Tracing

Probability and Nondeterminism

Valeria Vignudelli

三三E三

Ana Sokolova

UNIVERSITY
of SALZBURG
Joint work with

Filippo Bonchi
三三汽

Valeria Vignudelli
三E：

Ana Sokolova
UNIVERSITY
of SALZBURG
Joint work with

Filippo Bonchi
三三

Probabilistic Nondeterministic Labeled Transition Systems

$$
t: X \rightarrow(\mathcal{P D} X)^{A}
$$

Trace Semantics for these systems is usually defined by means of schedulers and resolutions

We take a totally different view: our semantics is based on automata theory, algebra and coalgebra

> WARNING: In this talk, we will present our theory in its simplest possible form, throwing away all category theory

Nondeterministic Automata

$$
\langle o, t\rangle: X \rightarrow 2 \times(\mathcal{P} X)^{A}
$$

Language Semantics

NFA $=$ LTS + output
$X \rightarrow 2 \times(P X)^{A}$
$\overbrace{x \downarrow_{0} \xrightarrow{a, b} y \downarrow_{1}}^{b}$

$$
\llbracket \cdot \rrbracket: X \rightarrow 2^{A^{*}}
$$

$\llbracket x \rrbracket=(a \cup b)^{*} b=\left\{w \in\{a, b\}^{*} \mid w\right.$ ends with a $\left.b\right\}$

Determinisation for Nondeterministic Automata

$$
\langle o, t\rangle: X \rightarrow 2 \times(\mathcal{P} X)^{A} \quad\left\langle o^{\sharp}, t^{\sharp}\right\rangle: \mathcal{P} X \rightarrow 2 \times(\mathcal{P} X)^{A}
$$

$\llbracket!\rrbracket: \mathcal{P} X \rightarrow 2^{A^{*}}$

$$
[S S](\varepsilon)=o^{\sharp}(S)
$$

$$
\llbracket S \rrbracket(a w)=\llbracket \hbar^{\sharp}(S)(a) \rrbracket(w)
$$

$b \downarrow$
$\stackrel{\star}{\downarrow_{0}} \longrightarrow a, b$

Probabilistic Automata

$$
\begin{aligned}
& \langle o, t\rangle: X \rightarrow[0,1] \times(\mathcal{D} X)^{A}
\end{aligned}
$$

$$
\begin{aligned}
& X=\{x, y\} \quad A=\{a, b\}
\end{aligned}
$$

Probabilistic Language Semantics

Rabin PA = PTS + output

$$
X \rightarrow[0, I] \times(D X)^{A}
$$

$$
\mathbb{I} \mathbb{\square}: X \rightarrow[0,1]^{A^{*}}
$$

$$
\llbracket x \rrbracket=\left(a \mapsto \frac{1}{2}, a a \mapsto \frac{3}{4}, \ldots\right)
$$

Determinisation for Probabilistic Automata

$$
\begin{aligned}
& \langle o, t\rangle: X \rightarrow[0,1] \times(\mathcal{D} X)^{A} \longrightarrow\left\langle o^{\sharp}, t^{\sharp}\right\rangle: \mathcal{D} X \rightarrow[0,1] \times(\mathcal{D} X)^{A}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{c}
x \downarrow_{0} \\
a, b \downarrow
\end{array} \\
& x+_{\frac{1}{2}} y \downarrow_{\frac{1}{2}} \\
& a, b \downarrow \\
& x+\frac{1}{4} y \downarrow_{\frac{3}{4}} \\
& a, b \downarrow
\end{aligned}
$$

Toward a GSOS semantics

In the determinisation of nondeterministic automata we use terms built of the following syntax

$$
s, t::=\star, s \oplus t, x \in X
$$

to represent states in $\mathcal{P} X$

In the determinisation of probabilistic automata we use terms built of the following syntax

$$
s, t::=s+{ }_{p} t, x \in X \quad \text { for all } p \in[0,1]
$$

to represent elements of $\mathcal{D} X$

GSOS Semantics for

Nondeterministic Automata

$$
\overline{-} \quad \stackrel{-}{\stackrel{a}{\rightarrow} \star} \quad \stackrel{a}{s} s^{\prime} t \xrightarrow{a} t^{\prime}
$$

$$
\frac{-}{\star \downarrow_{0}} \quad \frac{s \downarrow_{b_{1}} \quad t \downarrow_{b_{2}}}{s \oplus t \downarrow_{b_{1} \sqcup b_{2}}}
$$

GSOS Semantics for Probabilistic Automata

$$
\begin{aligned}
& \frac{s \xrightarrow{a} s^{\prime} \quad t \xrightarrow{a} t^{\prime}}{s+{ }_{p} t \xrightarrow{a} s^{\prime}+{ }_{p} t^{\prime}} \\
& \frac{s \downarrow_{q_{1}} t \downarrow_{q_{2}}}{s+{ }_{p} t \downarrow_{p \cdot q_{1}+(1-p) \cdot q_{2}}}
\end{aligned}
$$

The Algebraic Theory of Semilattices with Bottom

$$
s, t::=\star, s \oplus t, x \in X
$$

$$
\begin{array}{rcc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(I)}{=} & x \\
x \oplus \star & \stackrel{(B)}{=} & x
\end{array}
$$

The set of terms quotiented by these axioms is isomorphic to $\mathcal{P} X$ this theory is a presentation for the powerset monad

The Algebraic Theory of Convex Algebras

$$
\begin{gathered}
s, t::=s+{ }_{p} t, x \in X \\
\text { for all } p \in[0,1] \\
\left(x+{ }_{q} y\right)+{ }_{p} z \\
\stackrel{\left(A_{p}\right)}{=} \\
x++_{p q} y \\
x+{ }_{p} x
\end{gathered}
$$

The set of terms quotiented by these axioms is isomorphic to $\mathcal{D} X$ this theory is a presentation for the distribution monad

Probabilistic Nondeterministic Language Semantics ?

NPA

```
X ? P (POX)A
```


$$
\llbracket x \rrbracket=? ? ?
$$

$$
\llbracket \cdot \rrbracket: X \rightarrow ?^{A^{*}}
$$

Algebraic Theory for Subsets of Distributions?

- For our approach it is convenient to have a theory presenting subsets of distributions
- Monads can be composed by means of distributive laws, but, unfortunately, there exists no distributive law between powerset and distributions (Daniele Varacca Ph.D thesis)
- Other general approach to compose monads/algebraic theories fail
- Our first step is to decompose the powerset monad...

Three Algebraic Theories

```
    Nondeterminism
```



```
\[
\begin{array}{ccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) \\
x \oplus y & \stackrel{(C)}{=} & y \oplus x \\
x \oplus x & \stackrel{(I)}{=} & x
\end{array}
\]
```


Probability $+p$

$$
\begin{array}{ccc}
\left(x+{ }_{q} y\right)+{ }_{p} z & \stackrel{\left(A_{p}\right)}{=} & x+{ }_{p q}\left(y+\frac{p(1-q)}{1-p q} z\right) \\
x+{ }_{p} y & \stackrel{\left(C_{p}\right)}{=} & y+{ }_{1-p} x \\
x+{ }_{p} x & \stackrel{\left(I_{p}\right)}{=} & x
\end{array}
$$

Monad: \mathcal{D}
Algebras: Convex Algebras

Termination \star
no axioms
Monad: • + 1
Algebras: Pointed Sets

The Algebraic Theory of Convex Semilattices
 $\oplus+p$

$$
\begin{array}{ccccc}
(x \oplus y) \oplus z & \stackrel{(A)}{=} & x \oplus(y \oplus z) & \left(x+_{q} y\right)+_{p} z & \stackrel{\left(A_{p}\right)}{=} \\
x \oplus y++_{p q}\left(y+t_{\frac{p(1-q)}{1-p q}} z\right) \\
x \oplus & \stackrel{(C)}{=} & y \oplus x & x+_{p} y & \stackrel{\left(C_{p}\right)}{=} \\
x \oplus x & \stackrel{(I)}{=} & x & x+_{p} x & \stackrel{\left(I_{p}\right)}{=} \\
& (x \oplus y)+_{p} z \stackrel{(D)}{=}\left(x+_{p} z\right) \oplus\left(y+_{p} z\right)
\end{array}
$$

Monad C : non-empty convex subsets of distributions
strategy is rather convexity comes from the following derived law standard but the full proof is tough

$$
s \oplus t \stackrel{(C)}{=} s \oplus t \oplus s+{ }_{p} t
$$

Adding Termination

$$
\begin{aligned}
& \oplus+_{p} \star \\
& (x \oplus y) \oplus z \stackrel{(A)}{=} \quad x \oplus(y \oplus z) \quad\left(x+_{q} y\right)+_{p} z \stackrel{\left(A_{p}\right)}{=} x+_{p q}\left(y+\frac{p(1-q)}{1-p q} z\right) \\
& x \oplus y \quad \stackrel{(C)}{=} \quad y \oplus x \\
& x \oplus x \\
& \stackrel{(I)}{=} \\
& x \\
& \begin{array}{ccc}
\left(x+{ }_{q} y\right)+{ }_{p} z & \stackrel{\left(A_{p}\right)}{=} & x+{ }_{p q}\left(y+\frac{p(1-q)}{1-p^{2}} z\right) \\
x+{ }_{p} y & \stackrel{\left(C_{p}\right)}{=} & y+{ }_{1-p} x \\
x+{ }_{p} x & \stackrel{\left(I_{p}\right)}{=} & x
\end{array} \\
& (x \oplus y)+_{p} z \stackrel{(D)}{=}\left(x+_{p} z\right) \oplus\left(y+_{p} z\right)
\end{aligned}
$$

The Algebraic Theory of Pointed Convex Semilattices

$$
x \oplus \star \stackrel{(B)}{=} \quad x
$$

The Algebraic Theory of Convex Semilattices with Bottom

$$
x \oplus \star \stackrel{(T)}{=} \star
$$

The Algebraic Theory of Convex Semilattices with Top

These three algebras are those freely generated by the singleton set 1

They give rise to three different semantics: may, must, and may-must

$$
\begin{gathered}
\mathbb{M}_{\mathcal{I}}=\left(\mathcal{I}, \min -\max ,+{ }_{p}^{\mathcal{I}},[0,0]\right) \\
\mathcal{I}=\{[x, y] \mid x, y \in[0,1] \text { and } x \leq y\} \\
\min -\max \left(\left[x_{1}, y_{1}\right],\left[x_{2}, y_{2}\right]\right)=\left[\min \left(x_{1}, x_{2}\right), \max \left(y_{1}, y_{2}\right)\right] \\
{\left[x_{1}, y_{1}\right]+{ }_{p}^{\mathcal{I}}\left[x_{2}, y_{2}\right]=\left[x_{1}+{ }_{p} x_{2}, y_{1}+{ }_{p} y_{2}\right]}
\end{gathered}
$$

The Theory of Pointed Convex Semilattices

$$
\mathbb{M a x}=\left([0,1], \max ,+_{p}, 0\right)
$$

The Algebraic Theory of Convex Semilattices with bottom

$$
\mathbb{M i n}=\left([0,1], \min ,+_{p}, 0\right)
$$

The Algebraic Theory of Convex Semilattices with Top

Syntax and Transitions

For the three semantics, we use the same syntax

$$
s, t::=\star, s \oplus t, s+{ }_{p} t, x \in X \quad \text { for all } p \in[0,1]
$$

and transitions

$$
\frac{s \xrightarrow{a} s^{\prime} \quad t \xrightarrow{a} t^{\prime}}{s \oplus t \xrightarrow{a} s^{\prime} \oplus t^{\prime}} \quad \frac{s \xrightarrow{a} s^{\prime} \quad t \xrightarrow{a} t^{\prime}}{s+{ }_{p} t \xrightarrow{a} s^{\prime}+{ }_{p} t^{\prime}}
$$

but different output functions...

Example without outputs

$$
\begin{aligned}
& x \xrightarrow{a} x_{1} \oplus\left(x_{3}+\frac{1}{2} x_{2}\right) \\
& x_{1} \xrightarrow{b} x+\frac{1}{2} x_{3} \\
& x_{2} \xrightarrow{b} x_{3} \quad x_{2} \xrightarrow{c} x
\end{aligned}
$$

$$
\begin{aligned}
& x \xrightarrow{b, c} \star \\
& x_{1} \xrightarrow{a, c} \star \\
& x_{2} \xrightarrow{a} \star \\
& x_{3} \xrightarrow{a, b, c} \star
\end{aligned}
$$

$$
x \xrightarrow{a} x_{1} \oplus\left(x_{3}+\frac{1}{2} x_{2}\right) \xrightarrow{b}\left(x+_{\frac{1}{2}} x_{3}\right) \oplus\left(\star+_{\frac{1}{2}} x_{3}\right)
$$

Outputs for May

We take as algebra of outputs

$$
\mathbb{M a x}=\left([0,1], \max ,+_{p}, 0\right)
$$

that gives rise to the following three rules

$$
\frac{-}{\star \downarrow_{0}} \quad \frac{s \downarrow_{q_{1}} \quad t \downarrow_{q_{2}}}{s \oplus t \downarrow_{\max \left(q_{1}, q_{2}\right)}} \quad \frac{s \downarrow_{q_{1}} t \downarrow_{q_{2}}}{s+{ }_{p} t \downarrow_{q_{1}+{ }_{p} q_{2}}}
$$

Outputs for Must

We take as algebra of outputs

$$
\operatorname{Min}=\left([0,1], \min ,+_{p}, 0\right)
$$

that gives rise to the following three rules

Outputs for May-Must

We take as algebra of outputs

$$
\mathbb{M}_{\mathcal{I}}=\left(\mathcal{I}, \text { min-max },+_{p}^{\mathcal{I}},[0,0]\right)
$$

that gives rise to the following three rules

$$
\frac{-}{\star \downarrow_{[0,0]}} \quad \frac{s \downarrow_{I} t \downarrow J}{s \oplus t \downarrow_{\min -\max (I, J)}} \quad \frac{s \downarrow_{I} t \downarrow_{J}}{s+_{p} t \downarrow_{I+{ }_{p}^{I} J}}
$$

Example with outputs

$$
\begin{aligned}
& x \xrightarrow{a} x_{1} \oplus\left(x_{3}+\frac{1}{2} x_{2}\right) \\
& x_{1} \xrightarrow{b} x+\frac{1}{2} x_{3} \\
& x_{2} \xrightarrow{b} x_{3} \quad x_{2} \xrightarrow{c} x \\
& x \xrightarrow{b, c} \star \\
& x_{1} \xrightarrow{a, c} \star \\
& x_{2} \xrightarrow{a} \star \\
& x_{3} \xrightarrow{a, b, c} \star \\
& \text { May } \\
& x \downarrow_{1} \xrightarrow{a} x_{1} \oplus\left(x_{3}+\frac{1}{2} x_{2}\right) \downarrow_{1} \xrightarrow{b}\left(x+\frac{1}{2} x_{3}\right) \oplus\left(\star+\frac{1}{2} x_{3}\right) \downarrow_{1} \\
& \text { Must } \\
& x \downarrow_{1} \xrightarrow{a} x_{1} \oplus\left(x_{3}+\frac{1}{2} x_{2}\right) \downarrow_{1} \xrightarrow{b}\left(x+\frac{1}{2} x_{3}\right) \oplus\left(\star+{ }_{\frac{1}{2}} x_{3}\right) \downarrow_{\frac{1}{2}}
\end{aligned}
$$

Conclusions

- Traces carry a convex semilattice
- The three trace semantics are convex semilattice homomorphisms
- Trace equivalences are congruence w.r.t. convex semilattice operations
- Coinduction up-to these operation is sound
- Both probabilistic and convex bisimilarity implies the three trace equivalences
- The equivalences are "backward compatible" with standard trace equivalences for nondeterministic and probabilistic systems
- The may-equivalence coincides with one in Bernardo, De Nicola, Loreti TCS 2014

Thank You

