Weak bisimulation for action-type coalgebras

Ana Sokolova, Erik de Vink, Harald Woracek

{asokolov,evink}@win.tue.nl harald.woracek@tuwien.ac.at.

TU/e Eindhoven and TU Vienna

Introduction and motivation

Introduction and motivation
* LTS

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation
 - * coalgebraic vs. concrete bisimulation

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation
 - * coalgebraic vs. concrete bisimulation
- Examples and correspondence results

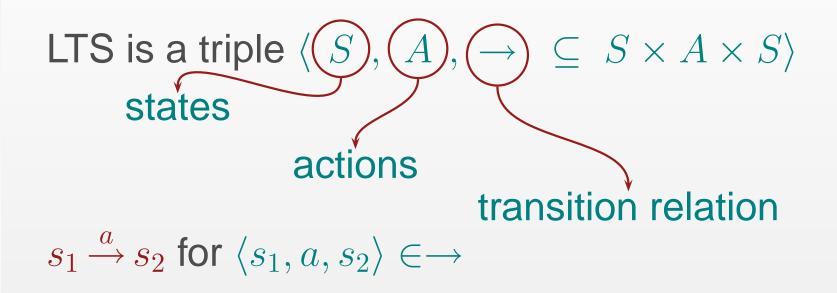
- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation
 - * coalgebraic vs. concrete bisimulation
- Examples and correspondence results
 - * LTS

- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation
 - * coalgebraic vs. concrete bisimulation
- Examples and correspondence results
 - * LTS
 - * generative systems ...

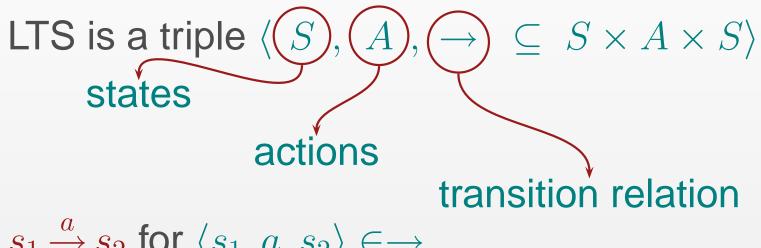
- Introduction and motivation
 - * LTS
 - * generative probabilistic systems
 - * bisimulation, strong and weak
- Weak bisimulation for coalgebras
 - * action-type coalgebras
 - * weak bisimulation
 - * coalgebraic vs. concrete bisimulation
- Examples and correspondence results
 - * LTS
 - * generative systems ...
- Conclusions

LTS is a triple $\langle S, A, \rightarrow \subseteq S \times A \times S \rangle$

Labelled transition systems

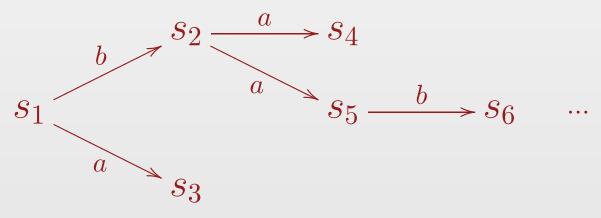


Labelled transition systems



$$s_1 \xrightarrow{a} s_2$$
 for $\langle s_1, a, s_2 \rangle \in \to$

Example:



$$\langle S, A, \rightarrow \rangle$$
 - LTS

 $\langle S, A, \rightarrow \rangle$ - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\langle S, A, \rightarrow \rangle$ - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

$$s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$$

 $\langle S, A, \rightarrow \rangle$ - LTS

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

$$s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$$

 $s \sim_{\text{LTS}} t$ - there exists a strong bisimulation R with $\langle s,t \rangle \in R$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$

for $\stackrel{a}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*} \circ \stackrel{a}{\rightarrow} \circ \stackrel{\tau}{\rightarrow} {}^{*}$ and $\stackrel{\tau}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*}$

 $\langle S, A, \rightarrow \rangle$ - LTS $\tau \in A$ - internal action

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $s \xrightarrow{a} s' \Rightarrow \exists t' \colon t \xrightarrow{a} t', \ \langle s', t' \rangle \in R$

for $\stackrel{a}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*} \circ \stackrel{a}{\rightarrow} \circ \stackrel{\tau}{\rightarrow} {}^{*}$ and $\stackrel{\tau}{\Rightarrow} = \stackrel{\tau}{\rightarrow} {}^{*}$

 $s\approx_{\rm LTS} t$ - there exists a weak bisimulation $R \text{ with } \langle s,t\rangle \in R$

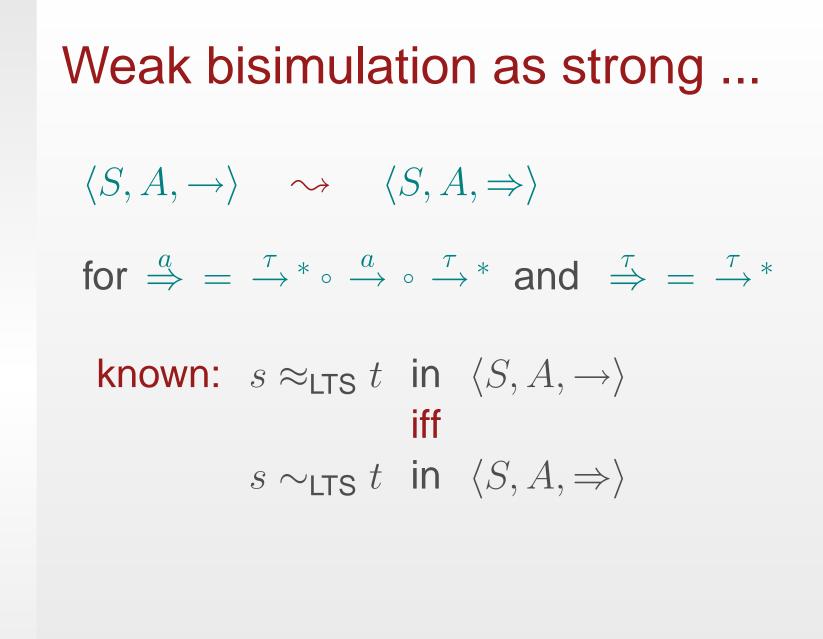
Weak bisimulation as strong ...

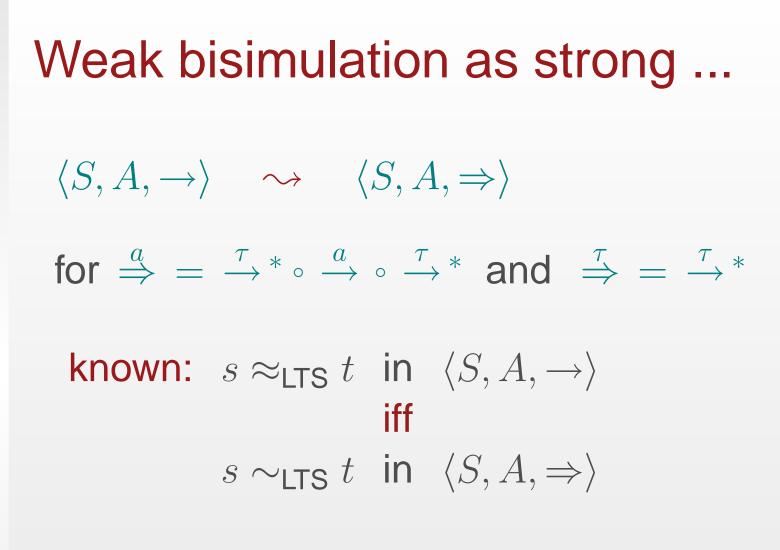
 $\langle S, A, \rightarrow \rangle \quad \leadsto \quad \langle S, A, \Rightarrow \rangle$

Weak bisimulation as strong ...

$$\langle S, A, \rightarrow \rangle \quad \rightsquigarrow \quad \langle S, A, \Rightarrow \rangle$$

for $\stackrel{a}{\Rightarrow} = \stackrel{\tau}{\rightarrow} * \circ \stackrel{a}{\rightarrow} \circ \stackrel{\tau}{\rightarrow} *$ and $\stackrel{\tau}{\Rightarrow} = \stackrel{\tau}{\rightarrow} *$

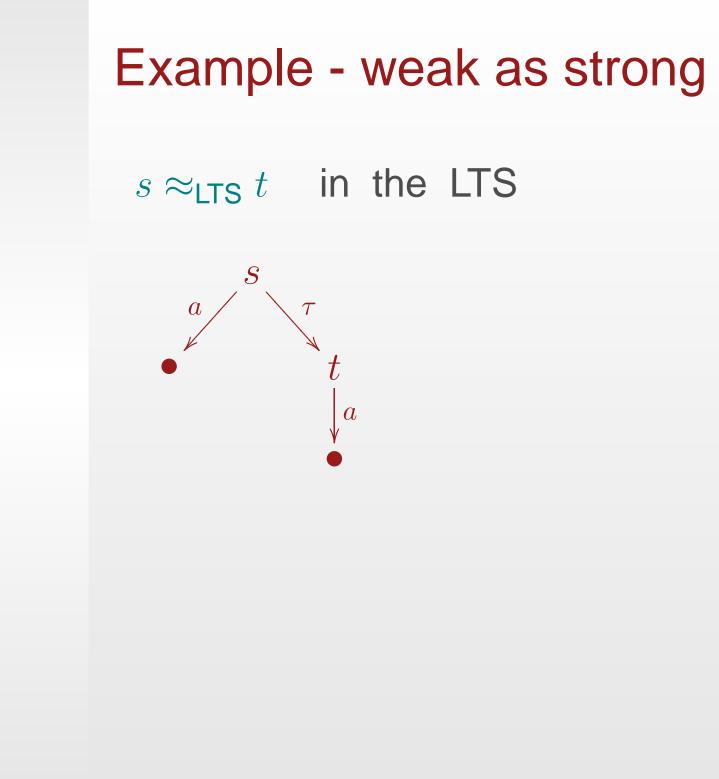


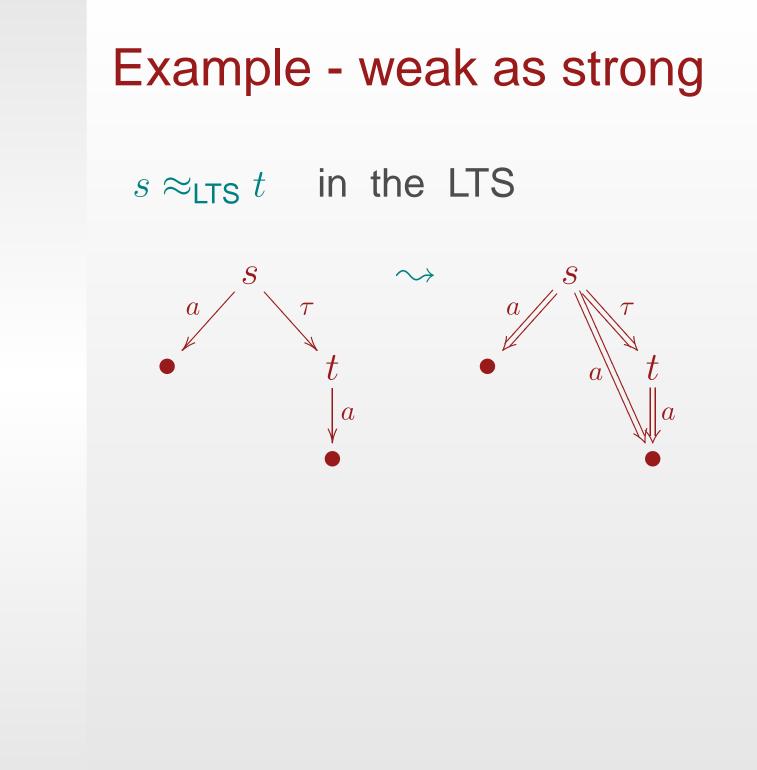


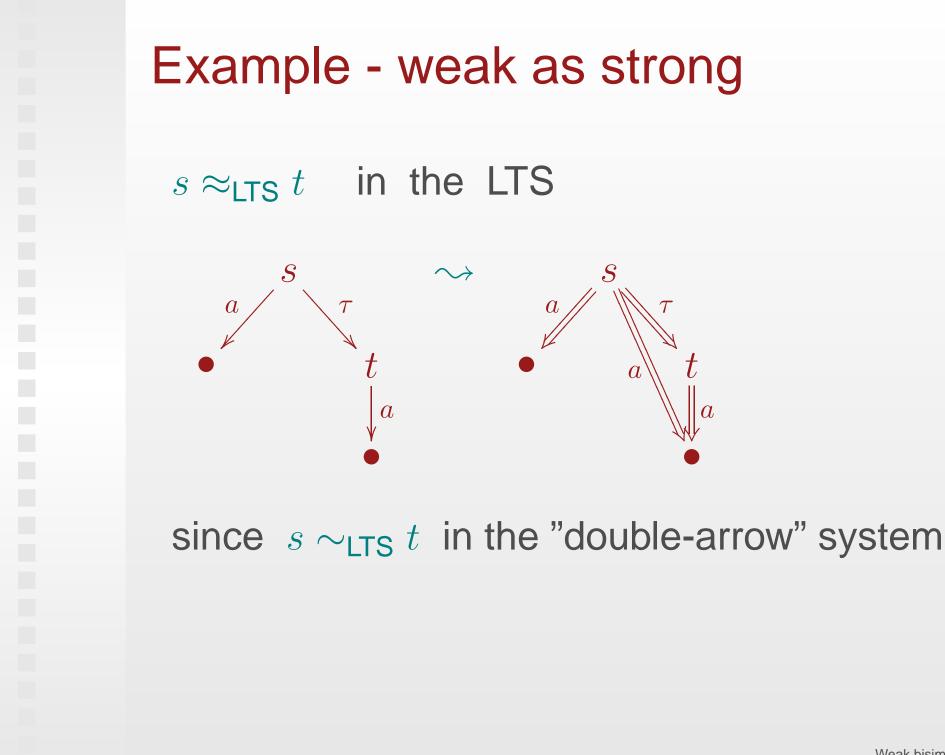
weak boils down to strong !

Example - weak as strong

$s \approx_{\text{LTS}} t$ in the LTS





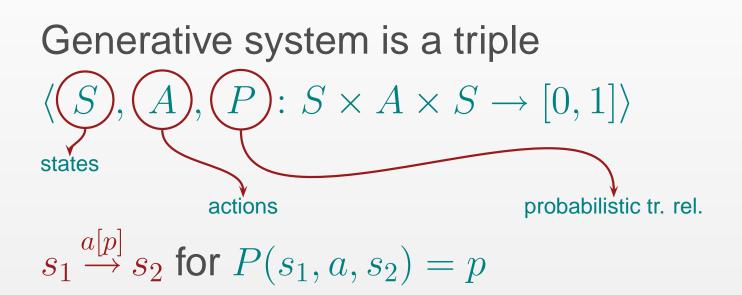


Weak bisimulation - p.7/32

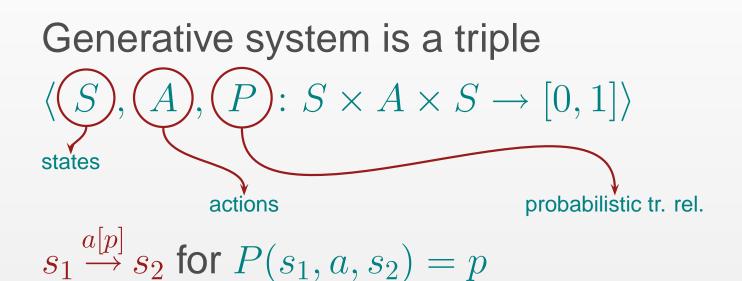
Generative probabilistic systems

Generative system is a triple $\langle S, A, P : S \times A \times S \rightarrow [0, 1] \rangle$

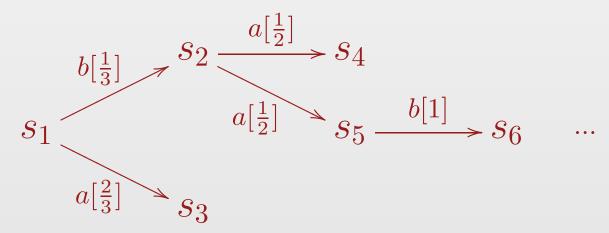
Generative probabilistic systems



Generative probabilistic systems



Example:



 $\langle S, A, P \rangle$ - generative system

 $\langle S, A, P\rangle$ - generative system

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\langle S, A, P\rangle$ - generative system

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

P(s, a, C) = P(t, a, C)

 $\langle S, A, P\rangle$ - generative system

An equivalence $R \subseteq S \times S$ is a strong bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

P(s, a, C) = P(t, a, C)

 $s \sim_{\text{GEN}} t$ - there exists a strong bisimulation R with $\langle s,t \rangle \in R$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\operatorname{Prob}(s,\tau^*\hat{a}\tau^*,C) = \operatorname{Prob}(t,\tau^*\hat{a}\tau^*,C)$

 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

An equivalence $R \subseteq S \times S$ is a weak bisimulation if

 $\langle s,t\rangle\in R\Rightarrow$

 $\operatorname{Prob}(s,\tau^*\hat{a}\tau^*,C) = \operatorname{Prob}(t,\tau^*\hat{a}\tau^*,C)$

for $\hat{a} = a$ if $a \in A \setminus \{\tau\}$ and $\hat{\tau} = \varepsilon$

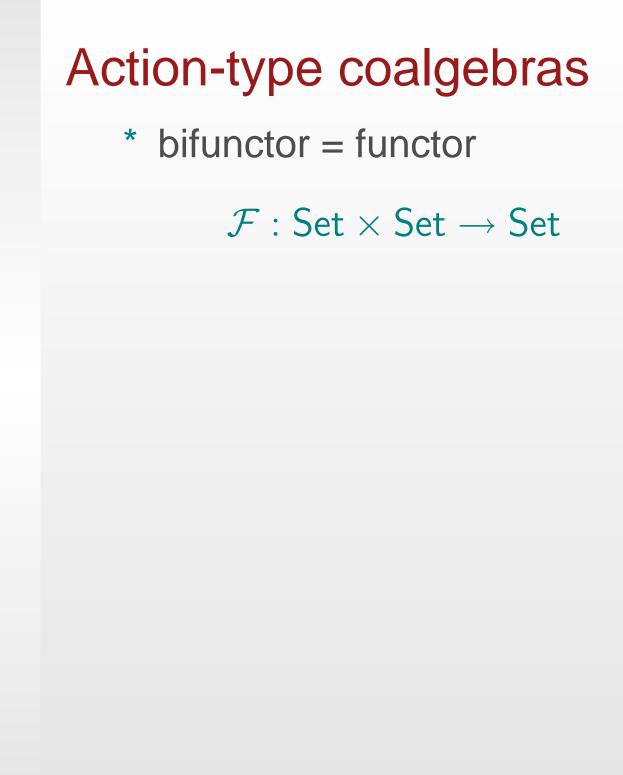
 $\langle S, A, P \rangle$ - gen. system $\tau \in A$ - internal

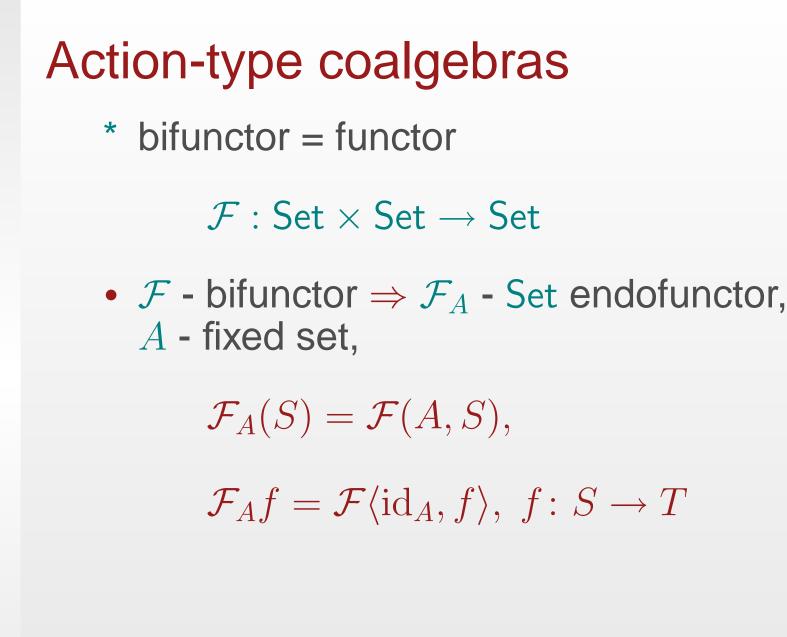
An equivalence $R \subseteq S \times S$ is a weak bisimulation if

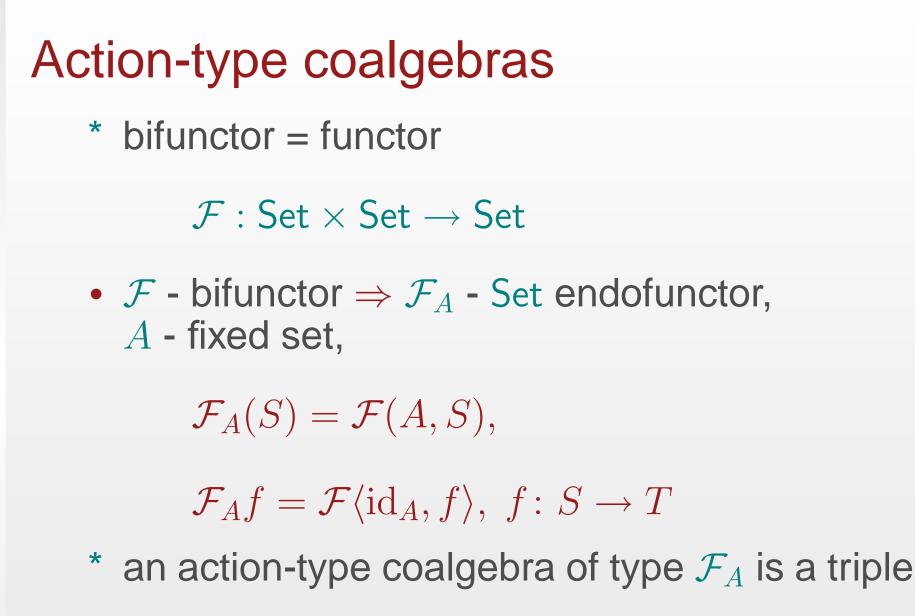
 $\langle s,t\rangle\in R\Rightarrow$

 $\operatorname{Prob}(s,\tau^*\hat{a}\tau^*,C) = \operatorname{Prob}(t,\tau^*\hat{a}\tau^*,C)$

for $\hat{a} = a$ if $a \in A \setminus \{\tau\}$ and $\hat{\tau} = \varepsilon$ $s \approx_{\mathsf{GEN}} t$ - there exists a weak bisimulation R with $\langle s, t \rangle \in R$

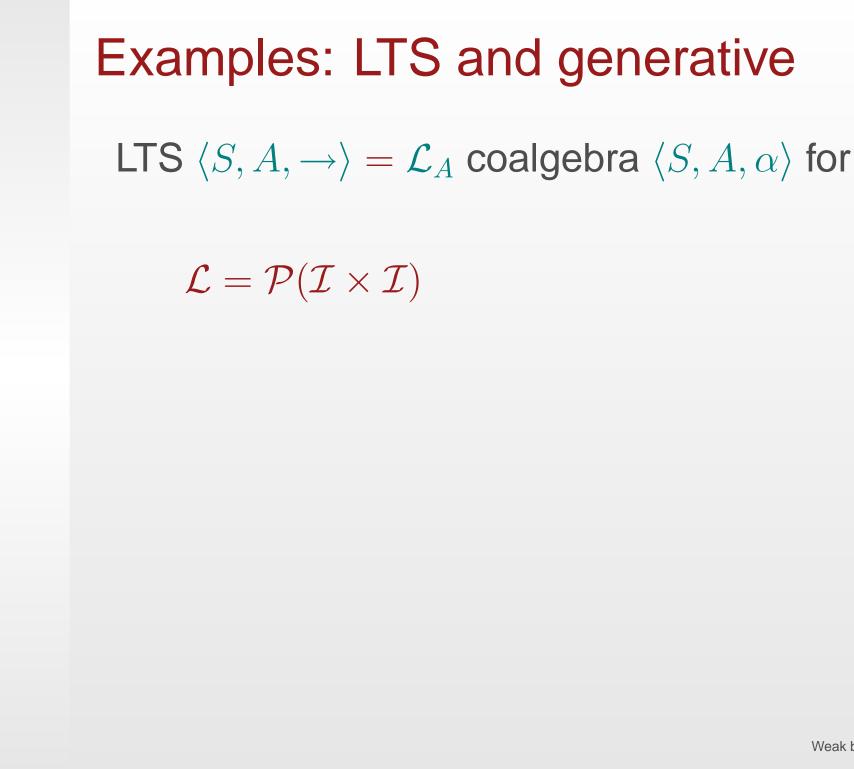






 $\langle S, A, \alpha \colon S \to \mathcal{F}_A(S) \rangle$

LTS $\langle S, A, \rightarrow \rangle = \mathcal{L}_A$ coalgebra $\langle S, A, \alpha \rangle$ for



Examples: LTS and generative LTS $\langle S, A, \rightarrow \rangle = \mathcal{L}_A$ coalgebra $\langle S, A, \alpha \rangle$ for $\mathcal{L} = \mathcal{P}(\mathcal{I} \times \mathcal{I})$ having $\langle a, s' \rangle \in \alpha(s) \iff s \stackrel{a}{\to} s'$

generative system $\langle S, A, P \rangle = \mathcal{G}_A$ coalgebra $\langle S, A, \alpha \rangle$ for

generative system $\langle S, A, P \rangle = \mathcal{G}_A$ coalgebra $\langle S, A, \alpha \rangle$ for

 $\mathcal{G} = \mathcal{D}(\mathcal{I} \times \mathcal{I}) + 1$

generative system $\langle S, A, P \rangle = \mathcal{G}_A$ coalgebra $\langle S, A, \alpha \rangle$ for

$\mathcal{G} = \mathcal{D}(\mathcal{I} \times \mathcal{I}) + 1$

where $\boldsymbol{\mathcal{D}}$ - distribution functor

generative system $\langle S, A, P \rangle = \mathcal{G}_A$ coalgebra $\langle S, A, \alpha \rangle$ for

$\mathcal{G} = \mathcal{D}(\mathcal{I} \times \mathcal{I}) + 1$

where $\boldsymbol{\mathcal{D}}$ - distribution functor

 $\alpha(s)(a,s') = P(s,a,s')$

Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

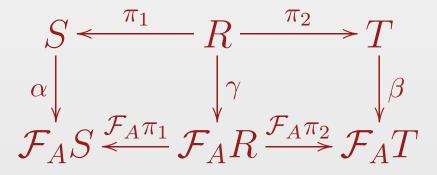
such that there exists a \mathcal{F}_A -coalgebra structure γ on R making

Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

such that there exists a \mathcal{F}_A -coalgebra structure γ on R making



Coalgebraic bisimulation

A bisimulation between two \mathcal{F}_A -coalgebras $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ is a relation

 $R \subseteq S \times T$

such that there exists a \mathcal{F}_A -coalgebra structure γ on R making

 $s \sim t$ - bisimilarity, as usual ...

Characterizing bisimulation

* $R \subseteq S \times T$, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

Characterizing bisimulation

5

*
$$R \subseteq S \times T$$
, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

• $R \subseteq S \times T$ - bisimulation between $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ iff

 $\langle s,t\rangle \in R \Rightarrow \alpha(s) \equiv_{\mathcal{F}_A,R} \beta(t)$

Characterizing bisimulation

*
$$R \subseteq S \times T$$
, \mathcal{F} - functor, $\equiv_{\mathcal{F},R}$ - lifting

 $x \equiv_{\mathcal{F},R} y \iff \exists z \in \mathcal{F}R \colon \mathcal{F}\pi_1(z) = x, \ \mathcal{F}\pi_2(z) = y$

- $R \subseteq S \times T$ bisimulation between $\langle S, A, \alpha \rangle$ and $\langle T, A, \beta \rangle$ iff $\langle s, t \rangle \in R \Rightarrow \alpha(s) \equiv_{\mathcal{F}_A, R} \beta(t)$
- if \mathcal{F} w.p. total pullbacks and R equivalence, then $\equiv_{\mathcal{F},R}$ is the pullback of

$$\mathcal{F}S \xrightarrow{\mathcal{F}c} \mathcal{F}(S/R) \xleftarrow{\mathcal{F}c} \mathcal{F}S$$

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

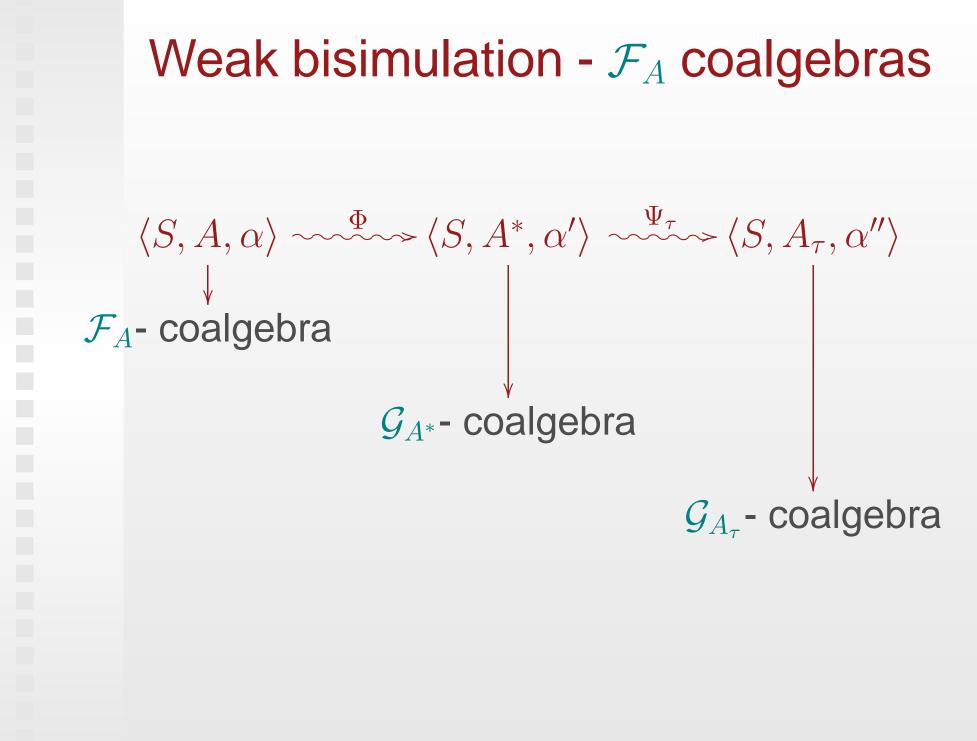
result: "double-arrow" coalgebra

two stages approach:

- 1. transform any \mathcal{F}_A coalgebra into \mathcal{G}_{A^*} coalgebra, faithfully.
- 2. fix a set $\tau \subseteq A$ of invisible actions, and hide them in the \mathcal{G}_{A^*} coalgebra.

result: "double-arrow" coalgebra

weak bisimulation = bisimulation for the "double-arrow" coalgebra



$$\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G} \text{ is a *-extension}$$

*
$$\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$$

- $\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$ is a *-extension
 - * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
 - * Φ is injective

- $\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$ is a *-extension
 - * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
 - * Φ is injective
 - * preserves and reflects bisimilarity

- $\Phi: \mathcal{F} \xrightarrow{*} \mathcal{G}$ is a *-extension
 - * $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$
 - * Φ is injective
 - * preserves and reflects bisimilarity

Hiding $\tau \subseteq A$,

Hiding $\tau \subseteq A$, hiding function $h_{\tau} : A^* \to (A \setminus \tau)^*$

Hiding $\tau \subseteq A$, hiding function $h_{\tau} : A^* \to (A \setminus \tau)^*$ $A_{\tau} = A^* / \ker(h_{\tau})$ $= \{\tau^* a_1 \tau^* \dots \tau^* a_k \tau^* \mid a_1 \dots a_k \in A \setminus \tau\}$

Weak bisimulation - \mathcal{F}_A coalgebras

Hiding $\tau \subseteq A$, hiding function $h_{\tau} : A^* \to (A \setminus \tau)^*$ $A_{\tau} = A^* / \ker(h_{\tau})$ $= \{\tau^* a_1 \tau^* \dots \tau^* a_k \tau^* \mid a_1 \dots a_k \in A \setminus \tau\}$ the concernical projection $a_1 \land A^* \to A$ induces a

the canonical projection $c_{\tau}: A^* \to A_{\tau}$ induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta_S^{\tau} = \mathcal{G}\langle c_{\tau}, \mathrm{id}_S \rangle$

Weak bisimulation - \mathcal{F}_A coalgebras

Hiding $\tau \subseteq A$, hiding function $h_{\tau} : A^* \to (A \setminus \tau)^*$ $A_{\tau} = A^* / \ker(h_{\tau})$ $= \{\tau^* a_1 \tau^* \dots \tau^* a_k \tau^* \mid a_1 \dots a_k \in A \setminus \tau\}$ the canonical projection $c_{\tau} : A^* \to A_{\tau}$ induces a

the canonical projection $c_{\tau}: A^* \to A_{\tau}$ induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta_S^{\tau} = \mathcal{G}\langle c_{\tau}, \mathrm{id}_S \rangle$

 $\Psi_{ au}$ is the functor induced by $\eta^{ au}$

Weak bisimulation - \mathcal{F}_A coalgebras

Hiding $\tau \subseteq A$, hiding function $h_{\tau} : A^* \to (A \setminus \tau)^*$ $A_{\tau} = A^* / \ker(h_{\tau})$ $= \{\tau^* a_1 \tau^* \dots \tau^* a_k \tau^* \mid a_1 \dots a_k \in A \setminus \tau\}$ the canonical projection $c_{\tau} : A^* \to A_{\tau}$ induces a natural transformation

 $\eta^{\tau}: \mathcal{G}_{A^*} \Rightarrow \mathcal{G}_{A_{\tau}} \qquad \eta_S^{\tau} = \mathcal{G}\langle c_{\tau}, \mathrm{id}_S \rangle$

 Ψ_{τ} is the functor induced by η^{τ} "double-arrow coalgebra": $\Psi_{\tau} \circ \Phi(\langle S, A, \alpha \rangle)$ Properties of weak bisimilarity Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ for \mathcal{F}_A coalgebras iff $s \sim t$ for $\Psi_{\tau} \circ \Phi$ of \mathcal{F}_A coalgebras Properties of weak bisimilarity Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ for \mathcal{F}_A coalgebras iff $s \sim t$ for $\Psi_{\tau} \circ \Phi$ of \mathcal{F}_A coalgebras Properties: Properties of weak bisimilarity Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ for \mathcal{F}_A coalgebras iff $s \sim t$ for $\Psi_{\tau} \circ \Phi$ of \mathcal{F}_A coalgebras **Properties:** • $\sim \subset \approx_{\tau}$

Properties of weak bisimilarity Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ for \mathcal{F}_A coalgebras iff $s \sim t$ for $\Psi_{\tau} \circ \Phi$ of \mathcal{F}_A coalgebras **Properties:** • $\sim \subseteq pprox_{ au}$ • $\sim = pprox_{\emptyset}$

Properties of weak bisimilarity Given $\Phi : \mathcal{F} \xrightarrow{*} \mathcal{G}$ and $\tau \subseteq A$ $s \approx_{\tau} t$ for \mathcal{F}_A coalgebras iff $s \sim t$ for $\Psi_{\tau} \circ \Phi$ of \mathcal{F}_A coalgebras **Properties:** • $\sim \subseteq \approx_{\tau}$ • $\sim = \approx_{\emptyset}$ • $\tau_1 \subseteq \tau_2 \Rightarrow \approx_{\tau_1} \subseteq \approx_{\tau_2}$

$\langle S, A, \alpha : S \to \mathcal{P}(A \times S) \rangle$ - \mathcal{L}_A coalgebra

$\langle S, A, \alpha : S \to \mathcal{P}(A \times S) \rangle$ - \mathcal{L}_A coalgebra define $\Phi : \mathcal{L} \xrightarrow{*} \mathcal{L}$ by

 $\langle S, A, \alpha : S \to \mathcal{P}(A \times S) \rangle$ - \mathcal{L}_A coalgebra define $\Phi : \mathcal{L} \xrightarrow{*} \mathcal{L}$ by

 $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$

 $\langle S, A, \alpha : S \to \mathcal{P}(A \times S) \rangle$ - \mathcal{L}_A coalgebra define $\Phi : \mathcal{L} \xrightarrow{*} \mathcal{L}$ by

 $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$

where

 $\langle a_1 \dots a_k, s' \rangle \in \alpha'(s) \iff s \stackrel{a_1}{\to} \cdots \stackrel{a_k}{\to} s'$

 $\langle S, A, \alpha : S \to \mathcal{P}(A \times S) \rangle$ - \mathcal{L}_A coalgebra define $\Phi : \mathcal{L} \xrightarrow{*} \mathcal{L}$ by

 $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$

where

 $\langle a_1 \dots a_k, s' \rangle \in \alpha'(s) \iff s \stackrel{a_1}{\to} \cdots \stackrel{a_k}{\to} s'$

 Φ is indeed a *-translation

Weak bisimulation for LTS

$$\Phi: \mathcal{L} \xrightarrow{*} \mathcal{L}, \quad \Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$$
$$\Psi_{\tau}(\langle S, A^*, \alpha' \rangle) = \langle S, A_{\tau}, \eta_S^{\tau} \circ \alpha' \rangle$$

Weak bisimulation for LTS

 $\Phi: \mathcal{L} \xrightarrow{*} \mathcal{L}, \quad \Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\Psi_{\tau}(\langle S, A^*, \alpha' \rangle) = \langle S, A_{\tau}, \eta_S^{\tau} \circ \alpha' \rangle$

$$\begin{aligned} (\eta_S^{\tau} \circ \alpha')(s) &= \eta_S^{\tau}(\alpha'(s)) \\ &= \mathcal{P}(\langle c_{\tau}, \mathrm{id}_S \rangle)(\alpha'(s)) \\ &= \{\langle c_{\tau}(w), s' \rangle | \langle w, s' \rangle \in \alpha'(s) \} \\ &= \{\langle \tau^* a_1 \tau^* \dots \tau^* a_k \tau^*, s' \rangle | \exists w \in \tau^* a_1 \tau^* \dots \tau^* a_k \tau^* : s \stackrel{w}{\Rightarrow} s' \} \end{aligned}$$

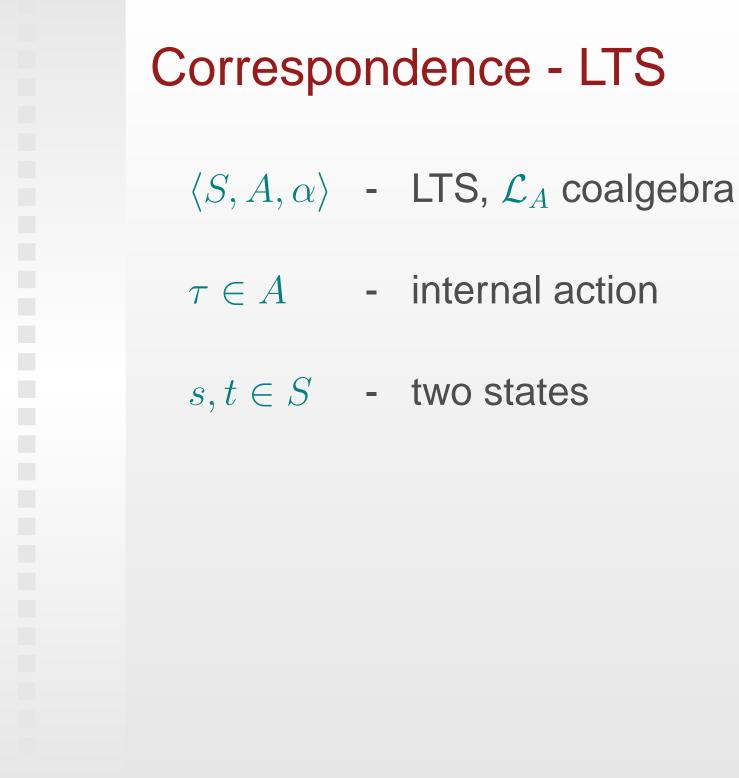
Weak bisimulation for LTS

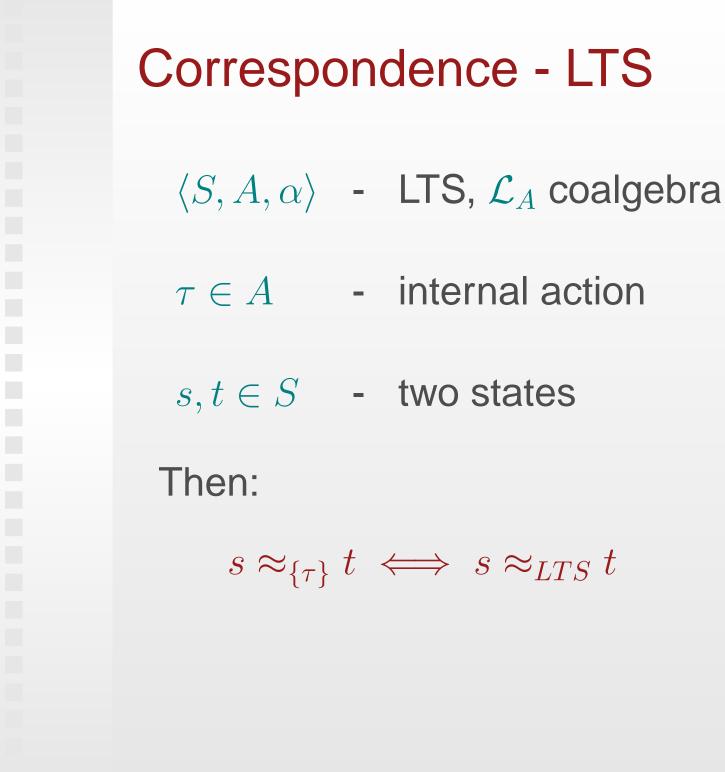
 $\Phi: \mathcal{L} \xrightarrow{*} \mathcal{L}, \quad \Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\Psi_{\tau}(\langle S, A^*, \alpha' \rangle) = \langle S, A_{\tau}, \eta_S^{\tau} \circ \alpha' \rangle$

$$\begin{aligned} (\eta_S^{\tau} \circ \alpha')(s) &= \eta_S^{\tau}(\alpha'(s)) \\ &= \mathcal{P}(\langle c_{\tau}, \mathrm{id}_S \rangle)(\alpha'(s)) \\ &= \{\langle c_{\tau}(w), s' \rangle | \langle w, s' \rangle \in \alpha'(s)\} \\ &= \{\langle \tau^* a_1 \tau^* \dots \tau^* a_k \tau^*, s' \rangle | \ \exists w \in \tau^* a_1 \tau^* \dots \tau^* a_k \tau^* : s \stackrel{w}{\Rightarrow} s' \} \end{aligned}$$

hence for any $B = \tau^* a_1 \tau^* \dots \tau^* a_k \tau^*$

$$s \stackrel{B}{\Rightarrow}_{\tau} s' \iff \exists w \in B \colon s \stackrel{w}{\Rightarrow} s'$$





Weak bisimulation - p.23/32

Example - generative systems

bifunctor \mathcal{G}^*

Example - generative systems

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

Example - generative systems

bifunctor \mathcal{G}^*

$$\mathcal{G}^*(A,S) = (\mathcal{P}(A) \times \mathcal{P}(S) \to [0,1])$$

and for $f = \langle f_1, f_2 \rangle \colon A \times S \to B \times T$

$$\mathcal{G}^*f\colon\nu\mapsto\nu\circ\langle f_1^{-1},f_2^{-1}\rangle$$

where $\nu \colon \mathcal{P}(A) \times \mathcal{P}(S) \to [0,1]$

Properties of \mathcal{G}^* i.e. \mathcal{G}^*_A :

Properties of \mathcal{G}^* i.e. \mathcal{G}^*_A :

• \mathcal{G}_A^* w.p. total pullbacks

Properties of \mathcal{G}^* i.e. \mathcal{G}^*_A :

- \mathcal{G}_A^* w.p. total pullbacks
- it does not w.p. pullbacks

Properties of \mathcal{G}^* i.e. \mathcal{G}^*_A :

- \mathcal{G}_A^* w.p. total pullbacks
- it does not w.p. pullbacks

hence: bisimilarity is an equivalence and can be characterized as before...

 ${\it R}$ - an equivalence on ${\it S}$

 $\langle S, A, \alpha \rangle$ - $\mathcal{G}^*{}_A$ coalgebra

 ${\it R}$ - an equivalence on ${\it S}$

 $\langle S, A, \alpha \rangle$ - $\mathcal{G}^*{}_A$ coalgebra

 $\alpha: S \to (\mathcal{P}(A) \times \mathcal{P}(S) \to [0, 1])$

 ${\it R}$ - an equivalence on ${\it S}$

 $\langle S, A, \alpha \rangle$ - $\mathcal{G}^*{}_A$ coalgebra

 $\alpha: S \to (\mathcal{P}(A) \times \mathcal{P}(S) \to [0, 1])$

R is a bisimulation iff

 ${\it R}$ - an equivalence on ${\it S}$

 $\langle S, A, \alpha \rangle$ - $\mathcal{G}^*{}_A$ coalgebra

 $\alpha: S \to (\mathcal{P}(A) \times \mathcal{P}(S) \to [0, 1])$

R is a bisimulation iff $\langle s, t \rangle \in R \Rightarrow \alpha(s)(A', \bigcup_{i \in I} C_i) = \alpha(t)(A', \bigcup_{i \in I} C_i)$ for $A' \subseteq A$ and $C_i \in S/R$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi =$

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \xrightarrow{a_1} s_1$

$$\pi = s \stackrel{a_1}{\to} s_1 \stackrel{a_2}{\to} s_2$$

$$\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots$$

$$\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots s_{k-1} \xrightarrow{a_k} s_k$$

$$\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots s_{k-1} \xrightarrow{a_k} s_k \cdots$$

Paths - generative systems

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

$$\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots s_{k-1} \xrightarrow{a_k} s_k \cdots$$

paths are ordered by prefix relation \leq

Paths - generative systems

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots s_{k-1} \xrightarrow{a_k} s_k \cdots$

paths are ordered by prefix relation $\leq \pi$ - finite: $\pi \uparrow = \{\xi \in CPaths(s) \mid \pi \leq \xi\}$ -cone

Paths - generative systems

generative system $\langle S, A, \alpha \rangle$ i.e. $\langle S, A, P \rangle$ sets Paths(s), FPaths(s), CPaths(s)

 $\pi = s \xrightarrow{a_1} s_1 \xrightarrow{a_2} s_2 \cdots s_{k-1} \xrightarrow{a_k} s_k \cdots$ paths are ordered by prefix relation \preceq π - finite: $\pi \uparrow = \{\xi \in \operatorname{CPaths}(s) \mid \pi \preceq \xi\}$ -cone

 Γ - set of cones,

 $\Gamma \subseteq \mathcal{P}(\operatorname{CPaths}(s))$

The measure Prob

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

The measure Prob

on $\Gamma \cup \{\emptyset\}$ a function Prob is defined

 $Prob(\pi \uparrow) = P(s, a_1, s_1) \cdot \cdots \cdot P(s_{k-1}, a_k, s_k)$

The measure Prob on $\Gamma \cup \{\emptyset\}$ a function Prob is defined $Prob(\pi \uparrow) = P(s, a_1, s_1) \cdot \cdots \cdot P(s_{k-1}, a_k, s_k)$ for $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$

The measure Prob on $\Gamma \cup \{\emptyset\}$ a function Prob is defined $Prob(\pi \uparrow) = P(s, a_1, s_1) \cdot \cdots \cdot P(s_{k-1}, a_k, s_k)$ for $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$ and $\operatorname{Prob}(\emptyset) = 0$ and $\operatorname{Prob}(\varepsilon) = 1$

The measure Prob on $\Gamma \cup \{\emptyset\}$ a function Prob is defined $Prob(\pi \uparrow) = P(s, a_1, s_1) \cdots P(s_{k-1}, a_k, s_k)$ for $\pi = s \xrightarrow{a_1} s_1 \cdots s_{k-1} \xrightarrow{a_k} s_k$ and $\operatorname{Prob}(\emptyset) = 0$ and $\operatorname{Prob}(\varepsilon) = 1$

then: Prob is a pre-measure, and it extends to a probability measure !

Generative * - translation

 $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra

Generative * - translation

 $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and $\operatorname{Prob}(s, W, S') = \operatorname{Prob}(s \xrightarrow{W} S')$

Generative * - translation $\langle S, A, \alpha : S \to \mathcal{D}(A \times S) + 1 \rangle$ - \mathcal{G}_A coalgebra define $\Phi : \mathcal{G} \xrightarrow{*} \mathcal{G}^*$ by $\Phi(\langle S, A, \alpha \rangle) = \langle S, A^*, \alpha' \rangle$ $\alpha'(s)(W, S') = \operatorname{Prob}(s, W, S')$ for $W \subset A^*$ and $S' \subset S$ and $\operatorname{Prob}(s, W, S') = \operatorname{Prob}(s \xrightarrow{W} S')$ Φ is indeed a *-translation

given Φ and $\tau \subseteq A$

given Φ and $\tau \subseteq A$ the double-arrow system is $\langle S, A_{\tau}, \alpha'' \rangle$ for

given Φ and $\tau \subseteq A$ the double-arrow system is $\langle S, A_{\tau}, \alpha'' \rangle$ for $\alpha''(s)(X, S') = \operatorname{Prob}(s, \bigcup_{B \in X} B, S')$ for $X \subseteq A_{\tau}$ and $S' \subseteq S$

given Φ and $\tau \subseteq A$ the double-arrow system is $\langle S, A_{\tau}, \alpha'' \rangle$ for $\alpha''(s)(X, S') = \operatorname{Prob}(s, \bigcup_{B \in X} B, S')$ for $X \subseteq A_{\tau}$ and $S' \subseteq S$

hence: an equivalence R on S is a weak bisimulation iff

given Φ and $\tau \subseteq A$ the double-arrow system is $\langle S, A_{\tau}, \alpha'' \rangle$ for $\alpha''(s)(X, S') = \operatorname{Prob}(s, \bigcup_{B \in X} B, S')$ for $X \subseteq A_{\tau}$ and $S' \subseteq S$

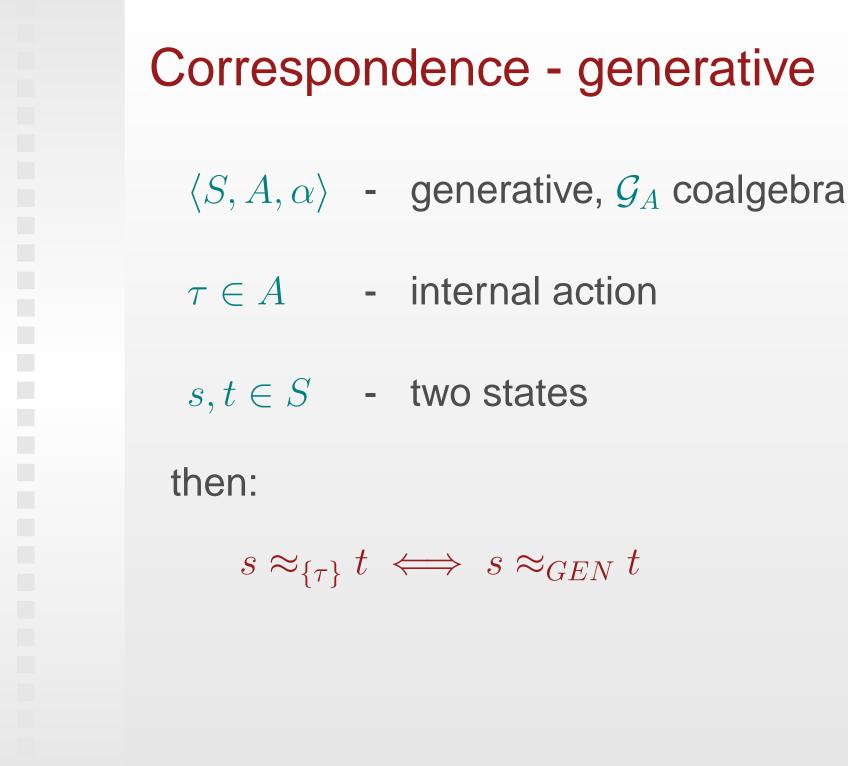
hence: an equivalence R on S is a weak bisimulation iff

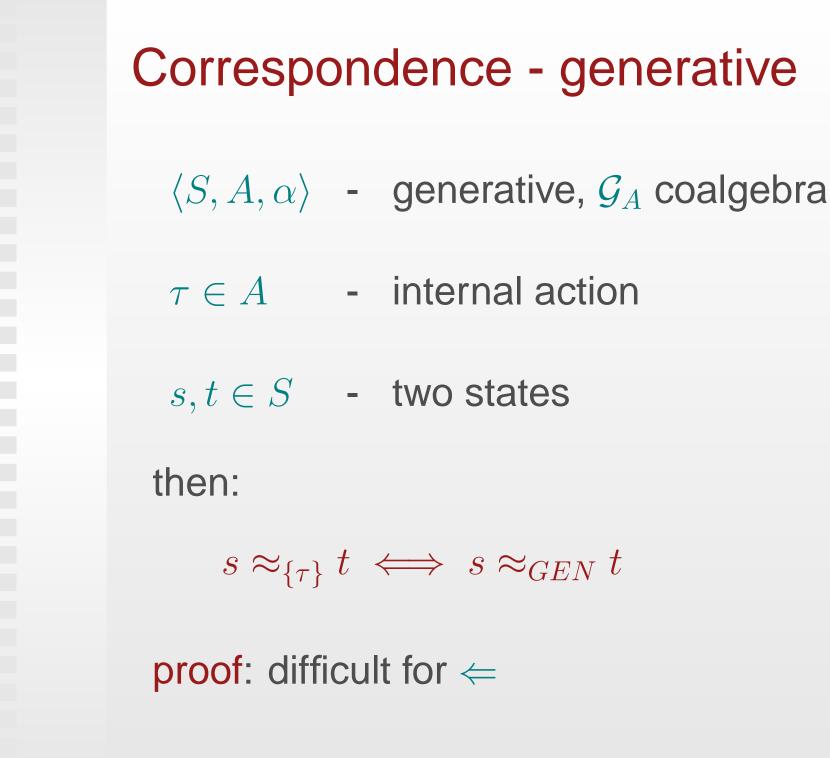
 $\langle s, t \rangle \in R \Rightarrow$ $\operatorname{Prob}(s, \bigcup_{i \in I} B_i, \bigcup_{j \in J} C_j) = \operatorname{Prob}(t, \bigcup_{i \in I} B_i, \bigcup_{j \in J} C_j)$ for $B_i \in A_{\tau}$ and $C_j \in S/R$

Correspondence - generative

- $\langle S, A, \alpha \rangle$ generative, \mathcal{G}_A coalgebra
- $au \in A$ internal action

 $s,t \in S$ - two states





• general notion of weak bisimulation

- general notion of weak bisimulation
 - * two phase approach

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions
 - * weak bisimulation is strong

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions
 - * weak bisimulation is strong
- from coalgebraic bisimulation to transfer conditions

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions
 - * weak bisimulation is strong
- from coalgebraic bisimulation to transfer conditions
- correspondence results for

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions
 - * weak bisimulation is strong
- from coalgebraic bisimulation to transfer conditions
- correspondence results for
 - * LTS

- general notion of weak bisimulation
 - * two phase approach
 - * extension and hiding internal actions
 - * weak bisimulation is strong
- from coalgebraic bisimulation to transfer conditions
- correspondence results for
 - * LTS
 - * generative probabilistic systems