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Abstract. Symbolic model checking of parallel programs stands and
falls with effective methods of dealing with the explosion of interleav-
ings. We propose a dynamic reduction technique to avoid unnecessary
interleavings. By extending Lipton’s original work with a notion of bisim-
ilarity, we accommodate dynamic transactions, and thereby reduce de-
pendence on the accuracy of static analysis, which is a severe bottleneck
in other reduction techniques.
The combination of symbolic model checking and dynamic reduction
techniques has proven to be challenging in the past. Our generic re-
duction theorem nonetheless enables us to derive an efficient symbolic
encoding, which we implemented for IC3 and BMC. The experiments
demonstrate the power of dynamic reduction on several case studies and
a large set of SVCOMP benchmarks.

1 Introduction

The rise of multi-threaded software—a consequence of a necessary technological
shift from ever higher frequencies to multi-core architectures—exacerbates the
challenge of verifying programs automatically. While automated software verifi-
cation has made impressive advances recently thanks to novel symbolic model
checking techniques, such as lazy abstraction [27,6], interpolation [34], and IC3
[9] for software [7,10], multi-threaded programs still pose a formidable challenge.

The effectiveness of model checking in the presence of concurrency is severely
limited by the state explosion caused through thread interleavings. Consequently,
techniques that avoid thread interleavings, such as partial order reduction (POR)
[39,42,20] or Lipton’s reduction [33], are crucial to the scalability of model check-
ing, while also benefitting other verification approaches [18,12,15].

These reduction techniques, however, rely heavily on the identification of
statements that are either independent or commute with the statements of all
other threads, i.e. those that are globally independent. For instance, the single-
action rule [32]—a primitive precursor of Lipton reduction—states that a sequen-
tial block of statements can be considered an atomic transaction if all but one of
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the statements are globally independent. Inside an atomic block, all interleavings
of other threads can be discarded, thus yielding the reduction.

Identifying these globally independent statements requires non-local static
analyses. In the presence of pointers, arrays, and complicated branching struc-
tures, however, the results of an up-front static analysis are typically extremely
conservative, thus a severe bottleneck for good reduction.

Fig. 1 shows an example with two threads (T1 and T2). Let’s assume static
analysis can establish that pointers p and q never point to the same memory
throughout the program’s (parallel) execution. This means that statements in-
volving the pointers are globally independent, hence they globally commute, e.g.
an interleaving *p++; *q = 1 always yields the same result as *q = 1; *p++;.
Assuming that *p++; is also independent of the other statements from T2 (b =

2 and c = 3), we can reorder any trace of the parallel program to a trace where
*p++ and *q = 2 occur subsequently without affecting the resulting state. The
figure shows one example. Therefore, a syntactic transformation from *p++; *q

= 2 to atomic{*p++; *q = 2} is a valid static reduction.

Still, it is often hard to prove that pointers do not overlap throughout a pro-
gram’s execution. Moreover, in many cases, pointers might temporarily overlap
at some point in the execution. For instance, assume that initially p points to
the variable b. This means that statements b = 2 and *p++ no longer commute,
because b = 2; b++ yields a different result than b++; b = 2. Nevertheless, if b
= 2 already happened, then we can still swap instructions and achieve the reduc-
tion as shown in Fig. 1. Traditional, static reduction methods cannot distinguish
whether b = 2 already happened and yield no reduction. Sec. 2 provides various
other real-world examples of hard cases for static analysis.

In Sec. 4.2, we propose a dynamic reduction method that is still based on a
similar syntactic transformation. Instead of merely making sequences of state-
ments atomic, it introduces branches as shown in Fig. 1 (T1’). A dynamic com-
mutativity condition determines whether the branch with or without reduction
is taken. In our example, the condition checks whether the program counter of
T2 (pc T2) still points to the statement b = 2 (pc T2 == 1). In that case, no
reduction is performed, otherwise the branch with reduction is taken. In addition
to conditions on the program counters, we provide other heuristics comparing
pointer and array values dynamically.

1: *p++;
2: *q = 2;

(T1)

1: b = 2;
2: c = 3;
3: *q = 1;

(T2)

b = 2 *p++ c = 3 *q = 1 *q = 2

b = 2 c = 3 *p++ *q = 1 *q = 2

b = 2 c = 3 *q = 1 *p++ *q = 2

1: if (pc_T2 == 1){
2: *p++;
3: *q = 2;

} else { atomic{
4: *p++;
5: *q = 2; }}

(T1’)

Fig. 1: (Left) C code for threads T1 and T2. (Middle) Reordering (dotted lines) a multi-threaded
execution trace (T1’s actions are represented with straight arrows and T2’s with ‘dashed’ arrows).
(Right) The instrumented code for T1.
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(1, 1)

(2, 1) (2, 2)
b = 2

pc T2==1

(T1, T2)

(1, 2)
b = 2

(4, 2)

pc T2!=1

(else)

6=

Fig. 2: Loss of commutativity

4

2 3
*p++

∼=

5
*p++

∼=
Fig. 3: Bisimulation (T1)

The instrumented code (T1’) however poses one problem: the branching con-
dition no longer commutes with the statement that enables it. In this case, the
execution of b = 2 disables the condition, thus before executing b = 2, T1’ ends
up at Line 2, whereas after b = 2 it ends up at Line 4 (see Fig. 2). To remedy this,
we require in Sec. 4.3 that the instrumentation guarantees bisimilarity of target
states. Fig. 3 shows that locations 2 and 4 of T1’ are bimilar, written 2 ∼= 4,
which implies that any statement executable from the one is also executable
from the other, ending again in a bisimilar location, e.g. 3 ∼= 5. As bisimularity
is preserved under parallel composition, e.g. (4, 2) ∼= (2, 2), we can prove the
correctness of our dynamic reduction method (see our technical report [19]).

The benefit of our syntactic approach is that the technique can be combined
with symbolic model checking checking techniques (Sec. 5 provides an encoding
for our lean instrumentation). Thus far, symbolic model checkers only supported
more limited and static versions of reduction techniques as discussed in Sec. 7.

We implemented the dynamic reduction and encoding for LLVM bitcode,
mainly to enable support for C/C++ programs without dealing with their in-
tricate semantics (the increased instruction count of LLVM bitcode is mitigated
by the reduction). The encoded transition relation is then passed to the Vienna
Verification Tool (VVT) [25], which implements both BMC and IC3 algorithms
extended with abstractions [7]. Experimental evaluation shows that (Sec. 6) dy-
namic reduction can yield several orders of magnitude gains in verification times.

2 Motivating Examples

int *data = NULL;
void worker thread(int tid) {

c: if (data == NULL) {
d: int *tmp = read from disk(1024);
W: if (!CAS(&data, NULL, tmp)) free(tmp);

}
for (int i = 0; i < 512; i++)

R: process(data[i + tid * 512]);
}
int main () {

a: pthread create(worker thread, 0); // T1
b: pthread create(worker thread, 1); // T2
}

Fig. 4: Lazy initialization

Lazy initialization. We illus-
trate our method with the code
in Fig. 4. The main function
starts two threads executing the
worker thread function, which pro-
cesses the contents of data in the
for loop at the end of the function.
Using a common pattern, a worker
thread lazily delays the initializa-
tion of the global data pointer un-
til it is needed. It does this by read-
ing some content from disc and set-
ting the pointer atomically via a compare-and-swap operation (CAS) at label W
(whose semantics here is an atomic C-statement: if (data==NULL) { data =
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tmp; return 1; } else return 0;). If it fails (returns 0), the locally allocated
data is freed as the other thread has won the race.

The subsequent read access at label R is only reachable once data has been
initialized. Consequently, the write access at W cannot possibly interfere with the
read accesses at R, and the many interleavings caused by both threads executing
the for loop can safely be ignored by the model checker. This typical pattern is
however too complex for static analysis to efficiently identify, causing the model
checker to conservatively assume conflicting accesses, preventing any reduction.

Hash table. The code in Fig. 5 implements a lockless hash table (from [31])
inserting a value v by scanning the bucket array T starting from hash, the hash
value calculated from v. If an empty bucket is found (T[index]==E), then v

is atomically inserted using the CAS operation. If the bucket is not empty, the
operation checks whether the value was already inserted in the bucket (T[index]
== v). If that is not the case, then it probes the next bucket of T until either v

is found to be already in the table, or it is inserted in an empty slot, or the table
is full. This basic bucket search order is called a linear probe sequence.

A thread performing find-or-put(25), for instance, merely reads buckets
T[2] to T[5]. However, other threads might write an empty bucket, thus causing
interference. To show that these reads are independent, the static analysis would
have to demonstrate that the writes happen to different buckets. Normally this
is done via alias analysis that tries to identify the buckets that are written to (by
the CAS operation). However, because of the hashing and the probe sequence,
such an analysis can only conclude that all buckets may be written. So all op-
erations involving T, including the reads, will be classified as non-commuting.
However if we look at the state of individual buckets, it turns out that a common
pattern is followed using the CAS operation: A bucket is only written when it is
empty, thereafter it doesn’t change. In other words, when a bucket T[i] does not
contain E, then any operation on it is a read and consequently is independent.

int T[10] = {E,E,22,35,46,25,E,E,91,E};

int find-or-put(int v) {
int hash = v / 10;
for (int i = 0; i < 10; i++) {

int index = (i + hash) % 10;
if (CAS(&T[index], E, v)) {

return INSERTED;
} else if (T[index] == v)

return FOUND;
}
return TABLE_FULL;

}
int main() {

pthread_create(find-or-put, 25);
pthread_create(find-or-put, 42);
pthread_create(find-or-put, 78);

}

Fig. 5: Lockless hash table.

int x = 0, y = 0;
int *p1, *p2;

void worker(int *p) {
while (*p < 1024)

*p++;
}
int main(){

a: if (*)
b: { p1 = &x; p2 = &y; }

else
c: { p1 = &y; p2 = &x; }

pthread_create(worker, p1); // T1
pthread_create(worker, p2); // T2
pthread_join(t1);
pthread_join(t2);
return x+y;

}

Fig. 6: Load balancing.
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Load balancing. Fig. 6 shows a simplified example of a common pattern
in multi-threaded software; load balancing. The work to be done (counting to
2048) is split up between two threads (each of which counts to 1024). The work
assignment is represented by pointers p1 and p2, and a dynamic hand-off to
one of the two threads is simulated using non-determinism (the first if branch).
Static analysis cannot establish the fact that the partitions are independent,
because they are assigned dynamically. But because the pointer is unmodified
after assignment, its dereference commutes with that in other worker threads.

Sec. 4 shows how our examples can be reduced with dynamic commutativity.

3 Preliminaries

A concurrent program consists of a finite number of sequential procedures, one
for each thread i. We model the syntax of each thread i by a control flow graph
(CFG) Gi = (Vi, δi) with δi ⊆ Vi × A × Vi and A being the set of actions, i.e.,
statements. Vi is a finite set of locations, and (l, α, l′) ∈ δi are (CFG) edges. We
abbreviate the actions for a thread i with ∆i = {α | ∃l, l′ : (l, α, l′) ∈ δi)}.

i, j, k : Threads

a, b, x, y, p, p′ : Vars

c, c′, . . . : Vals

l, l′, l1, . . . : Vi

d, d′ : Data

pc, pc′, . . . : Locs

σ, σ′, . . . : S

αi : P(Data2)

DomainsA state of the concurrent system is composed of
(1) a location for each thread, i.e., a a tuple of thread
locations (the set Locs contains all such tuples), and
(2) a data valuation, i.e., a mapping from variables
(Vars) to data values (Vals). We take Data to be the
set of all data valuations. Hence, a state is a pair,
σ = (pc, d) where pc ∈ ∏iVi and d ∈ Data. The loca-
tions in each CFG actually correspond to the values
of the thread-local program counters for each thread.
In particular, the global locations correspond to the
global program counter pc being a tuple with pci ∈ Vi
the thread-local program counter for thread i. We use
pc[i := l] to denote pc[i := l]i = l and pc[i := l]j = pcj for all j 6= i.

Each possible action α semantically corresponds to a binary relation α ⊆
Data × Data representing the evolution of the data part of a state under the
transition labelled by α. We call α the transition relation of the statement α,
referring to both simply as α. We also use several simple statements from pro-
gramming languages, such as C, as actions.

The semantics of a concurrent program consisting of a finite number of
threads, each with CFG Gi = (Vi, δi), is a transition system with data (TS)
C = (S,→) with S = Locs × Data, Locs =

∏
i Vi and →=

⋃
i →i where →i is

given by (pc, d) →i (pc′, d′) for ∃α : pci = l ∧ (l, α, l′) ∈ δi ∧ (d, d′) ∈ α ∧ pc′ =

pc[i := l′]. We also write (pc, d)
α→i (pc′, d′) for pci = l ∧ (l, α, l′) ∈ δi ∧ (d, d′) ∈

α ∧ pc′ = pc[i := l′]. Hence, the concurrent program is an asynchronous exe-
cution of the parallel composition of all its threads. Each step (transition) is a
local step of one of the threads. Each thread i has a unique initial location pc0,i,
and hence the TS has one initial location pc0. Moreover, there is an initial data
valuation d0 as well. Hence, the initial state of a TS is σ0 , (pc0, d0).
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Since we focus on preserving simple safety properties (e.g. assertions) in our
reduction, w.l.o.g., we require one sink location per thread lsink to represent
errors (it has no outgoing edges, no selfloop). Correspondingly, error states of a
TS are those in which at least one thread is in the error location.

In the following, we introduce additional notation for states and relations. Let
R ⊆ S×S and X ⊆ S. Then left restriction of R to X is X ‖R , R ∩ (X ×S)

and right restriction is R ‖X , R ∩ (S×X). The complement of X is denoted

X , S\X (the universe of all states remains implicit in this notation). Finally, R
does not enable X if X ‖R ‖X = ∅, and R does not disable X if X ‖R ‖X = ∅.
Commutativity. We let R◦Q denote the sequential composition of two binary
relations R and Q, defined as: {(x, z) | ∃y : (x, y) ∈ R∧(y, z) ∈ Q} . Moreover, let:

R ./ Q , R ◦Q = Q ◦R (both-commute)

R
→
./ Q , R ◦Q ⊆ Q ◦R (R right commutes with Q)

R
←
./ Q , R ◦Q ⊇ Q ◦R (R left commutes with Q)

Illustrated graphically for transition relations, →i right commutes with →j iff

σ

σ′ σ′′

→
i

→j

⇒∀σ, σ′, σ′′ :

σ σ′′′

σ′′

→
i

→j

σ′

→
i

→j

∃σ′′′ : (1)

Conversely, →j left commutes with →i. The typical example of (both) commut-
ing operations α−→i and β−→i is when α and β access a disjoint set of variables.
Two operations may commute even if both access the same variables, e.g., if
both only read or both (atomically) increment/decrement the same variable.
Lipton Reduction. Lipton [33] devised a method that merges multiple se-
quential statements into one atomic operation, thereby radically reducing the
number of states reachable from the initial state as Fig. 7 shows for a transition
system composed of two (independent, thus commuting) threads.

a=
0;

1

x=1;
2

b=
2;

1

x=1;
2 a=

0;

1

y=2;
2

b=
2;

1

y=2;
2

x=1;
2 a=

0;

1

b=
2;

1

y=2;
2

a=
0;
b=
2;

x=1;y=2;

a=
0;
b=
2;

x=1;y=2;

a=
0;

1

x=1;
2

b=
2;

1

x=1;
2 a=

0;

1

y=2;
2

b=
2;

1

y=2;
2

x=1;
2 a=

0;

1

b=
2;

1

y=2;
2

Fig. 7: Example transition system composed of two independent threads (twice). Thick lines show
a Lipton reduced system (left) and a partial-order reduction (right).
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Lipton called a transition
α→i a right/left mover if and only if it satisfies:

α→i
→
./
⋃
j 6=i

→j (right mover)
α→i
←
./
⋃
j 6=i

→j (left mover)

Both-movers are transitions that are both left and right movers, whereas non-
movers are neither. The sequential composition of two movers is also a corre-
sponding mover, and vice versa. Moreover, one may always safely classify an
action as a non-mover, although having more movers yields better reductions.

Lipton reduction only preserves halting. We present Lamport’s [32] version,
which preserves safety properties such as �ϕ: Any sequence α1−→i ◦ α2−→i ◦ · · · ◦
αn−1−−−→i ◦ αn−−→i can be reduced to a single transaction α−→i where α = α1; . . . ;αn

(i.e. a compound statement with the same local behavior), if for some 1 ≤ k < n:

L1. statements before αk are right movers, i.e.: α1−→i ◦ · · · ◦ αk−1−−−→i
→
./
⋃
j 6=i →j ,

L2. statements after αk are left movers, i.e.: αk+1−−−→i ◦ · · · ◦ αn−−→i
←
./
⋃
j 6=i →j ,

L3. statements after α1 do not block, i.e.: ∀σ ∃σ′ : σ α1−→i ◦ · · · ◦ αn−−→i σ
′, and

L4. ϕ is not disabled by α1−→i ◦ · · ·◦ αk−1−−−→i , nor enabled by αk+1−−−→i ◦ · · ·◦ αn−−→i .

The action αk might interact with other threads and therefore is called the
commit in the database terminology [37]. Actions preceding it are called pre-
commit actions and gather resources, such as locks. The remaining actions are
post-commit actions that (should) release these resources. We refer to pre(/post)-
commit transitions including source and target states as the pre(/post) phase.

4 Dynamic Reduction

The reduction outlined above depends on the identification of movers. And to
determine whether a statement is a mover, the analysis has to consider all other
statements in all other threads. Why is the definition of movers so strong? The
answer is that ‘movability’ has to be preserved in all future computations for the
reduction not to miss any relevant behavior.

(x, y)
(0, 0)

(0, 0) (0, 1)

(0, 2) (0, 1) (1, 1)

(0, 2) (1, 1)

(0, 1)

(1, 2)

(0, 2)

(2, 2)

(0, 1)

(1, 1)

1x=
0;

2

y=1;

1
y=
2;

2

y=1;
1x=

0;

2

x=y;

1
y=
2;

2

x=y; 1

x
=
0
;

2

y
=
1
;

2

x
=
y
;

1

y
=
2
;

2

x
=
y
;

1

y
=
2
;

x=
0;
y=
2;

y=1;x=y;

Fig. 8: Transition system of
x:=0−−−→1 y:=2−−−→1 ‖ y:=1−−−→2 x:=y−−−→2 .

Thick lines show an incorrect re-
duction, missing (2, 2) and (1, 2).

For instance, consider the system composed of
x=0; y=2 and y=1; x=y with initial state σ0 =
(pc0, d0), d0 = (x = 0, y = 0) and pc0 = (1, 1) us-
ing line numbers as program counters. Fig. 8 shows
the TS of this system, from which we can derive
that x:=0 and y:=1 do not commute except in the
initial state (see the diamond structure of the top
3 and the middle state). Now assume, we have a
dynamic version of Lipton reduction that allows
us to apply the reduction atomic{x=0; y=2;} and
atomic{y=1; x=y;}, but only in the initial state
where both x=0 and y=1 commute. The resulting
reduced system, as shown with bold arrows, now
discards various states. Clearly, a safety property
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such as �¬(x = 1 ∧ y = 2) is not preserved anymore by such a reduction, even
though x=0 and y=1 never disable the property (L4 in Sec. 3 holds).

The mover definition comparing all behaviors of all other threads is thus
merely a way to (over)estimate the computational future. But we can do better,
without precisely calculating the future computations (which would indulge in
a task that the reduction is trying to avoid in the first place). For example,
unreachable code should not negatively impact movability of statements in the
entire program. By the same line of reasoning, we can conclude that lazy ini-
tialization procedures (e.g. Fig. 4) should not eliminate movers in the remainder
of the program. Intuitively, one can run the program until after initialization,
then remove the initialization procedure and restart the verification using that
state as the new initial state. Similarly, reading unchanging buckets in the hash
table of Fig. 5 should not cause interference. And the dynamically assigned, yet
disjoint, pointers of Fig. 6 never overlap, so their dereferences can also become
movers after their assignment. The current section provides dynamic notion of
movability and a generalized reduction theorem that can use this new notion.
Proofs of all lemmas and theorems can be found in our technical report [19].

4.1 Dynamic Movers

Recall from the example of Fig. 1 that we introduce branches in order to guide
the dynamic reductions. This section formalizes the concept of a dynamic both-
moving condition, guarding these branches. We only consider both movers for
ease of explanation. Nonetheless, our report [19] considers left and right movers.

Definition 1 (Dynamic both-moving conditions).
A state predicate (a subset of states) cα is a dynamic both-moving condition for
a CFG edge (l, α, l′) ∈ δi, if for all j 6= i and β ∈ ∆j: (cα ‖ α−→ i ) ./ (cα ‖ β−→ j )

and both α−→ i , β−→ j do not disable cα, i.e. cα ‖ β−→ j ‖cα = cα ‖ α−→ i ‖cα = ∅.
One key property of a dynamic both-moving condition for α ∈ ∆i is its

monotonicity: In the transition system, the condition cα can be enabled by re-
mote threads (j 6= i), but never disabled. While the definition allows us to define
many practical heuristics, we have identified the following both-moving condi-
tions as useful. Although our heuristics still rely on static analysis, the required
information is easier to establish (e.g. with basic control-flow analysis and the
identification of CAS instructions) than for the global mover condition. When
static analysis still fails to derive enough information for establishing one of these
heuristics, cα := false can safely be taken, destining α as a non-mover statically.

Reachability As in Fig. 4, interfering actions, such as the write at label W,
may become unreachable once a certain program location has been reached.
The dynamic condition for the read α , process(data[i + tid * 512])i
therefore becomes: cα :=

∧
j 6=i
∧
l∈L(j) pcj 6= l, where L(j) is the set of all

locations in Vj that can reach the location with label W in Vj . For example,
for thread T1 we obtain cα := pc T2 != a,b,c,d,W (abbreviated).
Deriving this condition merely requires a simple reachability check on the CFG.
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Static pointer dereference If pointers are not modified in the future, then
their dereferences commute if they point to different memory locations.
For thread T1 in the pointer example in Fig. 6, we obtain cα := p1 != p2 &&

pc T2 != a,b,c (here *p++ is the pointer dereference with p = p1).
Monotonic atomic A CAS instruction CAS(p, a, b) is monotonic, if its ex-

pected value a is never equal to the value b that it tries to write. Assuming
that no other instructions write to the location where p refers to, this means
that once it is set to b, it never changes again.
In the hash table example in Fig. 5, there is only a CAS instruction writing
to the array T. The dynamic moving condition is: cα := T[index] != E.

Lemma 1. The above conditions are dynamic both-moving conditions.

4.2 Instrumentation

Fig. 1 demonstrated how our instrumentation adds branches to dynamically
implement the basic single-action rule. Lipton reduction is more complicated.
Here, we provide an instrumentation that satisfies the constraints on these phases
(see L1–L4 in Sec. 3). Roughly, we transform each CFG Gi = (Vi, δi) into an
instrumented G′i , (V ′i , δ

′
i) as follows:

1. Replicate all la ∈ Vi to new locations in V ′i =
{
lNa , l

R
a , l

L
a , l

R′
a , l

L′
a | la ∈ Vi

}
:

Respectively, there are external, pre-, and post- locations, plus two auxiliary
pre- and post- locations for along branches.

2. Add edges/branches with dynamic moving conditions according to Table 1.
The rules in Table 1 precisely describe the instrumented edges in G′i: for

each graph part in the original Gi (middle column), the resulting parts of G′i
are shown (right column). As no non-movers are allowed in the post phase, R4
only checks the dynamic moving condition for all outgoing transitions of a post-
location lLa . If it fails, the branch goes to an external location lNa from where the

Table 1: The CFG instrumentation

Gi , (Vi, δi) V ′i , δ
′ in G′i (pictured)

R1 ∀ (la, α, lb) ∈ δi : lNa
lRb

lLb

cα ‖α

¬cα ‖α

R2 ∀ (la, α, lb) ∈ δi : lR
′

a

lRb

lLb

cα ‖α

¬cα ‖α
R3 ∀la ∈ Vi : lRa lR

′
a

true

R4 ∀la ∈ Vi \ LFS i : lLa
lL
′

a

lNa

c(la)

¬c(la)

with c(la) ,∧
(la,α,lb)∈δi

cα

R5 ∀ (la, α, lb) ∈ δi, la ∈ Vi \ LFS i : lL
′

a lLb
α

R6 ∀la ∈ LFS i : lLa lNa
true
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actual action can be executed (R1). If it succeeds, then the action commutes
and can safely be executed while remaining in the post phase (R5). We do this
from an intermediary post location lL

′
a . Since transitions α thus need to be split

up into two steps in the post phase, dummy steps need to be introduced in the
pre phase (R1 and R2) to match this (R3), otherwise we lose bisimilarity (see
subsequent subsection). As an intermediary pre location, we use lR

′
a .

All new paths in the instrumented G′i adhere to the pattern:
lN1

α1−→ lR2 . . . l
R
k

αk−−→ lLk+1 . . . l
L
n
αn−−→ lNn+1. Moreover, using the notion of location

feedback sets (LFS) defined in Def. 2, R4 and R6 ensure that all cycles in the
post phase contain an external state. This is because our reduction theorem (in-
troduced later) allows non-terminating transactions as long as they remain in
the pre-commit phase (it thus generalizes L3). Fig. 9 shows a simple example
CFG with its instrumentation. The subsequent reduction will completely hide
the internal states, avoiding exponential blowup in the TS (see Sec. 4.3).

Definition 2 (LFS). A location feedback set (LFS) for thread i is a subset
LFS i ⊆ Vi such that for each cycle C = l1, .., ln, l1 in Gi it holds that LFS i ∩ C 6= ∅.
The corresponding (state) feedback set (FS) is: Ci , {(pc, d) | pci ∈ LFS i)}.

Corollary 1 ([30]).
⋃
i Ci is a feedback set in the TS.

The instrumentation yields the following 3/4-partition of states for all threads i:

Ei ,
{

(pc, d) | pci ∈ {lNsink, lRsink, lLsink}
}

(Error) (2)

Ri ,
{

(pc, d) | pci ∈ {lR, lR
′}
}
\ Ei (Pre-commit) (3)

Li ,
{

(pc, d) | pci ∈ {lL, lL
′}
}
\ Ei (Post-commit) (4)

Fi ,
{

(pc, d) | pci ∈ {lN}
}
\ Ei (Ext./non-error) (5)

Ni , Fi ] Ei (External) (6)

l2

l1

α β lN2lN1 lL2lL1 lL
′

2lL
′

1 lR2lR1 lR
′

2lR
′

1

c
α ‖α

¬cα
‖α

cα
‖α

¬cα
‖α

cβ ‖β

¬cβ ‖β cβ
‖β

¬cβ
‖β

truetrue c(l2)¬c(l2)

α
β

true

Fig. 9: Instrumentation (right) of a 2-location CFG (left) with LFS = {l1}.
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The new initial state is (pc′0, d0), with ∀i : pc′0,i = lN0,i. Let Locs′ ,
∏
i V
′
i and

C ′ , (Locs′×Data,→′) be the transition system of the instrumented CFG. The
instrumentation preserves the behavior of the original system:

Lemma 2. An error state is →-reachable in the original system iff an error
state is →′-reachable in the instrumented system.

Recall the situation illustrated in Fig. 3 within the example in Fig. 1. Rules
R1, R2, and R4 of our instrumentation in Table 1 give rise to a similar problem
as illustrated in the following.

σ1

σ2 σ3→j

c
α

‖α
−−−→

i

σ4

σ′3

→j
¬
c
α ‖α

−−−−→
i

l
L
a l

R
a

l
L
a

6=

σ1 σ2→j

σ4

¬
c
(la

)
−−−−→

i
σ′3→j σ3

c(la )
−−−→i

l
L
a

l
N
a

l
L
a

l
L′
a

l
N
a 6=

Hence, our instrumentation introduces non-movers. Nevertheless, we can
prove that the target states are bisimilar. This enables us to introduce a weaker
notion of commutativity up to bisimilarity which effectively will enable a reduc-
tion along one branch (where reduction was not originally possible). The details
of the reduction are presented in the following section. We emphasize that our
implementation does not introduce any unnecessary non-movers.

4.3 Reduction

We now formally define the notion of thread bisimulation required for the re-
duction, as well as commutativity up to bisimilarity.

Definition 3 (thread bisimulation). An equivalence relation R on the states
of a TS (S,→) is a thread bisimulation iff

σ

σ′

σ1

R

→i σ

σ′

σ1

R

→i

σ′1→i

R

⇒ ∃σ′1 :∀σ, σ′, σ1, i :

Standard bisimulation [35,38] is an equivalence relation R which satisfies the
property from Def. 3 when the indexes i of the transitions are removed. Hence,
in a thread bisimulation, in contrast to standard bisimulation, the transitions
performed by thread i will be matched by transitions performed by the same
thread i. As we only make use of thread bisimulations, we will often refer to
them simply as bisimulations.

Definition 4 (commutativity up to bisimulation). Let R be a thread bisim-
ulation on a TS (S,→). The right and left commutativity up to R of the transition

relation →i with →j, notation →i
→
./R→j /→i

←
./R→j are defined as follows.

11



→i
→
./R→j ⇐⇒ →i

←
./R→j ⇐⇒

σ1

σ2 σ3→j

→
i

σ1

σ2 σ3→j

→
i⇒ ∃σ′3, σ4 :

σ4→j

σ′3

→
i

(σ3, σ
′
3) ∈ R

σ1 σ2

σ3

→
j

→i σ1 σ2

σ3

→
j

→i

σ4

→
j

σ′3→i

⇒ ∃σ′3, σ4 :

(σ3, σ
′
3) ∈ R

Our reduction works on parallel transaction systems (PT ), a specialized TS.
While its definition (Def. 5) looks complicated, most rules are concerned with
ensuring that all paths in the underlying TS form transactions, i.e. that they
conform to the pattern σ1 α1−→ σ2 . . .σk αk−−→ σk+1 . . .σn αn−−→ σn+1, where αk is the
non-mover, etc. We have from the perspective of thread i that: σ1 and σn+1 are
external, ∀1 < x ≤ k : σx pre-commit, and ∀k < x ≤ n : σx post-commit states.
The rest of the conditions ensure bisimilarity and constrain error locations.

The reduction theorem, Th. 1, then tells us that reachability of error states is
preserved (and reflected) if we consider only PT -paths between globally external
states N . The reduction thus removes all internal states I where I , ⋃i Ii and

Ii , Li ∪Ri (at least one internal phase).

Definition 5 (transaction system). A parallel transaction system PT is a
transition system TS = (S,→) whose states are partitioned in three sets of phases
and error states in one of the phases, for each thread i. For each thread i, there
exists a thread bisimulation relation ∼=i. Additionally, the following properties
hold (for all i, all j 6= i):

1. S = Ri ] Li ]Ni and Ni = Ei ] Fi (the 3/4-partition)
2. ∀σ ∈ Li : ∃σ′ ∈ Ni : σ →+

i σ
′ (post phases terminate)

3. →i⊆ L2
j ∪R2

j ∪ E2j ∪ F2
j (i preserves j’s phase)

4. Ei ‖→i ‖Ei = ∅ (local transitions preserve errors)
5. Li ‖→i ‖Ri = ∅ ((locally) post does not reach pre)

6. ∼=i⊆ E2i ∪ Ei
2

(bisimulation preserves (non)errors)
7. ∼=i⊆ L2

j ∪R2
j ∪ E2j ∪ F2

j (∼=i entails j-phase-equality)

8. (→i ‖Ri)
→
./{j}→j (i to pre right commutes up to ∼=j with j)

9. (Li ‖→i)
←
./{i,j}→j (i from post left commutes up to ∼={i,j} with j)

In item 8 and item 9,
→
./Z and

←
./Z (for a set of threads Z) are short notations

for
→
./∼=Z and

←
./∼=Z , respectively, with ∼=Z being the transitive closure of the union

of all ∼=i for i ∈ Z.

Theorem 1. The block-reduced transition relation  of a parallel transaction
system PT = (S,→) is defined in two steps:

↪→i , Nj 6=i ‖→i (i only transits when all j are in external)

 i , Ni ‖(↪→i ‖Ni)∗ ↪→i ‖Ni (block steps skip internal states Ni)

Let  ,
⋃
i  i, N ,

⋂
iNi and E , ⋃

i Ei. We have p →∗ q for p ∈ N and
q ∈ E if and only if p ∗ q′ for q′ ∈ E.

12



Our instrumentation from Table 1 in Sec. 4.2 indeed gives rise to a PT
(Lemma 3) with the state partitioning from (Eq. 2–6). The following equiva-
lence relation ∼i over locations becomes the needed bisimulation ∼=i when lifted
to states. (The locations in the rightmost column of Table 1 are intentionally
positioned such that vertically aligned locations are bisimilar.)

∼i,
{

(lX , lY ) | l ∈ Vi ∧X,Y ∈ {L,R}
}
∪
{

(lX , lY ) | l ∈ Vi ∧X,Y ∈ {N,R′, L′}
}

∼=i,
{

((pc,d),(pc′,d′))|d=d′ ∧ pci∼i pc′i ∧ ∀j 6= i :pcj=pc′j
}

The dynamic both-moving condition in Def. 1 is sufficient to prove (item 8–9).
The LFS notion in Def. 2 is sufficient to prove post-phase termination (item 2).

Lemma 3. The instrumented TS C ′ = (Locs′ × Data,→′) is a PT .

All of the apparent exponential blowup of the added phases (5|Threads|) is
hidden by the reduction as  only reveals external states N ,

⋂
iNi (note

that S = I]N ) and there is only one instrumented external location (replicated
sinks can be eliminated easily with a more verbose instrumentation).

5 Block Encoding of Transition Relations

We implement the reduction by encoding a transition relation for symbolic model
checking. Transitions encoded as SMT formulas may not contain cycles. Al-
though our instrumentation conservatively eliminates cycles in the post-commit
phase of transactions with external states, cycles (without external locations) can
still occur in the pre-phase. To break these remaining cycles, we use a refined
location feedback set LFS ′i of the instrumented CFG without external locations
G′i \

{
lN ∈ V ′i

}
(this also removes edges incident to external locations).

Now, we can construct a new block-reduced relation �. It resembles the
definition of  in Th. 1, except for the fact that the execution of thread i can
be interrupted in an internal state C′i (LFS ′i lifted to states) in order to break
the remaining cycles.

�,
⋃
i

�i , where �i, Xi ‖(↪→i ‖Xi)∗ ↪→i ‖Xi with Xi ,Ni ∪ C′i

Here, the use of ↪→i (from Th. 1) warrants that only thread i can transit from
the newly exposed internal states C′i ⊆ Nj 6=i. Therefore, by carefully selecting
the exposed locations of C′i, e.g. only lRa , the overhead is limited to a factor two.

To encode �, we identify blocks of paths that start and end in external or
LFS locations, but do not traverse external or LFS locations and encode them
using large blocks [5]. This automatically takes care of disallowing intermediate
states, except for the states C′i exposed by the breaking of cycles. At the corre-
sponding locations, we thus add constraints to the scheduler encoding to only
allow the current thread to execute. To support pthreads constructs, such as
locks and thread management, we use similar scheduling mechanisms.
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6 Experiments

We implemented the encoding with dynamic reduction in the Vienna Verifica-
tion Tool (VVT) [25,24]. VVT implements CTIGAR [7], an IC3 [9] algorithm
with predicate-abstraction, and bounded model checking (BMC) [26]. VVT came
fourth in the concurrency category of SVComp 2016 [3] the first year it partici-
pated, only surpassed by tools based on BMC or symbolic simulation.

We evaluated our dynamic reductions on the running examples and compared
the running time of the following configurations:

– BMC with all dynamic reductions (BMC-dyn in the graphs);
– BMC with only static reductions and phase variables from [17] (BMC-phase);
– IC3 with all dynamic reductions (IC3-dyn); and
– IC3 with only static reductions and phase variables from [17] (IC3-phase).

We used a one-hour time limit for each run and ran each instance four times.
Variation over the four runs was insignificant, so we omit plotting it. Missing
values in the graphs indicate a timeout. The whole process, including heuristic
derivation, instrumentation and encoding, is automated.
Lazy initialization. We implemented a version of the program in Fig. 4 where
the function process counts array elements. As verification condition, we used
the correct total count. As no other heuristic applies, only the reachability heuris-
tic can contribute. Fig. 10a shows that both BMC and IC3 benefit enormously
from the obtained dynamic reductions: With static reductions, IC3 can only ver-
ify the program for one thread and BMC for three, while with dynamic reduction,
both BMC and IC3 scale to seven threads.
Hashtable. The lockless hash table of Fig. 5 is used in the following three
experiments. In each, we expected benefits from the monotonic atomic heuristic.

1. Every thread attempts to insert an already-present element into the table.
The verification condition is that every find-or-put operation returns FOUND.
Since a successful lookup operation doesn’t change the hash table, the dy-
namic reduction takes full effect: While the static reduction can only verify
two threads for BMC and four for IC3, the dynamic reduction can handle
six threads for BMC and more than seven for IC3.

2. Each thread inserts one element into an empty hash table. The verification
condition is that all inserted elements are present in the hash table after all
threads have finished executing. We now see in Fig. 10c that the dynamic re-
duction benefits neither BMC nor IC3. This is because every thread changes
the hash table thus forcing an exploration of all interleavings.
The overhead of using dynamic reductions, while significant in the BMC
case, seems to be non-existent in IC3.

3. Since both of the previous cases can be considered corner-cases (the hash
table being either empty or full), this configuration has half of the threads
inserting values already present while the other half insert new values.
While the difference between static and dynamic reductions is not as extreme
as before, we can still see that we profit from dynamic reductions, being able
to verify two more threads in the IC3 case.
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Fig. 10: Hash table and dynamic locking benchmark results

Load balancing. We used the load-balancing example (Fig. 6), expecting the
static pointer heuristic to improve the dynamic reductions. We verified that the
computed sum of the counters is indeed the expected result. Our experiment
revealed that dynamic reductions reduce the runtime from 15 minutes to 97
seconds for two threads already.

Dynamic locking. In addition to the earlier examples of Sec. 2, we also study
the effect of lock pointer analysis. To this end, we created a parallel program
in which multiple threads use a common lock to access two global variables. To
simulate locks in complex object structures (that are common, but impossible
to track for static analysis), the single lock these threads use is randomly picked,
similar to how the work load is assigned in Fig. 6. We extended our static pointer
dereference heuristic to also determine whether other critical sections with the
same conflicting operations are protected by the same lock, potentially allowing
the critical section to become a single transaction. In the critical section we
again count. The total is used as verification condition. Fig. 10e shows that the
dynamic reduction indeed kicks in and benefits both IC3 and BMC.
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Fig. 11: Scatterplots comparing runtimes for all combinations of reduction variants on SVComp
benchmarks. The upper half shows relative accumulated runtimes for these combinations.

SVComp. We also ran our IC3 implementation on the pthread-ext and
pthread-atomic categories of the software verification competition (SVComp)
benchmarks [4,2]. In instances with an unbounded number of threads, we intro-
duced a limit of three threads. To check the effect of different reduction-strategies
on the verification time, we tested the following reductions:

dyn: Dynamic with all heuristics from Sec. 4.1.
phase: Dynamic phases only (equal to [17]).
static: Static (as in Sec. 3).
nored : No reduction, all interleavings considered.

Fig. 11 shows that static Lipton reduction yields an average six-fold decrease
in runtime when compared to no reduction. Enabling the various dynamic im-
provements (dyn, phase) does not show improvement over the static case (static),
since most of the benchmarks are either too small or do not have opportunities
for reductions, but also not much overhead (up to 7%). Comparing the nored
case with the other cases shows the benefit of removing intermediate states.
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7 Related Work

Lipton’s reduction was refined multiple times [32,21,13,11,41]. It has recently
been applied in the context of compositional verification [40]. Qadeer and Flana-
gan [17] introduce dynamic phase variables to identify internal and external
states. They also provided a dynamic solution for determining locked regions.
Their approach, however, does not solve the examples featured in the current
paper. Moreover, in [17], the phases of target locations of non-deterministic tran-
sitions are required to agree. This restriction is not present in our encoding.

Grumberg et al. [22] present underapproximation-widening, which iteratively
refines an under-approximated encoding of the system. In their implementation,
interleavings are constrained to achieve the under-approximation. Because re-
finement is done based on verification proofs, irrelevant interleavings will never
be considered. The technique currently only supports BMC and the implemen-
tation is not available, so we did not compare against it.

Kahlon et al. [28] extend the dynamic solution of [17], by supporting a strictly
more general set of lock patterns. They incorporate the transactions into the
stubborn set POR method [43] and encode these in the transition relation in
similar fashion as in Alur et al. [1]. Unlike ours, their technique does not support
other constructs than locks.

While in fact it is sufficient for item 2 of Def. 5 to pinpoint a single state
in each bottom SCC of the CFG, we use feedback sets because the encoding
in Sec. 5 also requires them. Moreover, we take a syntactical definition for ease
of explanation. Semantic heuristics for better feedback sets can be found in [30]
and can easily be supported via state predicates. (Further optimizations are pos-
sible [30].) Obtaining the smallest (vertex) LFS is an NP-complete problem well
known in graph theory [8]. As CFGs are simple graphs, estimations via basic DFS
suffice. (In POR, similar approaches are used for the ignoring problem [44,36].)

Elmas et al. [15] propose dynamic reductions for type systems, where the
invariant is used to weaken the mover definition. The over-approximations per-
formed in IC3, however, decrease the effectiveness of such approaches.

In POR, similar techniques have been employed in [14] and the earlier-
mentioned necessary enabling sets of [20,42]. Completely dynamic approaches
exist [16], but symbolic versions remain highly static [1]. Notable exceptions are
peephole and monotonic POR by Wang et al. [45,29]. Like sleep sets [20], how-
ever, these only reduce the number of transitions—not states—which is crucial
in e.g. IC3 to cut counterexamples to induction [9]. Cartesian POR [23] is a
dynamic form of Lipton reduction for explicit-state model checking.

8 Conclusions

Our work provides a novel dynamic reduction for symbolic software model check-
ing. To accomplish this, we presented a reduction theorem generalized with
bisimulation, facilitating various dynamic instrumentations as our heuristics
show. We demonstrated its effectiveness with an encoding used by the BMC
and IC3 algorithms in the model checker VVT.
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