A \times S \to B \times T$ $\nu \colon \mathcal{P}(A) \times \mathcal{P}(S) \to [0, 1]$

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

and

$$\mathcal{G}^*f\colon\nu\mapsto\nu\circ\langle f_1^{-1},f_2^{-1}\rangle$$

Properties:

- \mathcal{G}_A^* w.p. total pullbacks
- it does not w.p. pullbacks

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi =$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \xrightarrow{a_1} s_1$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \stackrel{a_1}{\rightarrow} s_1 \stackrel{a_2}{\rightarrow} s_2$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \stackrel{a_1}{\rightarrow} s_1 \stackrel{a_2}{\rightarrow} s_2 \cdots$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2 \cdots s_{k-1} \stackrel{a_k}{\to} s_k$$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2 \cdots s_{k-1} \stackrel{a_k}{\to} s_k \cdots$$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2 \cdots s_{k-1} \stackrel{a_k}{\to} s_k \cdots$$

paths are ordered by prefix relation \leq

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2 \cdots s_{k-1} \stackrel{a_k}{\to} s_k \cdots$$

paths are ordered by prefix relation $\leq \pi$ - finite: $\pi \uparrow = \{\xi \in CPaths(s) \mid \pi \leq \xi\}$ -cone

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2 \cdots s_{k-1} \stackrel{a_k}{\to} s_k \cdots$$

paths are ordered by prefix relation \preceq

 π - finite: $\pi \uparrow = \{\xi \in \operatorname{CPaths}(s) \mid \pi \preceq \xi\}$ -cone

 Γ - set of cones,

 $\Gamma \subseteq \mathcal{P}(\operatorname{CPaths}(s))$
on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

 $Prob(\pi \uparrow) = P(s, a_1, s_1) \cdot \cdots \cdot P(s_{k-1}, a_k, s_k)$

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

$$\operatorname{Prob}(\pi \uparrow) = P(s, a_1, s_1) \cdots P(s_{k-1}, a_k, s_k)$$

or $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

$$\operatorname{Prob}(\pi\uparrow) = P(s, a_1, s_1) \cdots P(s_{k-1}, a_k, s_k)$$

for $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$ and $\operatorname{Prob}(\emptyset) = 0$ and $\operatorname{Prob}(\varepsilon) = 1$

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

$$\operatorname{Prob}(\pi\uparrow) = P(s, a_1, s_1) \cdot \cdots \cdot P(s_{k-1}, a_k, s_k)$$

for $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$ and $\operatorname{Prob}(\emptyset) = 0$ and $\operatorname{Prob}(\varepsilon) = 1$

then: Prob is a pre-measure, and it extends to a probability measure !

Generative * - translation

 $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra

Generative * - translation

 $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by

Generative * - translation

 $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi: \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi: \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and $\operatorname{Prob}(s, W, S') = \operatorname{Prob}(s \xrightarrow{W} S')$

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi: \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and $\operatorname{Prob}(s, W, S') = \operatorname{Prob}(s \xrightarrow{W} S')$ then: Φ is indeed a *-translation

given Φ and $\tau \subseteq A$

given Φ and $\tau \subseteq A$

R - equivalence weak bisimulation w.r.t Φ and τ transfer condition

given Φ and $\tau \subseteq A$

R - equivalence weak bisimulation w.r.t Φ and τ transfer condition

$$\operatorname{Prob}(s,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)=\operatorname{Prob}(t,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)$$

given Φ and $\tau \subseteq A$

R - equivalence weak bisimulation w.r.t Φ and τ transfer condition

$$\operatorname{Prob}(s,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)=\operatorname{Prob}(t,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)$$

for $B_i = h_{\tau}^{-1}(w_i), w_i \in A_{\tau}$ and $C_j \in S/R$

given Φ and $\tau \subseteq A$

R - equivalence weak bisimulation w.r.t Φ and τ transfer condition

$$\operatorname{Prob}(s,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)=\operatorname{Prob}(t,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)$$

then: $s \approx_{\text{GEN}} t$ iff $s \approx_{\{\tau\}} t$

given Φ and $\tau \subseteq A$

R - equivalence weak bisimulation w.r.t Φ and τ transfer condition

$$\operatorname{Prob}(s,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)=\operatorname{Prob}(t,\bigcup_{i\in I}B_i,\bigcup_{j\in J}C_j)$$

then: $s \approx_{GEN} t$ iff $s \approx_{\{\tau\}} t$ proof: difficult for \Rightarrow

Conclusion

- general notion of weak bisimulation
 - * two phase approach
 - extension and hiding internal actions
 - * weak bisimulation is strong
- from coalgebraic bisimulation to transfer conditions
- correspondence results for
 - * LTS
 - * generative probabilistic systems